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Abstract

It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference
through ‘‘neural sampling’’, i.e., by treating spikes as samples from a probability distribution of network states that is
encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each
random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both
deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through
the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons
with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as
the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural
coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model
can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal
integration of sensory information.
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Introduction

Humans and animals are confronted with various situations

where the state of some behaviorally relevant time-varying random

variable u(t) is only accessible through noisy observations Y (t). It is

then essential to estimate the current value of that random variable

u(t), and to update this belief on the basis of further evidence. Over

the last three decades we have learned from various experiments

that monkeys are able to perform such operations. In the classical

random-dot motion task, monkeys are confronted with dots on a

screen moving in random directions, where a random subset of dots

moves coherently. Monkeys are able to determine the direction of

coherent motion even for low coherency levels [1]. A more recent

study has shown that the firing rate of neurons in parietal cortex are

proportional to the momentary log-likelihood ratio of a rewarded

action for the given sensory evidence [2], suggesting that cortical

circuits perform some form of probabilistic inference to determine

the value of the hidden variable that represents rewarded actions. In

yet another experiment, Cisek and Kalaska [3] studied macaque

monkeys in an ambiguous target task. A visual spatial cue and a

color cue, which were separated by a memory epoch, determined

the rewarded direction of an arm movement, see Figure 1A.

Ambiguity about the rewarded action after the first cue was reflected

in the firing activity of dorsal premotor cortex (PMd) neurons, see

Figure 1B. When the second cue determined the single rewarded

action, only neurons tuned to the rewarded movement direction

remained active. This finding suggests that estimates for the value of

a salient time-varying random variable u(t) (getting rewarded for

carrying out a specific action) are represented and updated through

the current firing activity of different ensembles Ei of neurons, one

for each possible value i of the random variable u(t).

We show that despite of their diversity, all these tasks can be

viewed as probabilistic inference tasks, where some internal belief

about the current value i of a hidden random variable u(t) (e.g.,

which action is most likely to be rewarded at the end of a trial) needs

to be updated based on often ambiguous sensory evidence Y (t)
(moving dots, visual cues, etc.). We will distinguish 5 different classes

of such tasks (labeled A - E in Results) that differ for example with

regard to the time scale on which the hidden variable u(t) changes,

or prior knowledge about the expected change of u(t). These tasks

can not be solved adequately through a Hidden Markov Model

(HMM). The reason is that a HMM generates at each moment in

time just a single guess for the current value of an unknown variable.

It is therefore not able to work with more complex temporary

guesses, say that an unknown variable has probably value 1 or 2, but

definitely not value 3. Obviously such advanced representations are

necessary in order to make decisions that depend on the integration

of numerous temporally dispersed cues.

For all these classes of computational tasks there exist

theoretically optimal solutions that can be derived within a
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probabilistic inference framework. If one assumes that the hidden

random variable u(t) is static (i.e., u(t)~i for some i and all times

t), evidence provided by the temporal stream of observations has

to be integrated in order to infer the internal belief about the value

of the random variable u(t). In such evidence integration, an initial

prior belief formalized as a probability distribution P0(u(t)) is

updated over time in order to infer the time-varying posterior

distribution Pt(u(t)DY(t)), where Y(t) denotes all evidence up to

time twt0. For example, an observation at time t that is likely for

u(t)~i will increase the probability of state i at time t, while the

probability of values under which the observation is unlikely will

be decreased. Bayesian filtering generalizes evidence integration to

time-varying random variables. It is often assumed that the

dynamics of the random variable is time-independent. Bayesian

filtering then infers the posterior Pt(u(t)DY(t)) by taking the

assumed dynamics of the time-varying random variable u(t) into

account. For example, if value i is currently likely, and state i is

likely to transition to state j, then the probability for state j will

gradually increase over time. For many important tasks, the

dynamics of the random variable u(t) is not identical at all times

but rather depends on context. For example, the change of body

position in space (formalized as a hidden random variable u(t))
depends on motor actions. We refer to Bayesian filtering with

context dependent dynamics as context-dependent Bayesian

Figure 1. Representation of a belief in dorsal premotor cortex (PMd) in the ambiguous target task. A) Task structure. After an initial
fixation (center-hold time; CHT), the spatial cue (SC) is shown in the form of two color markers at one of eight possible locations and displaced from
each other by 180 degrees. They mark two potentially rewarded movement directions. After a memory epoch (MEM), the color cue (CC) is shown at
the fixation cross. The rewarded movement direction is defined by the direction of matching color in the color cue (time periods of simulation
indicated). B) Firing activity of neurons in dorsal premotor cortex during the task. Before the spatial cue is shown, neurons are diffusely active. As the
spatial cue is shown, neurons with preferred directions consistent with the spatial cue increase the firing rate and others are silenced. This circuit
behavior is retained during the memory epoch. As the color cue is presented, neurons with consistent preferred directions increase their firing rates.
C) Simulation result for a circuit that performs evidence integration in ENS coding (activity smoothed; horizontal axis: time). Neurons are ordered by
their preferred direction. Panel B modified with permission from [52].
doi:10.1371/journal.pcbi.1003859.g001

Author Summary

The Markov Chain Monte Carlo (MCMC) approach to
probabilistic inference for a distribution P is to draw a
sequence of samples from P and to carry out computa-
tional operations via simple online computations on such a
sequence. But such a sequential computational process
takes time, and therefore this simple version of the MCMC
approach runs into problems when one needs to carry out
probabilistic inference for rapidly varying distributions.
This difficulty also affects all currently existing models for
emulating MCMC sampling by networks of stochastically
firing neurons. We show here that by moving to a space-
rate approach where salient probabilities are encoded
through the spiking activity of ensembles of neurons,
rather than by single neurons, this problem can be solved.
In this way even theoretically optimal models for dealing
with time varying distributions through sequential Monte
Carlo sampling, so called particle filters, can be emulated
by networks of spiking neurons. Each spike of a neuron in
an ensemble represents in this approach a ‘‘particle’’ (or
vote) for a particular value of a time-varying random
variable. In other words, neural circuits can speed up
computations based on Monte Carlo sampling through
their inherent parallelism.

Ensembles of Spiking Neurons Support Probabilistic Inference
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filtering. It infers Pt(u(t)DY(t),C(t)), where C(t) denotes all context

information received up to time t.

In previous work, it was shown that networks of spiking neurons

can embody a probability distribution through their stochastic

spiking activity. This enables a neural system to carry out

probabilistic inference through sampling (e.g., estimate of a

marginal probability by observing the firing rate of a correspond-

ing neuron) [4]. This model for probabilistic inference in networks

of spiking neurons was termed neural sampling. However, neural

sampling does not provide a suitable model for the representation

and updating of quickly-varying distributions as it is needed for the

tasks discussed above, since a good estimate of the current value of

u(t) can only be read out after several samples have been observed.

Another deficit of the aforementioned simple form of the neural

sampling model is, that each salient random variable is represent-

ed through the firing activity of just a single neuron. This is

unsatisfactory because it does not provide a network computation

that is robust against the failures of single neurons. In fact, the

representation of random variables through single neurons is not

consistent with experimental data, see Figure 1B. In addition it

requires unbiologically strong synaptic connections in order to

ensure that the random variable that is represented by such single

neuron has an impact on other random variables, or on

downstream readouts. Furthermore, downstream readout neurons

are required to integrate (count) spikes of such neuron over

intervals of several hundred ms or larger, in order to get a

reasonable estimate of the probability that is represented through

the firing rate of the neuron (i.e., in order to estimate a posterior

marginal, which is an important form of probabilistic inference).

We examine in this article therefore an extension of the neural

sampling model, where random variables (e.g. internal beliefs) are

represented through a space-rate code of neuronal ensembles. In

other words, we are making stronger use of the inherent

parallelism of neural systems. In this ensemble based neural
sampling (ENS) code, the percentage of neurons in an ensemble Ei

that fire within some short (e.g. 20 ms) time interval encodes the

internal belief (or estimated probability) that a random variable

currently has a specific value i.

This variation of the neural sampling model is nontrivial, since

one tends to lose the link to the theory of sampling/probabilistic

inference if one simply replaces a single neuron by an ensemble of

neurons. We show however that ensemble based neural sampling

is nevertheless possible, and is supported by a rigorous theory. In

this new framework downstream neurons can read out current

internal estimates in the ENS code just through their standard

integration of postsynaptic potentials. We prove rigorously that

this generates unbiased estimates, and we also show on what

parameters the variance of this estimate depends. Furthermore we

explore first steps of a theory of neural computation with the ENS

code. We show that nonlinear computation steps that are needed

for optimal integration of time-varying evidence can be carried out

within this spike-based setting through disinhibition of neurons.

Hence networks of spiking neurons with noise are in principle able

to approximate theoretically optimal filtering operations – such as

evidence integration and context-dependent Bayesian filtering –

for updating internal estimates for possible causes of external

stimuli. We show in particular, that networks of spiking neurons

with noise are able to emulate state-of-the-art probabilistic

methods that enable robots to estimate their current position on

the basis of multiple ambiguous sensory cues and path integration.

This provides a first paradigm for the organization of brain

computations that are able to solve generic self-localization tasks.

The resulting model is especially suited as ‘‘computational engine’’

for an intention-based neural coding framework, as proposed in

[5]. Intention-based neural coding is commonly observed in lateral

intraparietal cortex (area LIP) of monkeys, where neurons encode

a preference for a particular target of a saccade within the visual

field [1].

The remainder of this paper is structured as follows. First we

introduce ENS coding. We then discuss basic properties of the

ENS code. In Computational operations through ensemble-based
neural sampling, we show how basic computations on time-

varying internal beliefs can be realized by neural circuits in ENS

coding. This section is structured along 5 classes of computational

tasks of increasing complexity (Task class A to Task class E).

Within these task classes, we present computer simulations where

the characteristics of these neural circuits are analyzed and

compared to experimental results. A discussion of the main

findings of this paper and related work can be found in Discussion.

Detailed derivations and descriptions of computer simulations are

provided in Methods.

Results

Ensemble-based neural sampling
In neural sampling [4], each neuron in a network represents a

binary random variable. Spike generation is stochastic, with a

probability that depends on the current membrane potential. At

each time t, the activity of each neuron is mapped to a sample for

the value of the corresponding variable by setting the value to 1 if

the neuron has spiked in ½t{t,t� for some small t (e.g. 20 ms). It

was shown that under certain conditions on the membrane

potentials of the neurons, the network converges to a stationary

distribution that corresponds to the posterior distribution of the

represented random variables for the given evidence. Evidence is

provided to the circuit by clamping the activities of a subset of

neurons during inference. The marginal distribution for a given

variable can be read out by observing the firing activity of the

corresponding neuron in the stationary distribution.

Neural sampling is an implementation of the Markov Chain

Monte Carlo (MCMC) sampling approach (see e.g. [6]) in

networks of spiking neurons. By definition, it does not provide a

suitable model for the representation of time-varying distributions,

since samples are generated in a sequential manner. Convergence

to the stationary distribution in MCMC sampling can take

substantial time, the readout of marginal distributions demands

spike counts of neurons over extended periods of time, and

MCMC sampling is only defined for the fictional case of stationary

external inputs. But also time-varying distributions can theoreti-

cally be handled through Monte Carlo sampling if one has a

sufficiently parallelized stochastic system that can generate at each

time point t simultaneously several samples u1(t), . . . ,uL(t) from

the time varying distribution Pt(u(t)), and by carrying out simple

computational operations on this batch of samples in parallel. The

resulting computational model is usually referred to as particle
filter, a special case of sequential Monte Carlo sampling [6,7].

Here each sample ui(t) from a batch u1(t), . . . ,uL(t) that is

generated at time t is referred to as a particle.

To port the idea of neural sampling to the representation of

time-varying distributions through neuronal ensembles, we there-

fore consider N ensembles X1, . . . ,XN that collectively encode the

belief about the value of a random variable u(t) with range

f1, . . . ,Ng in terms of a probability distribution Pt(u(t)). We refer

to the value of a random variable also as the hidden state, or

simply the state of the variable. We will in the following omit the

subscript t in Pt for notational convenience (formally, we consider

a family of variables, indexed by t, that defines a random process,

see [8]; P(u(t)) is then the distribution over the member u(t) of this

Ensembles of Spiking Neurons Support Probabilistic Inference
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family). Each ensemble Xi consists of M neurons x1
i , . . . ,xM

i ,

where we refer to M as the ensemble size. We interpret a spike in

the circuit as one sample from P(u(t)), i.e., one concrete value for

the represented variable drawn according to the distribution [4,9].

In particular, if a spike is elicited by some neuron in ensemble Xi,

then this value is i. See Figure 2A for an illustration of sample-

based representations.

A downstream neuron can evaluate how many spikes it received

from each ensemble within its membrane time constant t through

summation of excitatory postsynaptic potentials (EPSPs) caused by

spikes from ensemble neurons. We denote the EPSP-filtered spike

train of neuron xn
i by xn

i (t) (see Methods for a precise definition)

and adopt rectangular EPSP shapes of length t in the following,

similar to those recorded at the soma of pyramidal neurons for

dendrite-targeting synaptic inputs (see Figure 1 in [10]). The sum

of all EPSPs from an ensemble Xi, denoted by Xi(t):
P

n xn
i (t), is

then the number of samples for hidden state i in the time window

from t{t to t. The number of samples Xi(t) is thus directly

accessible to downstream neurons. We refer to Xi(t) as the (non-

normalized) probability mass for hidden state i. The use of

plateau-like EPSP shapes is motivated from the need to count

spikes in some predefined time interval. An alternative motivation

that is based on the idea that the EPSP weights a spike by the

probability that it belongs to the most recent samples is given in

Text S1.

The represented distribution can be estimated by the relative

portion of spikes from the ensembles

~PP(u(t)~i)~
Xi(t)PN

j~1 Xj(t)
, ð1Þ

where we assume that at least one sample is available. See

Figure 2B for an intuitive illustration of ENS coding. In this

representation, probabilities are temporally filtered by the EPSPs.

Hence, the ability of the code to capture fast dynamics of

distributions depends on the length of EPSPs, where shorter time

constants give rise to faster tracking. Due to the stochasticity of the

sampling process, ~PP(u(t)~i) is a random variable that assumes

different values each time the distribution is represented. We

demand in ENS coding that the expected value of ~PP(u(t)~i) is

equal to the temporally filtered represented probability P(u(t)~i)
for all states i, see Methods for details.

We will see in the construction of computational operations in

ENS coding that downstream neurons do not have to carry out the

division of eq. (1). Instead, for these operations, they can compute

Figure 2. Spikes as samples from probability distributions. A) Sample-based representations of probability distributions. True distribution of
a random variable u (green) and approximated distribution (yellow) based on 20 samples (top) and 200 samples (bottom) B) Interpretation of the
spiking activity of two neuronal ensembles as samples from a probability distribution over a temporally changing random variable u(t). Shown is an
example for a random variable u(t) with two possible states. Black lines in the top traces indicate action potentials in two ensembles (5 neurons per
state shown). Traces above spikes show EPSP-filtered versions of these spikes (red: state 1; blue: state 2). Bottom plot: Estimated probabilities for state
1 (red) and state 2 (blue) according to eq. (1) based on the spiking activity of 10 neurons per state.
doi:10.1371/journal.pcbi.1003859.g002

Ensembles of Spiking Neurons Support Probabilistic Inference
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with the non-normalized probability masses Xi(t) that they obtain

through summation of EPSPs from ensemble neurons. The reason

is that normalization is not necessary in the representation of a

distribution in ENS coding. It is rather the relative portion of

spikes for each value of the random variable that defines the

represented distribution. Of course, activity needs to be kept in

some reasonable range, but this can be done in a rather relaxed

manner.

Basic properties of the ENS code
Assume that samples (spikes) for state i are produced by a

Poisson process with rate proportional to the represented

probability, i.e., the rates rm
i (t) of neurons in ensemble Xi are

given by rm
i (t)~rmaxP(u(t)~i), where rmax is a constant that

defines the maximal instantaneous rate of each neuron. Xi(t) is

then a random variable distributed according to a Poisson

distribution with intensity LP(u(t)~i), where the estimation
sample size L~Mrmaxt is the average number of spikes produced

by all ensembles within a time span of t.

We show in Methods that in this case, ~PP(u(t)~i) is an unbiased

estimator of the probability of state i at time t filtered by the

EPSPs, hence, an ENS code is established. An important question

is how parameters of a circuit influence the fidelity of the

encoding. To answer this question, we investigated the variance of

the estimator. It is inversely proportional to the ensemble size M,

the maximal firing rate rmax, and the membrane time constant t if

the number of samples within t is large, see Methods. Hence, the

accuracy can be increased by increasing the ensemble size, the

firing rate of neurons, and the time constant of neuronal

integration. Note however that an increase of the latter will lead

to more temporal filtering of the distribution.

We close this discussion by considering the relation between

the instantaneous firing rates of ensemble neurons and the mean

represented probability mass Xi(t). The probability mass is not

an instantaneous function of the ensemble firing rate, since at

time t there are still past samples that influence Xi(t) through

their EPSPs. A past sample becomes invalid after time t, when

the associated EPSP vanishes. The instantaneous firing rates

change the mass through the production of novel samples.

Consider given continuous firing rates rm
i (:). Under mild

assumptions on the firing rates of ensemble neurons (see

Methods), the change of the expected probability mass
d

dt
SXi(t)T is then given by

d

dt
SXi(t)T~

X
m

rm
i (t){

X
m

rm
i (t{t) ð2Þ

where the expectation is taken over realizations of spike trains for

the given instantaneous rates. Here, the first term is due to the

production of novel samples and the second term due to old samples

that become invalid. In summary, the membrane potentials of the

neurons determine – through the firing rate – the rate of change of

the represented probability mass in ENS-coding.

Computational operations through ensemble-based
neural sampling

We address now the question how basic computations on time-

varying internal beliefs can be realized by neural circuits in ENS

coding. Spiking activity of excitatory neurons is modeled

according to the stochastic Spike Response model [11,12]. In this

model, each neuron xn
i emits a Poisson spike train with

instantaneous firing rate

rn
i (t)~f un

i (t)
� �

: ð3Þ

Here, f denotes a link function that links the somatic membrane

potential un
i (t) to the instantaneous firing rate. Typically, the link

function is either an exponential function or a non-negative linear

function. We consider in this article a non-negative linear link

function f (u)~½u�z [12], where ½u�z is u for non-negative u and 0
otherwise.

We discuss five classes of computational tasks.

Tasks class A. In these tasks, the state of a random variable

uX (t) has to be inferred in ENS coding given the belief about a

variable uZ(t) in ENS coding, where the distribution over uX (t)

depends solely on the current state of uZ(t). The computational

operation needed to solve such problems is simpler than the other

ones considered here in the sense that the distribution over uX (t)

can be directly inferred from recent samples for uZ(t). We will use

this operation several times to read out the belief about a rewarded

motor action (uX ) from the internal belief about some random

variable uZ(t).
Tasks class B. This class consists of tasks that can be solved

through evidence integration. In other words, the state of a

random variable u(t) has to be estimated based on evidence Y(t),
where u(t) is assumed to be static during each trial. Examples for

such tasks are the ambiguous target task, the random-dot motion

task, and the probabilistic inference task from [2]. We will exhibit

a spiking neural network architecture that approximates optimal

solutions for these tasks in ENS coding and compare its behavior

to experimental results.

Tasks class C. Also in these tasks, evidence Y(t) has to be

integrated to estimate the state of a random variable u(t).
However, the state of u(t) may change over time according to

known time-independent stochastic dynamics. Bayesian filtering

provides an optimal solution for such tasks. We will extend the

circuit architecture from task class B to approximate Bayesian

filtering in ENS coding and test its performance in a generic task

setup.

Tasks class D. In this class of tasks, the dynamics of the

random variable u(t) may change during the task, and changes are

indicated by some context-variable c(t). Note that task classes B

and C are special cases of this task class. We refer to the optimal

solution as context-dependent Bayesian filtering. An approxima-

tion based on sequential Monte Carlo sampling is particle filtering.

We will extend our circuit architecture to perform full particle

filtering in ENS coding. We will show how the important problem

of self-localization can be solved by this architecture.

Tasks class E. Finally, we will discuss tasks where the context

variable c(t) is not explicitly given but has to be estimated from

noisy evidence. Hence, c(t) – which determines the dynamics of

u(t) – has also to be considered a random variable. We will treat

such tasks by combining two particle filters. One particle filter

estimates c(t) and provides context for another particle filter that

estimates u(t). As an example, we will reconsider the ambiguous

target task. We show that a belief about the current stage within a

series of trials can be generated in order to decide whether

evidence should be further integrated for the belief about the

rewarded action or whether a new trial has started and the belief

should be reset to some prior distribution.

Task class A: Simple probabilistic dependencies
We first discuss how the belief for a random variable uX (t) can

be inferred in ENS coding given the belief over a variable uZ(t).

Ensembles of Spiking Neurons Support Probabilistic Inference
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Consider a random variable uX (t) for which the distribution

depends solely on the current state of a random variable uZ(t).

The task is to infer the distribution over uX (t) for the current

distribution over uZ(t). This operation is needed for example in

typical decision making tasks where inference about a rewarded

action has to be performed according to the belief about some

hidden variable that is based on sensory information. For example,

the rewarded movement direction has to be guessed, based on the

belief about the perceived cue combination in the ambiguous

target task.

Assume that P(uZ(t)) is constant and represented by neurons zm
j

through ENS coding with estimation sample size L. We are

looking for a neural circuit that represents the posterior belief

P(uX (t)~i)~
X

j

P(uX ~iDuZ~j)P(uZ(t)~j) ð4Þ

in ENS coding. Here, P(uX ~iDuZ~j) are the known conditional

probabilities that determine the dependencies between uX (t) and

uZ(t).

We consider a layer of ensembles Xi that receive feed-forward

synaptic input from ensembles Zj representing P(uZ(t)), see

Figure 3. The membrane potentials of neurons xn
i are given by

un
i (t)~

X
j,m

wijz
m
j (t), ð5Þ

where wij denotes the efficacy of the synapse connecting

presynaptic neuron zm
j to postsynaptic neuron xn

i (we assume for

simplicity of notation that all weights between two ensembles are

identical). Consider the estimator ~PP(uX (t)~i) for synaptic efficacies

wij~a
1

Mt
P(uX ~iDuZ~j), ð6Þ

where M is the ensemble size of the ensembles Xi, and aw0 is

some constant. Due to the stochastic nature of neurons, this

estimator is a random variable. Its expected value (with respect to

realizations of spikes trains in all ensembles) is equal to the

posterior probability and the estimation sample size is aL (see

Methods). Thus, the layer represents the posterior distribution in

ENS coding. The estimate at some specific time t is however

variable due to variability in spike counts of both the represen-

tation of P(uZ(t)) and the representation of P(uX (t)). An analysis

of the variance of the posterior representation is given in Methods.
We will use such a layer with feed-forward input several times in

our simulations to infer a belief about rewarded actions for a given

belief about the state of a random variable and thus refer to it as an

action readout layer.

We will also need a special case of this operation where the

distribution P(uZ(t)) is simply copied, i.e., the state of the random

variable uX (t) is assumed to be identical to the state of uZ(t). In

other words, P(uX ~iDuZ~j) is 1 for i~j and 0 for i=j. The copy

operation is thus performed for weights wii~
1

Mt
and wij~0 for

i=j (where we used a~1).

Task class B: Evidence integration
In pure evidence integration, the value of the random variable

u(t) is assumed to be constant and only indirectly observable via

stochastic point-event observations. Point-event observations are

assumed to arise according to Poisson processes with instantaneous

rates that depend on the current hidden state. In the context of

neuronal circuits, observations are reported through spikes of

afferent neurons y1, . . . ,yMin
. In particular, afferent neuron yl is

assumed to spike in a Poissonian manner with rate lli if the hidden

variable assumes state i. For a prior distribution over states

P(u(t0)), the task is to infer the posterior P(u(t)DY(t)), that is, the

distribution over states at time t, given the spike trains of all

afferent neurons up to time t, denoted here by Y(t). Many

laboratory tasks can be formalized as evidence integration task,

including the random-dot motion task, the probabilistic inference

task considered in [2] and the ambiguous target task discussed in

the introduction. We construct in the following a circuit of spiking

neurons that approximates optimal evidence integration by

performing particle filtering in ENS coding under the assumption

that u(t) is constant. The will then evaluate its behavior against

experimental data in computer simulations. This circuit will be

extended in the subsequent sections to perform particle filtering for

tasks classes C and D.

It is well-known that the evidence integration problem can be

solved efficiently through a set of coupled differential equations

d

dt
pi(t)~pi(t)

X
l

(lli{1)ŷyl(t){li

" #
, ð7Þ

where ŷyl(t) is the spike train of afferent neuron l formalized as a

sum of Dirac delta pulses at spike times (see Methods), and

li~
P

l lli [13,14]. The inferred probabilities can be obtained by

normalization P(u(t)~i)~
pi(t)P
j pj(t)

(for i~1, . . . ,N). li induces a

constant decrease of pi such that hidden states that give rise to

many observations are punished if no observations are encoun-

tered. Is the dynamics (7) compatible with ENS coding, assuming

that pi is estimated from the spiking activity of an ensemble? Four

potential difficulties arise. First, the afferent neurons impact eq. (7)

via point events and not via EPSPs (ŷyl(t) instead of yl(t)). Second,

the deterministic dynamics (7) need to be implemented via

particles in the ENS code. Third, the summed evidence needs to

be multiplied with the current value of pi. And finally, to avoid an

Figure 3. Computations in ENS coding in a feed forward circuit
architecture. A binary random variable uZ(t) is represented in ENS
coding through neurons zm

i . The posterior P(uX (t)) for a binary variable

uX (t) is represented by neurons xm
i . Each variable is represented by

N~2 ensembles, one for each possible state (indicated by neuron
color), and M~3 neurons per ensemble. The two layers are connected
in an all-to-all manner. Arrows indicate efferent connections (i.e.,
outputs in ENS coding). The architecture is summarized in the inset.
doi:10.1371/journal.pcbi.1003859.g003
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exponential blow-up of the pi’s, their values need to be

normalized. We discuss these four issues in the following.

Evidence can be provided through EPSPs. It turns out

that the first difficulty can be resolved in a convenient manner.

The set of differential equations (7) can be transformed to

d

dt
pi(t)~pi(t)

X
l

wev
il yl(t)zlmax{lizg(t)

 !
, ð8Þ

with weights wev
il ~loglliza for an arbitrary constant a,

lmax~ maxjfljg, and an arbitrary function g. Integration of

EPSPs weighted by loglli leads to exactly the same result as

integration of eq. (7) after the EPSPs have fully been integrated,

even if they are temporally overlapping, see Methods. The constant

a can be used to shift wev
il to positive values. This constant, lmax,

and the function g are integrated by all pi’s giving rise to a scaling

that cancels in the normalization.

Particle-based implementation of the filtering equa-

tions. We now discuss how eq. (8) is approximated in ENS

coding. While eq. (8) is a deterministic differential equation, the

dynamics of the circuit is stochastic due to sampling noise. We

construct a circuit that approximates the desired changes in its

expected probability masses. The validity of this approach will

later be ascertained through various computer simulations. The

belief about the hidden state of the random variable u(t) is in

general shaped by two components. First, the assumed internal

dynamics of the random variable, and second by novel evidence

about the state. Consider a circuit that consists of two layers Ldyn

(the dynamics layer) and Lev (the evidence layer) with neural

ensembles Xdyn,1, . . . ,Xdyn,n and Zev,1, . . . ,Zev,n respectively, see

Figure 4A. The dynamics layer Ldyn implements changes of the

represented distribution due to the internal dynamics of the

random variable. The evidence layer Lev implements changes due

to incoming evidence. Since in task class B, the random variable is

assumed to be static, no temporal changes of the random variable

are expected, and hence the excitatory weights w
dyn
ij from Lev to

Ldyn are set such that Ldyn copies the distribution represented by

Lev, as discussed in Task class A. For task classes C and D,

different weights will be used such that layer Ldyn predicts

dynamics changes of the hidden variable.

The evidence layer Lev receives input from Ldyn and evidence

from afferent neurons yl . Our goal is that its probability masses

integrate evidence in the representation of pi(t) in Ldyn, such that

d

dt
SZev,i(t)T&SXdyn,i(t)T

X
l

wev
il yl(t)zlmax{lizg(t)

 !

&SZev,i(t)T
X

l

wev
il yl(t)zlmax{lizg(t)

 !
,

ð9Þ

where the latter approximation applies due to the copy operation

of layer Ldyn. This equation resembles eq. (8) where the Zev,i(t)’s

represent the pi(t)’s. We show in Methods that such changes are

obtained if the membrane potentials of the neurons in Lev are set

to

um
ev,i(t)~

1

M
Xdyn,i(t)

X
l

wev
il yl(t)zbev

i zg(t)

 !
, ð10Þ

where bev
i ~ 1

t zlmax{li are positive biases.

Multiplication through gating of activity. We see that

neurons need to compute a multiplication between the current

probability mass for state i and the summed evidence. In order to

implement similar equations in a neuronal-like manner, logarith-

mic dendritic nonlinearities or multiplicative synaptic interactions

have been postulated in a number of studies, see e.g. [14,15]. In

ENS coding however, the population response in the evidence

layer is the sum of the responses of individual neurons. This

linearity allows us to base the membrane potential of an individual

neuron zm
ev,i on a small number of particles rather than on the

whole set of particles summarized in Xdyn,i(t), as long as each

particle is used exactly once in the computation. Hence, the same

behavior is obtained on the population level if instead of

membrane potentials (10), membrane potentials are given by

um
ev,i(t)~xm

dyn,i(t)
X

l

wev
il yl(t)zbev

i zg(t)

 !
, ð11Þ

see Methods for a detailed derivation. If spiking of individual

neurons xm
dyn,i is sparse, i.e., if the ensemble size is large compared

to the estimation sample size, xm
dyn,i(t) nearly always takes on the

values 0 or 1. In this case, it suffices that the activity of neuron zm
ev,i

is gated by neuron xm
dyn,i, i.e., the neuron zm

ev,i is able to produce

spikes only if xm
dyn,i was recently active. In summary, under the

assumption of sparse activity (which can always be accomplished

by a suitable choice of parameters), one can replace the

multiplication of two analog variables by gating of activity in

ENS coding. This multiplication strategy generalizes the one

proposed in the context of stochastic computation to ensemble

representations [16,17].

Such gating could be accomplished in cortical networks in

various ways. One possibility is synaptic gating [18,19] where

inputs can be gated by either suppression or facilitation of specific

synaptic activity. Another possibility is disinhibition. Disinhibitory

circuits provide pyramidal cells with the ability to release other

neurons from strong inhibitory currents [20]. We choose in this

article disinhibition as the gating mechanism, although no specific

mechanism can be favored on the basis of the experimental

literature. A small circuit with disinhibition Idis(x1(t),x2(t)) is

shown in Figure 4B. Here, two pyramidal cells excite an

interneuron which inhibits the inhibitory drive to some neuron

zi. Functionally, zi is released from strong baseline inhibition if one

of the neurons x1,x2 was recently active (see Methods for a formal

definition). Using disinhibition, the membrane potential of the

neuron can be written as

um
ev,i(t)~

X
l

wev
il yl(t)zbev

i {Idis(xm
dyn,i(t))zg(t), ð12Þ

where Idis(xm
dyn,i(t)) ensures that the firing rate rm

ev,i(t)~½um
ev,i(t)�

z

is nonzero only if neuron xm
dyn,i did spike within the last 20 ms.

Stabilization of firing rates through lateral inhibi-

tion. Lateral inhibition is generally assumed to stabilize the

activity of excitatory populations [21–23]. A group of pyramidal

cells inhibit each other laterally by projecting to a group of

inhibitory neurons which in turn inhibit that ensemble, see

Figure 4C. The key observation that enables us to use lateral

inhibition to stabilize circuit activity is that one has freedom to

choose g(t) in eq. (12) as long as it is identical in all ensembles. We

model lateral inhibition I lat(t) that depends on the recent firing

activity in Lev such that inhibitory activity increases if the

Ensembles of Spiking Neurons Support Probabilistic Inference
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estimation sample size is above the desired value L and choose

g(t)~{I lat(t), see Methods for details and a brief discussion. This

concludes the construction of a particle filtering circuit in ENS

coding for task class B. The circuit architecture is depicted in

Figure 4A. A summary of circuit equations can be found in

Table 1.

We tested how well a circuit consisting of 2000 neurons per state

and an estimation sample size of 400 can approximate the true

posterior in a simple evidence integration setup. The task was to

compute the posterior distribution for a random variable u(t) with

two hidden states and two observable variables y1(t),y2(t), see

Figure 5A. The schematic circuit diagram is shown in panel B.

The two evidence neurons y1,y2 spiked at times 20 ms and 25 ms

respectively, see panel C. Figure 5D depicts the rate dynamics in

layer Lev for one example trial. Novel evidence transiently

increases the firing rate in the layer, which is in turn restored by

lateral inhibition. The response of ensemble Zev,1 that represents

state 1 undergoes a transient increase that is counteracted by

inhibition until it stabilizes at an enhanced sustained level. This

behavior is reminiscent of the typical response of cortical

pyramidal cells to sensory input. Figure 5E shows the temporal

evolution of the encoded posterior probability ~PP(u(t)~1DY(t)) in

comparison to the true posterior P(u(t)~1DY(t)). The true

posterior is approximated very well after a delay of about 20 ms,

Figure 4. Particle filter circuit architecture for task classes B and C. A) Circuit with N~2 ensembles (indicated by red and blue neurons
respectively) and M~3 neurons per ensemble. Neurons in layer Lev receive synaptic connections from neurons in layer Ldyn and update the
represented distribution according to evidence input from afferent neurons (green). Lateral inhibition (magenta; see panel C) stabilizes activity in this
layer. Neurons project back to layer Ldyn. For task class B (evidence integration; static random variable u(t)), only connections between neurons that
code for the same hidden state are necessary and layer Ldyn simply copies the distribution represented by layer Lev , see Task class A and Figure 3 (in
contrast to Figure 3, the copying ensembles Xdyn are plotted above ensembles Zev in order to avoid a cluttered diagram). For task class C (Bayesian
filtering; random variable u(t) with time-independent dynamics), Ldyn implements changes of the represented distribution due to the dynamics of
the random variable and Lev is potentially fully connected to Ldyn. Neurons in layer Ldyn disinhibit neurons in layer Lev (double-dot connections; see
panel B). Disinhbition and lateral inhibition is indicated by shortcuts as defined in B, C. Arrows indicate efferent connections. A schematic overview of

the circuit is shown in the inset. B) Disinhibition Idis: neurons x1,x2 excite an interneuron (purple) which inhibits the inhibitory drive to some neuron
zi . As a graphical shortcut, we draw such disinhibitory influence as a connection with two circles (inset) C) Lateral inhibition: Pyramidal cells (blue)
excite a pool of inhibitory neurons (magenta) which feed back common inhibition I lat. The graphical shortcut for lateral inhibition is shown in the
inset.
doi:10.1371/journal.pcbi.1003859.g004
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which is the time needed to integrate the EPSPs from evidence

neurons. We simulated 100 trials where in each trial, prior

probabilities for the states and observation likelihoods were drawn

randomly such that the posterior P(u(t)~1DY(t)) at time t = 45 ms

assumed values between 0 and 1 (see Methods). The estimate of the

circuit at the end of the second EPSP (i.e., at time t = 45 ms) is

shown in comparison to the true posterior in Figure 5F.

Gating of activity for multiplication can be used for many types

of multiplicative operations on probability distributions. In Text
S2, we discuss its application to cue combination, an operation

that has been considered for example in [24].

Comparison to experimental results
We performed computer simulations in order to compare the

behavior of the model to various experimental studies on tasks that

are examples for task class B.

The ambiguous target task. The ambiguous target task

studied in [3] was already discussed above, see also Figure 1A. In

our model of the decision making process, the hidden state of a

random variable u(t) was estimated through evidence integration.

Each of the 16 hidden states corresponded to a tuple (d,c), where

d denotes one of eight possible directions of movement, and c
denotes the color of the color cue. In other words, such a state

represented the color of the color cue and the movement direction

that leads to reward, see Figure 6Aa. Possible observations were

the fixation cross, the spatial cues at 8 positions in two colors, and

the two color cues. Each of the 19 possible stimuli was coded by 20

afferent neuron that fired at a baseline rate of 0.1 Hz. When a

stimulus was present, the corresponding neurons spiked in a

Poissonian manner with a rate of 5 Hz.

We simulated a particle filter circuit to compute the belief about

the state of the random variable with 1000 neurons per hidden

state and an estimation sample size of 400. An action readout layer

as described in Task class A was added that received connections

from Lev in a feedforward manner, see Figure 6B. This layer

computed the current belief over rewarded actions independently

from the color of the color cue (i.e., it marginalized over color), see

Methods for details.

The spiking activity of afferent neurons that provided evidence

for one example simulation run is shown in Figure 6Ca. Simulated

neural activities from the readout layer are shown in Figure 6Cb,

see also Figure 1C. After the spatial cue was presented, the two

consistent ensembles increased their activity. Due to competition

between these ensembles, neurons fired at a medium rate. After

the color cue was shown, only the ensemble consistent with both

the spatial and the color cue remained active. These neurons

increased their firing rate since the competing action became

improbable and the winning ensemble was uncompeted. This

behavior has been observed in PMd [3], see Figure 1B. The action

readout layer is not needed to reproduce this behavior, since

neurons in the particle filter circuit exhibit similar behavior.

Table 1. Particle filter circuit equations for task classes B and C.

Layer Ensembles Neurons Membrane voltage and parameters

Ldyn Xdyn,i xn
dyn,i un

dyn,i(t)~
P

j,m w
dyn
ij zm

ev,j (t)

Ldyn Xdyn,i xn
dyn,i w

dyn
ij ~

qji

M
for i=j, w

dyn
ii ~

1

tM
{

1

M

X
j=i

qij for all i.

Lev Zev,i zn
ev,i un

ev,i(t)~
P

l wev
il yl (t)zbev

i {Idis(xn
dyn,i(t)){I lat(t)

Lev Zev,i zn
ev,i wev

il ~loglliza, bev
i ~

1

t
zlmax{li

Here we have defined li:
P

l lli and lmax~ maxjfljg. I lat(t) denotes lateral inhibition and Idis disinhibition. a is an arbitrary constant. In task class B (evidence

integration), qji~0 for i=j, leading to w
dyn
ij ~0 for i=j and w

dyn
ii ~

1

tM
.

doi:10.1371/journal.pcbi.1003859.t001

Figure 5. Evidence integration through particle filtering in ENS
coding. A) The state of a binary random variable u(t) that gives rise to
two possible observations y1(t),y2(t) is estimated. Both observations
occur more frequently in state 1 (indicated by sharpness of arrows). B)
Estimation is performed by a particle filtering circuit with evidence
input Y (Xdyn: dynamics layer ensembles; Zev : evidence layer
ensembles). C) An evidence spike is observed at times 20 ms and
25 ms in evidence neuron y1 and y2 respectively. D) Example for the
rate dynamics in layer Lev. Ensemble rate for ensemble Zev,1 (black) and
whole layer Lev (gray). The input leads to a transient increase in the
ensemble rate. Inhibition recovers baseline activity. The ensemble rate
for state 1 undergoes a transient and a sustained activity increase. E)

Temporal evolution of estimated posterior probability ~PP(u(t)~1DY(t))
for state 1 (black) in comparison to true posterior P(u(t)~1DY(t)) (gray)
for this example run. F) Posterior probability at t = 45 ms (Ppost) for state
1 of the circuit in comparison to true posterior at this time (Popt). Each
dot represents one out of 100 runs with prior probabilities and
observation likelihoods drawn independently in each run (see Methods).
The results of the example run from panels A–E is indicated by a cross.
doi:10.1371/journal.pcbi.1003859.g005
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However, it was reported that most neurons in PMd were not

color selective [3]. In our model, neurons of the particle filter

circuit are color selective since states are defined according to

direction-color pairs. It is clear that color-related information has

to be integrated with movement-related information and memo-

rized during the memory epoch in order to solve the task. The

experimental results suggest that this integration is not imple-

mented in PMd but rather in upstream circuits. PMd could then

act as a motor readout.

Applications of the model to various other experimental tasks

can be found in supporting texts. Action-predictive activity in

macaque motor cortex is also modulated by the expected value of

the action. This was demonstrated for example in [25]. An

application of our model to this scenario is described in Text S3.

Furthermore, we show in Text S4 that the model is consistent with

features of neuronal activity during random-dot motion tasks

[1,26,27]. In Text S5 it is shown that the model can also explain

neuronal activitiy in area LIP during a probabilistic reasoning task

[2].

Task class C: Bayesian filtering
Evidence integration cannot take temporal changes of the

hidden variable into account. Knowledge about temporal changes

can be exploited by Bayesian filtering, which is an extension of

evidence integration. Here, we assume that the dynamics of u(t)
are constant during the filtering process. The more general case

when the dynamics may change is discussed below in Task class D.

Formally, the Bayesian filtering problem considered here is to

estimate the posterior distribution P(u(t)DY(t)) over the states of a

random variable u(t) that represents the hidden state of a random

process which is only indirectly observable via stochastic point-

event observations Y(t). In particular, state changes are assumed

to be Markovian with transition rates qij for each pair of distinct

states i=j. Transition rate qij defines the rate of transition from

state i to state j, i.e., the probability that a transition occurs to state

j in some small time interval if the current state is i, thus defining a

continuous time Markov chain, see Methods for a more formal

description.

Note that evidence integration is a special case of Bayesian

filtering with the assumption of no state transitions, i.e., qij~0 for

all i=j. In the following, we show that the particle filtering circuit

for task class B constructed above can easily be extended to this

generalization. The Bayesian filtering problem can be solved

efficiently through a set of coupled differential equations

d

dt
pi(t)~pi(t)

X
l

(lli{1)ŷyl(t){li

" #

z
X
j=i

qjipj(t){pi(t)
X
j=i

qij ,

ð13Þ

where again the inferred probabilities are obtained by normali-

zation [13,14]. Note that the first term in eq. (13) is identical to eq.

(7), since the optimal solution for evidence integration, eq. (7), is

the special case of eq. (13) for vanishing transition rates. This term

is taken care of in layer Lev of the particle filtering circuit for task

class B. In this circuit, Ldyn simply copies the distribution given by

Lev. We modify the connections from Lev to Ldyn such that Ldyn

instead provides the changes in probability masses needed for the

second and third term, i.e., it predicts changes based on the

Figure 6. Particle filtering in ENS coding for the ambiguous target task. A) Represented random variables. Aa) Evidence integration is
performed for a random variable with 16 hidden states corresponding to direction-color pairs. Values of the random variable are depicted as circles.
Observations accessible to the monkey in one example state are shown as boxes. Ab) The action readout layer infers a color-independent random
variable by marginalization over color in each direction. B) Circuit structure. The circuit on the top approximates evidence integration through
particle filtering (top gray box; Xdyn: dynamics layer ensembles; Zev: evidence layer ensembles)) on the random variable indicated in panel (Aa). An
action readout layer (bottom gray box; ensembles X) receives feed-forward projections from the particle filter circuit. C) Spike rasters from simulations
for afferent neurons (Ca) and neurons in the action readout layer (Cb). Each line corresponds to the output of one neuron. Afferent neurons are
ordered by feature selectivity (e.g., top neurons code the presence of the fixation cross). Action readout neurons are ordered by preferred movement
direction. See also Figure 1.
doi:10.1371/journal.pcbi.1003859.g006
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assumed dynamics of the random variable. Ldyn approximates the

desired changes of probability masses if the membrane potentials

are given by

um
dyn,i(t)~

X
j,n

w
dyn
ij zn

ev, j(t), ð14Þ

with synaptic efficacies w
dyn
ij ~

qji

M
for i=j and w

dyn
ii ~

1

tM
{

1

M

X
j=i

qij for all i, see Methods. An overview of the

circuit equations and parameters is given in Table 1, see also

Figure 4A.

We tested the ability of a particle filter circuit consisting of 2000

neurons per state and an estimation sample size of 400 to track the

temporal evolution of a binary random variable where state 1

transitions to state 2 with some transition rate q12, see Figure 7A.

The dynamics of the circuit and the estimated probability for an

example simulation run are shown in panels C,D. We simulated

100 trials, where in each trial the transition rate q12 was drawn

uniformly in [0, 30]Hz and initial probabilities were drawn

uniformly in ½0:1,0:9�. The estimate of the posterior at time

t = 50 ms is shown in comparison to the true posterior in

Figure 7E. See Methods for details on this simulation.

Particle filtering in a generic setup for task class C. We

performed further computer simulations in order to test the

performance of the model in a generic setup. In this setup, a

random variable u(t) evolved according to a continuous time

Markov chain with five states. In this Markov chain, state 1

transitions to states 2 or 3 which themselves transition to states 4

and 5 respectively. From states 4 and 5, a transition to state 1 is

possible, see Figure 8Aa (bottom). Transition rates for all possible

transitions were set to 1Hz. Information about the actual state was

conveyed by 35 afferent neurons with state-dependent rates

defined by Gaussians as shown in Figure 8Aa (top). Note that

states 2 and 3 gave rise to very similar observations. Thus, many

observations have to be integrated before these states can be

distinguished. This makes inference over the current state hard if

the full distribution over state probabilities is not communicated

over time.

Results from simulations of a particle filter circuit with 2000

neurons per state and an estimation sample size of 400 are shown

in Figure 8Ac–Af, see Methods for details. Figure 8Af shows a

comparison of the model performance (‘‘model’’) with the optimal

Bayesian filtering (‘‘opt’’) and the optimal model that does not take

temporal information into account (the Bayes estimate based on

the latest observation; ‘‘inp’’). The performance of the model was

very close to optimal and much better than the non-temporal

Bayes estimate. We furthermore tested the robustness of the

network to variations of synaptic efficacies w
dyn
ij that determine the

assumed transition rates of the random variable. In a control

experiment, each individual synaptic weight from ensemble Zev, j

to ensemble Xdyn,i was drawn from a log-normal distribution with

mean w
dyn
ij and standard deviation w

dyn
ij =2. The resulting weights

assumed values that were up to 10 times larger than the mean.

Network performance with jittered efficacies was indistinguishable

from the performance of the homogeneous network (Figure 8Af;

‘‘jit’’). This robustness stems from two features of ENS-coding.

First, as network belief is represented by ensemble rates, it is

invariant to firing rate variations of individual neurons as long as

the ensemble rate is preserved. Second, network computations are

generally based on averages over ensemble activities, see eq. (14).

Therefore variations in synaptic efficacies do not influence the

result as long as the mean ensemble-to-ensemble weights are

preserved. Note that this even holds for nonlinear link-functions,

eq. (3).

Task class D: Context-dependent Bayesian filtering
In many important situations, the dynamics of a random

variable changes in different contexts. Context cannot simply be

formulated as a type of observation since observations just

influence the probabilities of states for the given transition rates

and not the dynamics themselves. Consider for example the

estimation of the current body position in space. Here, an action

such as forward movement can be considered as context since it

increases the transition rates from any position to positions ahead.

Thus, it changes the transition rates and not just the probability of

a particular position. For NC possible contexts, consider a function

c(t) with range f1, . . . ,NCg that indicates the context at time t.
We define a context-dependent Markov chain as a Markov chain

with state transition rates q1
ij , . . . ,qNC

ij for each pair of distinct states

i, j. At each time t, the chain evolves according to q
c(t)
ij . Context-

dependent Bayesian filtering determines the distribution over the

current state for the given observations and context. Note that

Bayesian filtering used in task class C is a special case with just a

single context. Also note that we use the term context here with the

specific meaning of additional information about the dynamics of

the random variable.

Figure 7. Tracking of dynamics in ENS coding. A) The state of a
binary random variable u(t) is estimated where state 1 transitions to
state 2 with some transition rate q12. B) Estimation is performed by a
particle filter circuit without evidence input (Xdyn: dynamics layer
ensembles; Zev : evidence layer ensembles). C) Example for the rate
dynamics in layer Ldyn. Ensemble rate for ensembles Xdyn,1,Xdyn,2

(black) and whole layer Ldyn (gray). While rates in ensembles change
due to the prediction of a transition, inhibition keeps the overall firing
rate in the layer approximately constant. D) Temporal evolution of

estimated posterior probability ~PP(u(t)~2) for state 2 (black) and true
posterior P(u(t)~2) (gray) for this example run. E) Circuit estimates of
posterior probabilities at time t = 50 ms (Ppost) in comparison to true
posteriors at this time (Popt). Shown are 100 runs (dots) with prior
probability for state 1 and transition rate drawn from uniform
distributions in [0.1, 0.9] and [0, 30]Hz respectively in each run. The
result of the example run from panels C-D is indicated by a cross.
doi:10.1371/journal.pcbi.1003859.g007
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Figure 8. Particle filtering for task class C (A) and task class D (B) in the ENS code. Aa) State diagram of the Markov chain for the dynamics
of the hidden random variable (bottom) and state-dependent firing rates of afferent neurons (top). Colors indicate the value of the hidden state. Ab)
Actual hidden state over time is indicated by color in correspondence with colors in panel Aa. Ac) Spike trains of afferent neurons. Each line
corresponds to the output of one afferent neuron ordered according to panel Aa. Ad) Network response to the input in panel Ac. Neurons are
ordered according to their preferred state from state 1 (top neurons) to 5 (bottom neurons). Ae) Network belief (estimated posterior state
probability) derived from network activity. Rows ordered by state as neurons in panel Ad. Hot color indicates high probability of the state. Note the
uncertainty when state 2 or 3 is entered. Af) Summary of network performance (‘‘model’’; fraction of incorrect state estimates) in comparison with the
optimal Bayesian filter (‘‘opt’’), a network with jittered synaptic efficacies (‘‘jit’’), and the optimal decision based on the most recent observation only
(‘‘inp’’). Bars are means and errorbars STDs over 20 state and observation sequences (12 seconds each). B) Particle filtering for task class D. Ba) As
panel Aa but with context. Dark gray arrows in the state diagram indicate transitions in context A. In context B, the transitions from states 2 to 4 and 3
to 5 are interchanged (light gray arrows). Bb) As panel Ab. Background shading indicates context (context A: white; context B: gray). Bc–Be) Actual
hidden state, input spikes, networks spikes, and network belief; see panels Ac–Ae. Bf) Summary of network performance. ‘‘opt’’ shows performance
of the optimal context-dependent Bayesian filter and ‘‘mix’’ a Bayesian filter where the transition rates are the mean rates over contexts A and B. The
spiking network performs significantly better than the mixed Bayesian filter (paired t-test, p,0.001).
doi:10.1371/journal.pcbi.1003859.g008
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We encode the current context by ensembles C1, . . . ,CNC
that

provide contextual feedback to the circuit. Each context ensemble

Ci consists of MC context neurons c1
i , . . . ,cMC

i . At time t, only the

context ensemble Cc(t) is active. The circuit architecture for

particle filtering (Figure 4A) is extended as shown in Figure 9 to

perform particle filtering for a hidden random variables u(t) with

context-dependent dynamics. Layer Ldyn consists of NC represen-

tations of the random variable, one for each context. Hence, for

each context k there are N ensembles X1,k, . . . ,XN,k in this layer.

In addition to excitatory synaptic connections originating from

Lev, these neurons are disinhibited by context neurons from the

corresponding context ensembles. The disinhibitory effect of

context is consistent with experimental data about neocortical

circuits. There, context information from other cortical areas is

believed to be provided through feedback connections. Those

connections have abundant terminals in neocortical layer 1 where

they recruit disinhibitory circuits [28,29]. Formally, the membrane

potential of xm
dyn,i,k, the m-th neuron in ensemble Xi,k, is given by

um
i,k(t)~

X
j,n

w
dyn,k
ij zn

ev, j(t){Idis c1
k(t), . . . ,c

MC
k (t)

� �
, ð15Þ

where zn
ev,j(t) denotes the EPSP-filtered spike train of a neuron in

ensemble Zev,j of Lev and w
dyn,k
ij denotes the efficacy of the

connecting synapse. These efficacies are set proportionally to the

transition rates in the corresponding context, see Table 2. The

membrane potential of a neuron in Lev is similar to the non-

contextual case with the difference that each neuron is disinhibited

by neurons that code for the same state in various contexts

um
ev,i(t)~

X
l

wev
il yl(t)zbev

i

{Idis xm
dyn,i,1(t), . . . ,xm

dyn,i,NC
(t)

� �
{I lat(t):

ð16Þ

Due to disinhibition of layer Ldyn by context ensembles, only

those ensembles in the layer which correspond to the current

context are active. The active neurons in this layer disinhibit

neurons in Lev in the same way as in the non-contextual case.

Thus, in each individual context, a subcircuit is recruited that

consists of the whole layer Lev and the ensembles for the current

context in layer Ldyn. Since the weights w
dyn,k
ij from Lev to

ensembles for context k in Ldyn implement the dynamics of the

random variable in that context, the circuit approximates the

correct transition dynamics of the random variable in each

context. The resulting membrane potential equations are summa-

rized together with parameters in Table 2.

Particle filtering in a generic setup for task class D. In

order to test the ability of the model to perform context-dependent

Bayesian filtering, we considered a random variable with context-

dependent dynamics. Two possible contexts A and B were indicated

by 20 context neurons. The underlying Markov chain with context-

dependent transition rates is shown in Figure 8Ba (bottom). The

dynamics in context A was equivalent to the one considered in the

generic test for task class C (dark gray arrows). However in context

B, state 2 exclusively transitioned to state 5 and state 3 exclusively to

4 (light gray arrows). Additionally, we considered a more complex

observation model in this example (panel Ba, top). State-dependent

firing rates were either Gaussians with varying variances, bimodal,

or uniform. Note that states 4 and 5 gave rise to quite similar

observations. Hence, it is hard to distinguish these states without

context. Panels Bc-Be show that the model makes good use of this

context information (context indicated by gray shading in panel Bc).

At time t = 2 s, there was a transition from state 2 to state 4 in

context A, and at time t = 4.25 s, there was a transition from state 2

to state 5 in context B. In both cases, the network estimate followed

immediately since the expected transitions were modulated by

context information. We also tested the performance of an optimal

context-dependent Bayesian filter and a Bayesian filter without

context information. This filter was based on a dynamics model

with mean transition rates over both contexts, which resulted in

suboptimal performance, see Figure 8Bf. Implementation details

are given in Methods.
Particle filtering in ENS coding for self-localiza-

tion. Estimation of the body position in space (self-localization)

is an essential ingredient of autonomous agents. In robotics,

particle filtering is one of the most successful techniques for self

localization [6]. Here, we demonstrate that particle filtering in

ENS coding can be used for self-localization in environments with

ambiguous evidence.

Every state of the considered hidden random variable corre-

sponded to some position in the environment and transitions were

possible between spatially adjacent states. The movement of the

agent provided context for the particle filter such that movement

in a particular direction enhanced transitions that point to that

direction (Figure 10A). Sensory cues provided partial information

about the current position. We simulated a two-chamber maze

with a small opening that connects these chambers. The southern

parts of the chambers gave rise to exactly the same observations,

making it impossible to distinguish them without prior information

(colored circles in Figure 10A). Observations in more northern

parts were different and in the very north, no observations were

experienced (corresponding for example to a dark corridor).

Figure 10B shows the estimate of the network for a single

trajectory. The model was started with a uniform prior distribution

over all positions. In the southern terrain, the left and the right

chamber cannot be distinguished, and accordingly, ensembles in

both areas were active, indicating possible positions (t = 300 ms).

In the more northern parts, observations disambiguate the current

position, and activity in the right chamber ensembles ceased

(t = 600, 900 ms). As the upper northern region was reached, no

more evidence was provided from the environment (t = 1500,

2400 ms). Still, the network predicted movement to the right

correctly thus utilizing movement information provided via

context ensembles. As the right chamber was entered, the

posterior was sharpened due to unambiguous sensory input. It

remained single peaked even in southern parts of the chamber

although these terrains produced ambiguous sensory input

(t = 3300, 3800 ms).

Task class E: Internal beliefs as context
In many tasks, the context variable c(t) is not explicitly available

to the animal but rather has to be estimated from noisy evidence

Y(t) as well. For example, in many sequential tasks the current

stage within the task can provide valuable context information

which can be used to time actions or to decide when beliefs should

be reset. In the computational framework considered here, this can

be achieved by treating the context variable c(t) as a random

variable that is estimated by a particle filter circuit from the given

evidence Y(t). Estimated context is then utilized for the estimation

of a random variable u(t) in a particle filter circuit with context.

In the tasks considered in task class D, the context was

unambiguously given and all neurons of exactly one context

ensemble had a firing rate larger than zero. This is not the case in

Ensembles of Spiking Neurons Support Probabilistic Inference
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task class E, since here context neurons encode a belief about the

current context. The context-dependent particle filter should

therefore deal with context in a graded manner. This is

accomplished by a simple modification of how neurons in layer

Ldyn integrate context, see Methods. In the modified circuit,

effective transition rates qij(t) of the context-dependent filtering

circuit are given as a linear mixture of the context-dependent

transition rates qk
ij(t), where each contributes approximately

proportionally to the current belief ~PP(c(t)~kDY(t)) in this context

qij(t)&
X

k

~PP(c(t)~kDY(t))qk
ij : ð17Þ

To demonstrate the viability of this approach, we reconsidered

the ambiguous target task.

Figure 9. Particle filter circuit architecture for task class D. Extended circuit with N~2 ensembles (indicated by red and blue neurons respectively)
and M~2 neurons per ensemble and two possible contexts. Ensembles in layer Ldyn are duplicated for each context. These neurons receive context
information via disinhibition from context neurons (yellow; only connections from context 1 shown for clarity). Disinhbition and lateral inhibition indicated
by shortcuts as defined in Figure 4B, C. Arrows indicate efferent connections. A schematic overview of the circuit is shown in the inset.
doi:10.1371/journal.pcbi.1003859.g009

Table 2. Particle filter circuit equations for task class D.

Layer Neurons Membrane voltage and parameters

Ldyn xn
dyn,i,k un

dyn,i,k(t)~
P

j,m w
dyn,k
ij zm

ev,j (t){Idis c1
k(t), . . . ,cMC

k (t)
� �

Ldyn xn
dyn,i,k

w
dyn,k
ij ~

qk
ji

M
for i=j, wdyn,k

ii ~
1

tM
{

1

M

X
j=i

qk
ij for all i.

Lev zn
ev,i un

ev,i(t)~
P

l w
ev
il yl (t)zbev

i {Idis(xn
dyn,i,1(t), . . . ,xn

dyn,i,NC
(t)){I lat(t)

Lev zn
ev,i wev

il ~loglliza, bev
i ~

1

t
zlmax{li

Here we have defined li:
P

l lli and lmax~ maxjfljg. I lat(t) denotes lateral inhibition and Idis disinhibition. a is an arbitrary constant.
doi:10.1371/journal.pcbi.1003859.t002
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The ambiguous target task revisited. The ambiguous

target task has a clear sequential structure (initial fixation, spatial

cue, memory epoch, color cue), see Figure 1A. The corresponding

hidden variable c(t) – for which the current value is given by the

momentary stage of the experimental trial – is shown in

Figure 11Aa.

The modeled task is similar to the ambiguous target task

considered above with the difference that several trials of the task

are performed sequentially, i.e., a sequence of epochs (fixation,

spatial cue, memory, color cue) is directly followed by the fixation

epoch, indicating the start of a new trial, again followed by the

spatial cue and so on. The difficulty of this task is that in the

fixation epoch, the internal belief about the random variable u(t)
that encodes the current color-direction pair is highly biased by the

last trial. This bias is problematic since an optimal prior would

assign equal probability to all color-direction pairs. In other words,

during the fixation, u(t) should be reset. A reset can be

accomplished by assuming that during fixation the dynamics of

u(t) are such that u(t) can quickly change its state from any state to

any other state (i.e., transition rates are high between all pairs of

states, see Figure 11Ab). In other epochs however, the assumption

is that the value of the random variable is fixed and does not

change (transition rates are zero between all pairs of distinct

states). We arrive at a context-dependent Bayesian filtering

problem where the dynamics of u(t) depend on the current

estimate of c(t), the epoch in the trial.

We modeled the context-dependent reset of the internal belief

by extending the circuit for the ambiguous target task in the

following manner. The internal belief about the random variable

u(t) that encodes the current color-direction pair (Figure 11Ab) is

generated by a particle filter circuit. Context is provided to this

circuit by an estimate of c(t), the current epoch in the trial

(Figure 11B). This estimate is performed by a particle filter circuit

that receives the same sensory evidence but no context (task class

Figure 10. Self-localization through particle filtering in ENS coding. A) Two-chamber maze (black lines) and transitions between states in
various contexts. States are arranged on a 10610 grid in the maze (crossing points of gray lines). Light gray lines indicate bidirectional state
transitions with low transition rates (0.1 Hz). Dark gray arrows indicate transitions with high transition rates (3.5 Hz). Context is defined by movement
direction (right, down, left, up). Colored circles indicate sensory evidence. Each color stands for one afferent neuron with a Gaussian spatial receptive
field. The circle indicates the STD of the Gaussian. Note that the southern chambers give rise to identical observations. Observations are truncated at
the height of the opening between the chambers such that no observations are experienced in the most northern parts. B) Network estimate of
posterior probability (see color bar on the right for color code) for one trajectory through the maze (white trace; dot denotes current position) at
different times. Spatial layout as in A. Various phases of the trajectory are shown: Uninformative prior knowledge (t = 10 ms), ambiguous estimates
(t = 300 ms); disambiguation (t = 600, 900 ms); states without evidence (t = 1500, 2400 ms); unambiguous state estimation based on ambiguous
evidence (t = 3300, 3800 ms).
doi:10.1371/journal.pcbi.1003859.g010
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C). In the context of the fixation-epoch, u(t) is believed to change

its state rapidly (all-to-all transitions in the dynamics of the random

variable, gray connections in Figure 11Ab). In the context of other

epochs, the random variable is believed to be constant (no

transitions between states, i.e., pure evidence integration). Finally,

an action readout layer derives the belief over the rewarded action.

In Figure 11C, a simulation for two successive trials of the

ambiguous target task is shown. The epoch c(t) is correctly

inferred by the particle filter circuit that provides the epoch-

context (Figure 11Cb). This context influences information

processing in the subsequent circuit for u(t) (Figure 11Cc). While

information is retained during the memory epochs, the belief

about the rewarded movement direction returns to an uninfor-

mative prior during the memory epoch at 1 s to 1.25 s. This

example demonstrates that internally generated beliefs about

random variables can act as valuable context in ENS coding.

Discussion

It has recently been demonstrated that the dynamics of

recurrent networks of spiking neurons can perform MCMC

sampling on a distribution P [4,9]. The distribution can be

approximately recovered by observing the evolution of the

network state trajectory for some time. Such a temporal

representation is less suitable for distributions that have to be

updated rapidly since each estimate of P needs several hundreds of

milliseconds. We have therefore proposed and analyzed in this

article ENS coding, where ensembles of neurons code for each

state of a random variable. In this coding scheme, adaptations of

internal beliefs can be established on the time-scale of EPSPs, see

Figures 5E and 8. Similarly, downstream readout neurons can

rapidly estimate ENS coded probability values according to eq. (1)

from neural ensembles, while such readout operation from neural

sampling networks demands the integration of spikes over intervals

of several hundred milliseconds. Another deficiency of the neural

sampling approach is the need for unbiologically strong synaptic

connections. This results from the principle that random variables

are encoded by single neurons in neural sampling, which

necessitates strong connections in order to ensure sufficient impact

on postsynaptic targets. Unbiologically strong synaptic connections

are not necessary in ENS coding, since targets can be activated in

a cooperative manner by neuronal ensembles. This is for example

apparent in the inverse scaling of weights with ensemble size in eq.

(6).

We have shown that particle filtering [6,7] can be performed by

circuits of spiking neurons in ENS coding. Numerous engineering

applications of particle filtering to tasks belonging to task class D

exist. In such tasks, particles are evolved according to a dynamics-

model that depends on context, such as the movement direction in

a self-localization task. This particle filtering with context cannot

be emulated by approximate Bayesian filtering as described in task

class C. To the best of our knowledge, this article provides the first

proof that this powerful operation is in principle accessible to

spiking neural circuits. We have demonstrated in computer

Figure 11. Context-dependent Bayesian filtering in two successive trials of the ambiguous target task. A) Represented random
variables. Aa) Dynamics of a random variable that codes the current phase in a trial of the ambiguous target task (CHT: fixation; SC: spatial cue; MEM:
memory cue; CC: color cue). Possible observations in each phase are indicated in boxes. Ab) Context-dependent Bayesian filtering is performed for a
random variable with 16 hidden states corresponding to direction-color pairs as in Figure 6Aa. Gray lines indicate context-dependent transitions. All-
to-all transitions are possible in the fixation phase (CHT). There are no transitions in other phases of a trial. Ac) The action readout layer infers a color-
independent random variable by marginalization over color in each direction. B) Circuit structure. The circuit on the top (ensembles Xdyn and Zev)
performs Bayesian filtering on the random variable c(t) indicated in panel (Aa). It provides context for another particle filter circuit (middle gray box;
ensembles Xdyn

0 and Zev
0) that generates a belief about the random variable u(t) indicated in Ab. An action readout layer is added (bottom gray box;

ensembles X ). C) Spike rasters from a simulation of two successive trials for afferent neurons (Ca), neurons in the particle filter circuit for the phase in
the trial (Cb), and neurons in the action readout layer (Cc). Neurons in Cb are coding for the current phase of the trial (ordered from bottom to top:
CHT, SC, MEM, and CC). Neuron ordering in Ca and Cc as in Figure 6.
doi:10.1371/journal.pcbi.1003859.g011
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simulations that ENS coding enables neuronal circuits to perform

these essential operations with high fidelity, thus making them

suitable for higher-level decision-related processing. Lee and

Mumford [30] proposed that particle filtering could be the basic

computational operation in hierarchical cortical processing. We

have demonstrated a first step in that direction in a spiking model

with ENS coding by showing that the belief about a random

variable can provide context information for the temporal

processing related to other variables, see The ambiguous target
task revisited.

Model simplifications and possible extensions
For consistency with the neural sampling approach, we used in

this article rectangular shaped EPSPs. To test how deviations from

rectangular EPSPs effect circuit performance, we performed

simulations where all EPSPs were modeled as exponentially

decaying EPSPs with decay time constant t~20ms such that the

integral over the EPSP is unchanged. The particle filter circuit was

tested in the generic setup for task class C (see Figure 8A). Despite

of its strong deviation from the rectangular shape, exponential

EPSPs caused only a slight decrease of circuit performance (the

percentage of incorrect state estimates was 17:5+5:2% as

compared to 14:8+3:8% for rectangular EPSPs).

The model also uses particular forms of instantaneous lateral

inhibition and disinhibition. Although both forms of inhibition

have been reported to play crucial roles in cortical information

processing [20–23,28,29], the exact circuitry and function of those

inhibitory circuits is still unknown. The lateral inhibition used in

our circuit model is however consistent with a recent study which

showed that inhibition has a broader spatial selectivity than

excitation in visual cortex of awake mice [31]. Such broader

selectivity is expected in our model since lateral inhibition is

common to all ensembles for a random variable. Apart from that,

the assumption that inhibition follows excitation instantaneously is

clearly a model simplification. A recent experimental study [32]

revealed that cortical inhibition lags excitation by about 3 ms in

anesthetized rats (the lag is possibly smaller in awake animals, see

[31]). In order to test whether the circuit is tolerant to delayed

inhibition, we performed control simulations where in addition to

the use of exponential EPSP shapes, both lateral inhibition and

disinhibition was delayed by 3 ms in the generic setup for task class

C (see Figure 8A). We found that delayed lateral inhibition can

lead to activity peaks as excitation arising from incoming evidence

cannot be compensated rapidly. This can lead to unstable circuit

activity when lateral inhibition tries to compensate these peaks in

the delayed negative feedback loop. Instabilities can be avoided by

reduction of the inhibitory drive, i.e., by reducing the lateral

inhibition scaling I lat
0 in eq. (33). Simulations showed that with

reduced inhibition scaling, the network tolerates delayed inhibition

with a slight decrease of performance (the percentage of incorrect

state estimates was 19:8+4:5% as compared to 17:5+5:2%

without delay; I lat
0 ~0:125).

In ENS coding, each neuron is tuned to one value of a random

variable u(t). The encoded random variable may represent a

specific feature relevant for some task. Many experiments show

that such tunings exist in various cortical areas, such as the tuning

of PMd neurons to potentially rewarded movement direction [3].

However, the random variable u(t) does not necessarily corre-

spond to a single task-relevant feature. For example, the random

variable encoded in the particle filter circuit for the ambiguous

target task represents direction-color pairs (see Figure 6Aa).

Therefore, neurons in this circuit are selective for both the spatial

cue and the color cue. This mixed tuning helps to integrate the

temporally separated cues. Mixed selectivity of neurons has been

found in higher cortical areas such as prefrontal cortex, and its

computational benefits have been highlighted in [33]. Hence, ENS

coding is consistent with these findings. We note however that in

the pure formulation of ENS coding, mixed selectivity to many

task aspects is problematic since the number of ensembles

necessary to encode all possible states over d task dimensions

grows exponentially with d. One possibility to overcome

exponential growth for large d is to consider approximations

schemes such as neglecting mixed configurations that are highly

unlikely.

The important question how the parameters of the network

could be attained by learning from experience is outside of the

scope of this paper. However, some possible solutions to the

learning problem can be sketched. For the particle filtering circuit,

two classes of synaptic connections could be adapted through

learning processes. First, synaptic efficacies wev
il from evidence

neurons to neurons in layer Lev. These efficacies encode the log-

firing rates of evidence neurons for the given hidden state i. It has

been shown that hidden-cause representations that require such

synaptic efficacies can be learned in spiking neural networks with

lateral inhibition through spike-timing-dependent (STDP)-like

synaptic plasticity rules [34,35]. Hence, it seems quite feasible

that the efficacies wev
il can be attained in an self-organized manner

through STDP. The second type of connections, w
dyn
ij from Lev to

Ldyn encode the dynamics of the random variable in terms of the

rate of change qji from state j to state i. In other words, the synapse

needs to track how often neuron xm
dyn,i is active after neuron zm

ev,i

(the synaptic efficacies needed for task class A are of a similar

nature). Again, this tracking can be done by a temporal Hebbian

learning rule. In particular, it has recently been shown in [36] that

such temporal relationships can be learned through STDP-like

learning rules in networks of spiking neurons that implement

hidden Markov models. A more sophisticated learning approach

that requires additional circuitry was outlined in [37]. Of course,

these results do not immediately generalize to the architecture

proposed in this article, and further studies are needed to prove the

viability of such a learning approach. Finally, we note that the

feature of the particle filter circuit (and ENS coding in general)

that individual synaptic efficacies do not need to be adjusted to

exact values as long as the mean efficacy between ensembles is

correct (see Particle filtering in a generic setup for task class C)

may prove advantageous for learning processes.

Experimentally testable predictions
We investigated the behavior of the model and compared it to

experimental results. Our results so far indicate that ENS coding is

consistent with a number of experimental studies. It is noteworthy

that the lateral inhibition that is needed to stabilize network firing

rates leads to the typical transient ensemble rate increases at

stimulus-onset (see transient responses in Figure 5D and Fig-

ure 1C in Text S5).

While many laboratory tasks implement a variant of evidence

integration (task class B), there is a lack of studies in the

experimental literature for task classes D and E. We hypothesized

in Task class E: Internal beliefs as context that the current values of

important context variables are estimated in higher brain areas.

Hence, one prediction of the model is that neural activities in such

areas should not only be related to variables of primary interest,

but also to context such as the current phase in a task with

sequential structure, see Figure 11B,C. Evidence for such repre-

sentations in monkey dorsolateral prefrontal cortex has been

reported [38]. Our model also predicts that activity in neuronal

ensembles that represent context should modulate the activity of
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decision-related ensembles in a manner that is fundamentally

different from the impact of direct evidence. In particular,

according to our circuit models in task classes D and E, context

gates or modulates activity in such neurons. Task context has been

shown to modulate neuronal activity in primate prefrontal cortex

[39] as well as in various lower level visual areas including area

MT [40,41]. These findings are contrasted by studies that showed

that task-context influenced noise-correlations but not firing rates

in MT in a variant of the random-dot motion task [42]. The

general term context of course subsumes many different types of

contextual information in various quite different task settings,

which may explain the discrepancies between the different studies.

In this work, context is defined specifically as additional

information about the dynamics of the random variable.

Experimental setups where context information is indicative of

the dynamics of task-relevant variables would help to elucidate

how such information alters temporal processing in cortical

circuits.

We proposed disinhibition as one possibility for context-

dependent modulation, consistent with the experimental findings

that disinhibitory circuits are recruited by feedback connections in

neocortical layer 1 [28]. We note however that such effects could

be implemented in cortical circuits by a number of mechanisms

[18,19].

We applied particle filtering – one of the most successful

techniques for self localization in autonomous robots – in ENS

coding to self-localization, a particularly important task for many

animals. Whether self-localization in animals is solved in a similar

manner is of course still unknown. There have however been

studies which show that ambiguous sensory information can be

resolved on the neuronal level in rodents [43,44]. This indicates

that the algorithm employed by the brain is in fact quite powerful.

The particular implementation proposed here also implies that the

spatial structure of the environment (i.e., possible transitions

between locations in space) should be encoded in the synaptic

weight matrix of particular neural circuits (edges and arrows in

Figure 10A). Furthermore, our model predicts that information

about motor events (movement) is treated by such circuits as

context. Hence, these signals impact circuit activity quite

differently from sensory evidence, see the discussion above.

Evidence for nonlinear interaction of visual information and

movement information in self-localization of mice has been

reported recently [44].

Related work
Probabilistic population codes (PPC; [24]) have been suggested

as one hypothesis how probability distributions could be coded in

the spiking activity of neurons. In the PPC concept, one assumes

that each neuron is (at least implicitly) linked to a stimulus via a

tuning function. A hypothetical decoder would then apply Bayes

rule to decode the stimulus distribution, making use of the tuning

functions of the neurons. In ENS coding considered here, the

neural ensembles produce samples from a distribution and a

hypothetical decoder would just count spikes. Accumulation of

evidence in LIP in a random-dot motion task has been modeled in

the PPC framework [45]. In general, information can be

accumulated in PPC simply by adding up activity from afferent

neurons, given that this activity follows Poisson-like statistics. The

model however assumes that the hidden variable is static. In fact,

tracking of dynamic variables, such as those considered in task

classes C–E, is hard to implement in the PPC framework [46].

Several spiking neural network models for Bayesian filtering

have been proposed in the literature with very similar basic ideas

to solve the problem [15,47,48]. Denève [47] proposed a model

where a single integrate-and-fire neuron estimates the hidden state

of a binary random variable with temporal dynamics. The model

can only deal with binary variables, whereas our proposed model

is not restricted in this respect. A similar model was proposed in

[48]. There the assumption was that the continuous-valued

random variable evolves according to a drift-diffusion process.

Our implementation of Bayesian filtering in ENS coding

complements this work by considering discrete-valued random

variables with the assumption that the dynamics can be

approximated by a continuous-time Markov chain.

Rao [15] considered Bayesian filtering in discrete time through

a network of spiking neurons. This model was however not based

on a rigorous coding scheme with respect to information transfer

through spikes. The instantaneous firing rate of individual neurons

was regarded as the distribution-encoding quantity and it was

implicitly assumed that spikes can communicate this quantity in

sufficient quality. In the current article, we base representations of

beliefs on the spiking activity in the first place and propose ENS

coding as a solution where the fidelity of representation is provided

through ensemble activity. Our analysis identified how network

properties such as the ensemble size, the maximal firing rate, and

the membrane time constant influence the quality of the

representation. In any case, the noise introduced by stochastic

spiking cannot be neglected in general. We have demonstrated in

computer simulations that still, temporal information processing

on demanding tasks is possible in ENS coding.

We have argued that particle filtering with context is an

important operation that is needed for example for self-localiza-

tion. The current work shows that this extension of Bayesian

filtering, that has not been considered in previous models, can

easily be implemented in the ENS code.

Several non-spiking models for Bayesian filtering have been

proposed previously [14,49,50]. We have based our circuit model

for task classes B and C on well-known filtering equations [13] that

also provided the basis for the rate-based model considered in

[14]. Several conclusions can be drawn when comparing the

model based on ENS coding considered here with the non-spiking

model from [14]. First, we confirmed through computer simula-

tions that quite demanding information processing tasks are

possible with spiking neurons using ENS coding, despite of

substantial noise introduced by stochastic spiking. Second,

ensemble coding is clearly necessary for the tasks considered in

this article if neuronal responses are stochastic. We used on the

order of 1000 neurons per ensemble in the simulations. This

number was not optimized, but ensemble sizes below 100 are not

sufficient, for example in the ambiguous target task (see Dataset
S1). Third, besides the complications that stochastic spike codes

introduce, we have shown that ENS coding also has some positive

effects. We found that multiplicative operations can be replaced by

gating of neuronal activity in ENS coding, for example through

synaptic gating or through disinhibition. This property of ENS

coding provides an attractive alternative to previously proposed

solutions for the unavoidable demand of nonlinear processing in

Bayesian filtering, such as multiplicative interaction of synaptic

inputs [14,50], or the use of precise dendritic nonlinearities [15].

Finally, the use of a spiking model enabled us to directly compare

model characteristics to experimental data. We found that the

model is consistent with quite diverse experimental results

[1–3,25].

Conclusions
Sample-based representations of probability distributions pro-

vide an attractive framework for modeling probabilistic inference

on static evidence in cortical networks. We have shown that

Ensembles of Spiking Neurons Support Probabilistic Inference
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ensemble-based neural sampling enables cortical networks to

perform also powerful context-dependent temporal inference.

Hence, our model provides a new and theoretically founded basis

for understanding temporal probabilistic computations in various

higher-level cortical areas.

Methods

For easy reference, Table 3 summarizes the notational conven-

tions used in this article.

Spike trains, EPSP shapes, and EPSP-filtered spike trains
Here, we define EPSP-filtered spike trains and the shape of

EPSPs used throughout the article. We denote the spike-train x̂xn
i of

a neuron xn
i as the sum of Dirac delta functions

x̂xn
i (t)~

X
j

d(t{t
n,j
i ),

where t
n,j
i denotes the j-th spike-time of neuron xn

i . We define the

EPSP-filtered spike train xn
i (t) as

xn
i (t)~

X
j:t

n,j
i

ƒt

E(t{t
n,j
i ): ð18Þ

Here E denotes the EPSP shape produced by a spike of a

presynaptic neuron. We use in this article rectangular EPSP

shapes of the form

E(s)~H(s)H(t{s), ð19Þ

where H denotes the Heaviside step function and t is the length of

the EPSP. For some control simulations, we use exponentially

decaying EPSP shapes

E(s)~H(s)exp({s=t): ð20Þ

ENS code and filtered probability distributions
Assuming rectangular EPSP shapes of length t, the filtered

probability denoted as �PP(u(t)~i) is the average probability for

state i in time ½t{t,t�, that is

�PP(u(t)~i)~
1

t

ðt

0

P(u(t{s)~i)ds: ð21Þ

We denote the ensemble average of a random variable by S:T.

Consider a given fixed temporal evolution of the probability

P(u(t)~i). In ENS coding, we demand that neural activities are

such that the mean of the estimator ~PP(u(t)~i) is equal to the

temporally filtered probability of that state at time t, that is

S~PP(u(t)~i)T~ �PP(u(t)~i) for i~1, . . . ,N: ð22Þ

Mean and variance of the estimator
Here we show that eq. (1) is an unbiased estimator of the

probability of state i at time t filtered by the EPSP, given that there

is at least one spike in the integration window. Additionally we

compute the variance of the estimator.

Consider a given fixed temporal evolution of the probability

P(u(t)). We first consider the mean of ~PP(u(t)~i) for a given

number of spikes
P

j Xj(t)~k, written as S~PP(u(t)~i)DkT:

S~PP(u(t)~i)DkT~
SXi(t)DkT

k
:

Given a spike at time t, the probability that it was elicited in

ensemble Xi is
ri(t)

r(t)
, where r(t)~

P
j rj(t) denotes the total

network rate. Since the total network rate r(t)~rmaxM is

constant and each spike is drawn independently, to count the

spikes in different ensembles in a time window t, we can replace

each inhomogeneous Poisson process by a homogeneous

process in that time window with rate �ri(t)~
1

t

ðt

0

ri(t{s)ds~rmaxM�P (u(t)~i), where �P(u(t)~i) denotes the

temporally filtered probability of the state, see eq. (21). Each

individual spike in the time window originates from ensemble Xi

Table 3. Notation.

Variable name Description

u Random variable with range f1, . . . ,Ng.
N Number of states of u and number of ensembles that represent u.

Xi Ensemble i represents the belief that a random variable is in state i.

M Number of neurons per ensemble.

xm
i m-th neuron in ensemble Xi .

x̂xm
i (t) Spike train of neuron xm

i at time t.

xm
i (t) EPSP-filtered spike train of neuron xm

i at time t.

Xi(t) Summed activity (probability mass) for state i at time t: Xi(t)~
P

m xm
i (t).

um
i (t) Membrane potential of neuron xm

i at time t.

rm
i (t) Instantaneous firing rate of neuron xm

i at time t.

Description of frequently used variables for easy reference. In general, capital letters refer to ensembles and lower case letters to neurons in these ensembles.
doi:10.1371/journal.pcbi.1003859.t003
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with probability
�rri(t)

rmaxM
~�P (u(t)~i). Hence, for a given k, Xi(t)

is drawn from a binomial distribution B(k,�PP(u(t)~i)). It follows that

SXi(t)DkT~k�PP(u(t)~i) and Var(Xi(t)Dk)~k�PP(u(t)~i)(1{�PP(u(t)

~i)). Hence, S~PP(u(t)~i)T~�PP(u(t)~i), and the estimator is

unbiased.

We now turn to the variance of ~PP(u(t)~i). We define ~PPi:
~PP(u(t)~i) and �PPi:�PP(u(t)~i) for notational convenience. From

Var(Xi(t)Dk)~k�PPi(1{�PPi), we obtain Var(~PPi Dk)~�PPi(1{�PPi))=k.

By the law of total variance, we have

Var(~PPi)~SVar(~PPi Dk)TzVar(S~PPi DkT):

The second summand is 0 since S~PPi DkT~�PPi is independent of k.

We thus obtain

Var(~PPi)~�PPi(1{�PPi)
X?
k~1

P(k)
1

k
:

Here, P(k) is Poissonian with intensity L~rmaxMt. Inserting

the Poisson density, we obtain

Var(~PPi)~�PPi(1{�PPi)
X?
k~1

Lk

k!
e{L 1

k

&�PPi(1{�PPi)
X?
k~1

Lk

k!
e{L 1

kz1

~�PPi(1{�PPi)
1

L

X?
k~1

Lkz1

(kz1)!
e{L

~�PPi(1{�PPi)
1

L
(1{P(0){P(1))&�PPi(1{�PPi)

1

L

~�PPi(1{�PPi)
1

rmaxMt
:

The approximation is excellent if L is large, i.e., a small number

of spikes over all ensembles within t is very unlikely.

Influence of the firing rate on the represented
distribution

We provide here the proof for eq. (2). We assume that an

antiderivative Rm
i exists for all rates rm

i (which is satisfied for

example if the rates are continuous or sums of Heaviside step

functions). The probability mass of a population Xi is given by

Xi(t)~
X

m

xm
i (t)~

X
m

ðt

t{t

x̂xm
i (s)ds, ð23Þ

where x̂xm
i is the spike train of neuron xm

i as defined above. The

neurons spike in a Poissonian manner with continuous rates rm
i .

Hence we obtain for the mean over realizations of spike trains

SXi(t)T~
X

m

ðt

t{t

rm
i (s)ds~

X
m

Rm
i (t){

X
m

Rm
i (t{t): ð24Þ

It follows

d

dt
SXi(t)T~

X
m

d

dt
Rm

i (t){
X

m

d

dt
Rm

i (t{t)

~
X

m

rm
i (t){

X
m

rm
i (t{t):

ð25Þ

Task class A: Simple probabilistic dependencies
We first show that the expected value of the estimator ~PP(u(t)) is

equal to the posterior distribution (4) for membrane potentials (5)

and weights (6). We will then derive the variance of an alternative

estimator P̂P(u(t)) of the posterior distribution.

Consider two distributions P(uX (t)) and P(uZ(t)) over random

variables uX (t) and uZ(t) respectively such that the desired

posterior is given by eq. (4). P(uZ(t)) is coded by neurons zm
j

through ENS coding. We denote the estimation sample size of the

ensembles for uZ(t) by LZ for clarity. Consider a circuit with

neurons xn
i and ensemble size M that should represent the

posterior. The membrane potentials are given by

un
i (t)~

P
j,m wijz

m
j (t) for wij~

a

Mt
P(uX ~iDuZ~j). For given

EPSP-filtered spike trains zm
j (:), this leads to the firing rate for

neuron xn
i

rn
i (t)~a

1

Mt

X
j

P(uX ~iDuZ~j)Zj(t): ð26Þ

Averaging over realizations of spike trains in the posterior

population, we obtain

SXi(t)DZ1, . . . ,ZNT~
X

n

ðt

t{t

rn
i (s)ds

~
a

t

X
j

P(uX ~iDuZ~j)

ðt

t{t

Zj(s)ds,

where S:DZ1, . . . ,ZNT denotes the average for given activities in

ensembles Z1, . . . ,ZN . Taking also the average over realizations of

spike trains in ensembles Zj , this evaluates to

SXi(t)T~
a

t

X
j

P(uX ~iDuZ~j)S
ðt

t{t

Zj(s)dsT

~
a

t

X
j

P(uX ~iDuZ~j)

ðt

t{t

SZj(s)Tds:

We assume for simplicity that P(uZ(t)) is constant over time,

and obtain

SXi(t)T~aLZ
X

j

P(uX ~iDuZ~j)P(uZ(t)~j)~LX P(uX (t)~i),

where we defined LX ~aLZ. This shows that the represented

probability of the circuit is the posterior probability in the mean

with an estimation sample size of LX ~aLZ .
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Variance of the posterior representation. The estimate of

the posterior distribution at some specific time t is however

variable due to variability in spike counts of both the represen-

tation of P(uZ(t)) and the representation of P(uX (t)). Due to this

doubly stochastic nature, the variance of the estimator ~PP(uX (t)) is

hard to evaluate. We derive in here the variance of an alternative

estimator P̂P(uX (t)~i)~ Xi(t)
L

which is also unbiased but has higher

variance. We show that the variance of this estimator for

conditional probabilities P(uX DuZ) that maximize the variance of

the firing rates in the posterior circuit is at most twice the variance

of the estimator P̂P(uZ(t)). The firing rate of a neuron in the

posterior representation has a variance of

Var(rn
i (t))~

LX

LZMt

� �2X
j

P(uX ~iDuZ~j)2Var(Zj(t))

~
(LX )2

LZM2t2

X
j

P(uX ~iDuZ~j)2P(uZ(t)~j)

ƒ

LX

LZM2t2
LX P(uX ~i),

where the maximum is achieved when one P(uX ~iDuZ~j)~1 for

some j. We derive the variance of the spike count in a window of size

t in the posterior circuit in this case. This variance is not straight

forward to compute since it is the variance in spike count of a Poisson

process with a rate that is itself a random variable. For the case of

maximum variance of the firing rate, the firing rate is given by

rn
i (t)~

1

t

LX

LZM
Zj(t)

for some j. For the spike count in a window of duration t over the

whole ensemble for state i, that is Xi(t), we consider thus a Poisson-

distributed random variable with intensity
LX

LZ
Zj(t) which is itself a

random variable. Since Zj(t) is Poisson distributed, Xi(t) can be

expressed as a compound Poisson distribution in the following way.

Xi(t) is the sum of random variables zk which are i.i.d. Poisson with

intensity 1 and scaled by
LX

LZ
. The number of random variables that

are summed is Poisson distributed with intensity SZj(t)T~

LZP(uZ(t)~j). Hence, the random variable Xi(t) is given by

Xi(t)~
XZj (t)

k~0

zk:

It is easy to see that this leads to the correct distribution over

intensities for Xi(t). It is known from the theory of compound

Poisson processes [51] that the variance of Xi(t) is given by

SZj(t)TVar(zi)zSziT2Var(Zj(t)) which is in our case

2LX LX

LZ

� �
P(uZ(t)~j)~2LX LX

LZ

� �
P(uX (t)~i). Since the esti-

mated probability for state i is P̂P(uX (t)~i)~Xi(t)=LX , we obtain

Var(P̂P(uX (t)~i))~
2

LZ
P(uX (t)~i). In comparison with the vari-

ance of P̂P(uZ(t)~j), which is Var(P̂P(uZ(t)~j)~
1

LZ
P(uX (t)~i),

the variance doubles.

Task class B: Evidence integration
Evidence can be provided through EPSPs. We first prove

that in a rate-model, integration of evidence signaled via point-

events can be performed with finite-length EPSPs. We denote the

spike-train ŷyl of afferent neuron yl as the sum of Dirac delta

functions

ŷyl(t)~
X

j

d(t{t
j
l),

where t
j
l denotes the j-th spike-time of neuron l. Consider a set of

non-normalized and non-negative functions pi(:) from which the

probabilities P(u(t)~i) follow after normalization. The change of

pi is given by [13,14]

d

dt
pi(t)~

X
l

(lli{1)ŷyl(t){li

" #
pi(t),

where lli is the firing rate of afferent neuron l if the current state is

i. Starting at some time t0 with pi(t0) and integrating up to time

twt0, we obtain

pi(t)~pi(t0)exp({(t{t0)li)P
l
l

Nl (t0,t)

li , ð27Þ

where Nl(t0,t) denotes the number of spikes of afferent neuron l in

½t0,t�.
Now assume finite-size EPSPs of length t and integral �EE, giving

rise to the EPSP-filtered spike-trains yl . Furthermore, assume that

the rate-based network evolves due to eq. (8) with weights given by

wev
il ~

1

�EE
loglliza for some constant a. Integrating up to time t

and assuming no evidence spike in ½t{t,t�, we obtain

pi(t)~pi(t0)exp

ðt

t0

(
X

l

wev
il yl(s)zlmax{lizg(s))ds

 !

~pi(t0)exp

ðt

t0

lmaxzg(s)ds

 !
exp

ðt

t0

(
X

l

wev
il yl(s){li)ds

 !

~c pi(t0)exp {(t{t0)lið Þexp
X

l

wev
il

ðt

t0

X
t
j
l
:t

j
l
[½t0,t�

E(s{t
j
l)ds

0
B@

1
CA

~c pi(t0)exp {(t{t0)lið ÞP
l

exp wev
il

X
t
j
l
:t

j
l
[½t0,t�

ðt

t0

E(s{t
j
l)ds

0
B@

1
CA

~c pi(t0)exp {(t{t0)lið ÞP
l

exp wev
il Nl(t0,t)�EE

� �
~cpi(t0)exp {(t{t0)lið ÞP

l
exp logl

Nl (t0,t)

li za�EENl(t0,t)
� �

~c’ pi(t0)exp {(t{t0)lið ÞP
l
l

Nl (t0,t)

li

for a constant c’ that only scales the pi’s. We thus obtained the

desired result, compare to eq. (27). Note that a can be used to shift

weights to positive values for low firing rates. Since the EPSPs are

scaled by the weight, we can assume that �EE~1. Then the optimal

weights are wev
il ~loglliza, as considered in the main text.

Particle-based implementation of the filtering equa-

tions. We now analyze the changes of expected probability

masses for membrane voltages given by eq. (10) with

bev
i ~

1

t
zlmax{li and wev

il ~loglliza. We show that they are
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approximately equal to the changes in the pi’s in eq. (8). For a

given pattern of spikes in layer Ldyn, the firing rates in layer Lev

evaluate to

rm
ev,i(t)~

1

M
Xdyn,i(t)

1

t
zlmax{liz

X
l

wev
il yl(t)zg(t)

 !" #z

:ð28Þ

For positive weights, the only term that can make the argument

of the ½:�z operator negative is g(t) which will be equated with

normalizing inhibition. We will discuss the influence of this effect

below. For now, we assume that the membrane potential does not

become negative, which enables us to skip the rectification ½:�z.

We use the shortcut rev,i(t)~
P

m rm
ev,i(t) for the summed firing

rate of ensemble Zev,i to obtain

rev,i(t)~Xdyn,i(t)
1

t
zlmax{liz

X
l

wev
il yl(t)zg(t)

 !
: ð29Þ

The change of the expected probability masses in Lev is given by

eq. (2)

d

dt
SZev,i(t)T~Srev,i(t)T{Srev,i(t{t)T

~SXdyn,i(t)T
X

l

wev
il yl(t)zlmax{lizg(t)

 !

z
1

t
SXdyn,i(t)T{Srev,i(t{t)T:

Since layer Ldyn copies the distribution represented by Lev, we

have SXdyn,i(t)T&SZev,i(t)T which yields

d

dt
SZev,i(t)T&SZev,i(t)T

X
l

wev
il yl(t)zlmax{lizg(t)

 !

z
1

t
SZev,i(t)T{Srev,i(t{t)T:

The first term in this equation is equivalent to the change of the

pi’s in eq. (8). The last term is due to EPSPs that end at time t and

has to be compensated. It is approximately compensated by the

second to last term since SZev,i(t)T~

ðt

t{t

Srev,i(s)Tds&

tSrev,i(t{t)T under the assumption that the expected firing rate

(i.e., the represented probability distribution) changes slowly on the

time scale of the EPSP. Hence, we have

d

dt
SZev,i(t)T&SZev,i(t)T

X
l

wev
il yl(t)zlmax{lizg(t)

 !
:

Comparing this result to eq. (8), we can see that the dynamics of

the mean probability masses in layer Lev approximate those

needed for evidence integration.

Multiplication through gating of activity. We now show

that the multiplication can be approximated by gating of activity.

The membrane potentials of neurons in Lev given in eq. (10) gives

rise to the ensemble firing rates given in eq. (29), which

approximate the optimal changes in probability masses as shown

above. In a first step, we show that membrane potentials (11) give

rise to identical ensemble firing rates. This can easily be seen since

for non-negative membrane potentials we have

rev,i(t)~
X

m

rm
ev,i(t)~

X
m

½um
ev,i(t)�

z
~
X

m

um
ev,i(t)

~
X

m

xm
dyn,i(t)

X
l

wev
il yl(t)zbev

i zg(t)

 !

~Xdyn,i(t)
X

l

wev
il yl(t)zbev

i zg(t)

 !
:

The matching of superscripts m in eq. (11) is chosen for

notational simplicity. Of course, any permutation of superscripts

on the right hand side is valid as well. If the firing rate of neuron

xm
dyn,i is low, the probability of two spikes in a time window of size

t is small and we can approximate xm
dyn,i(t) by a binary variable

taking on the values 0 or 1. In this case, the multiplication is

accomplished by gating of the activity of neuron zm
ev,i by neuron

xm
dyn,i.

In a second step, we discuss how this gating can be

accomplished through disinhibition. Our general model for

disinhibition is discussed below. Here we use the special case of

a single disinhibiting neuron Idis(xm
dyn,i(t))~I0 if xm

dyn,i(t)~0 and 0

otherwise. For membrane potentials given by eq. (12), and binary

xm
dyn,i(t), we have

rm
ev,i(t)~½um

ev,i(t)�
z

~xm
dyn,i(t)

X
l

wev
il yl(t)zbev

i zg(t)

 !
ð30Þ

if I0 is strong, such that the membrane potential becomes negative

if neuron xm
dyn,i was not active recently. The ensemble rates

rev,i(t)~
X

m

rm
ev,i(t)~Xdyn,i(t)

X
l

wev
il yl(t)zbev

i zg(t)

 !
, ð31Þ

are equivalent to the ensemble firing rates of eq. (29) and therefore

approximate the optimal changes of probability masses.

Disinhibition
We formally define the influence of disinhibition arising from

neurons x1, . . . ,xl on the membrane potential of a neuron as

Idis(x1(t), . . . ,xl(t))~
I0 , if

Pl
i~1 xi(t)ƒqdis

0 , otherwise

(
ð32Þ

where I0 is some baseline inhibition and qdis is some threshold.

In other words, the disinhibited neuron is released from baseline

inhibition if the neurons were recently active enough to

overcome the threshold qdis. We used in this article a threshold

of qdis~0:5. For rectangular EPSPs, this results in disinhibition

whenever
P

i xi(t)w0. In our circuit model, the baseline

inhibition is strong enough to suppress any activity when

inhibited.
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Lateral inhibition
Lateral inhibition in layer Lev is given by

I lat(t)~I lat
0

X
i,m

zm
ev,i(t{Ddelay){L

" #z

, ð33Þ

It corrects for excessive spiking activity, i.e., whenP
i Zev,i(t{Ddelay)wL. The constant I lat

0 determines how strongly

this correction influences the membrane potential. We included

the ½:�z operator to model a purely inhibitory population. This

means that too low firing rates are not compensated by this

mechanism. This is possible, since all other contributions to the

membrane potential are non-negative if weights are shifted to non-

negative values. In particular, the
1

t
term in the biases bev

i (see

Table 1) leads to a quick recovery of the ensemble firing rate.

Strong lateral inhibition at low potentials could be cut off by the

½:�z-operator in equation (28). That would result in unequal

inhibition values for different ensembles. This can be avoided by

bounding inhibition to a maximum of
1

t
(note that inhibition is

bounded due to the finite size of the network). But our simulations

indicate that even with larger values, the circuit performs very well.

General details on computer simulations
All simulations were performed in discretized time with a time

step of 0.5 ms. The duration of EPSPs was set to t~20ms in all

simulations. The delay for lateral inhibition Ddelay was set to

0.5 ms. The initialization of network activity for the particle filter

circuits was performed as follows. Let P(u(0)) denote the

distribution that the network should represent at the beginning

of a simulation. Spikes were drawn in both layers and distributed

in the time interval ½{t,0� such that at time t~0, the represented

probability ~PP(u(0)) represented P(u(0)) in the mean. More

precisely, a spike of neuron zm
ev,i in ½{t,0� was assumed with

probability P(u(0)~i)
M

L
. If there was a spike for this neuron, its

exact timing was drawn from a uniform distribution in the interval

½{t,0�. Simulation of the network began at t = 0 ms where the

EPSPs of theses spikes were taken into account when computing

the membrane potentials of neurons during the initial phase of the

simulation. The initially represented distribution P(u(0)) was

assumed uniform over all states if not otherwise noted.

All simulation code is available online as Dataset S1. Details of

individual simulations are discussed in the following.

Computer Simulations for task class B: Evidence
integration

Figure 5. For panel F, the prior probability for state

P(u(0)~1) was chosen in each run randomly from a uniform

distribution over ½0:1,0:9�. The two afferent neurons y1 and y2

spiked at time 20 ms and 25 ms respectively. Each l1,i was drawn

from a uniform distribution over [5,20]Hz. For panel F, 100

simulation runs were performed and ~PP(u(tpost)~1) as well as
~PP(u(tpost)~2) is shown, with tpost~45ms (Ppost). The true

posterior Popt was computed according to eq. (27). Panels C–E

show an example run with P(u(0)~1)~0:6 and l1,1~10Hz,

l2,1~15Hz, l1,2~5Hz, l2,2~12Hz.

Circuit parameters: Number of neurons per state M~2000;

target estimation sample size L~400; lateral inhibition scaling

I lat
0 ~0:5.

Action readouts from state variables
We provide here details on the readout layer used to model the

ambiguous target task and the random-dot motion task. An

application of the feedforward circuit discussed in Simple
probabilistic dependencies is inference over rewarded actions a
based on the current belief about the state of a random variable

u(t). In the context of reward-based action selection, one wants to

estimate the probability that a given action leads to reward (we

consider here binary rewards R[f0,1g for simplicity). If the

probability P(R~1Du,a) of reward for action a in state u is known,

then the posterior distribution over actions for the current state

distribution can be inferred as

P(a(t)~iDR~1)!
X

j

P(R~1Da~i,u~j)P(u(t)~j), ð34Þ

see below. In the ambiguous target task, P(R~1Du,a) is 1 if the

action (movement direction) matches the direction of the spatial

cue in the color of the color cue, and 0 otherwise. Eq. (34) defines a

direct probabilistic relation between the action and the state.

Hence, a layer of neurons as described in Task class A computes

the posterior distribution. We refer to such a layer as an action
readout layer.

We discuss this now more formally. Consider a random variable

u with range f1, . . . ,Ng, a random variable a over possible actions

f1, . . . ,NAg, and a binary random variable R[f0,1g that indicates

whether a reward occurs. Assuming that the joint probability

P(a,u,R) factorizes to P(a,u,R)~P(a)P(u)P(RDa,u), one can infer

future actions a that will lead to a reward for the given distribution

over states by:

P(a~ijR~1)~
P(a~i,R~1)

P(R~1)

!
X

j

P(R~1ja~i,u~j)P(a~i)P(u~j):
ð35Þ

We want to infer future actions a that will lead to a reward for

the current state u(t). Assuming a uniform prior over actions, this

simplifies to

P(a~iDR~1)!
X

j

P(RDa~i,u~j)P(u(t)~j): ð36Þ

Assume that the distribution P(u(t)) is given by ensembles Zj in

a sample-based representation with estimation sample size LZ .

This defines an operation as discussed above under Task class A:
Simple probabilistic dependencies. Hence, a circuit consisting of NA

ensembles and M neurons per ensemble samples from the

posterior distribution (36) with estimation sample size LX ~aLZ

if the membrane voltages of the neurons are given by

um
i (t)~

X
j,n

wR
ij zn

j (t)

with weights wR
ij ~a

1

Mt
P(R~1Da~i,u~j).

The ambiguous target task
Stimuli were coded by 19 ensembles of afferent neurons, where

each ensemble consisted of 20 neurons. One ensemble coded for

the fixation cross, and two for the two colors of the color cue. Eight
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ensembles coded for each position of a red spatial cue and eight for

each position of a blue color cue. First, the fixation cross-stimulus

was presented for 100 ms. The spatial cue followed for 250 ms.

Here, two ensembles of afferent neurons were active, one for each

color of the spatial cue. In the 250 ms memory epoch, only the

fixation cross was present. After the memory epoch, the color cue

appeared, and the corresponding ensemble of afferent neurons (for

red or blue color cue) was active. Afferent neurons spiked at a

baseline rate of 0.1 Hz and at a rate of 5 Hz when they were

active.

For synaptic weights from afferent neurons, we used

lli~1:25Hz for observations l that are possible in state i. For

example, in a state coding for ‘‘movement to 90 degrees with red

color cue’’, a red spatial cue at 90 degrees, a blue spatial cue at 270

degrees, and a fixation cross are possible. All other lli were set to

the baseline firing rate of 0.1 Hz. The lateral inhibition scaling was

I lat
0 ~1:25.

The action readout layer consisted of 100 neurons for each of

the 8 possible actions (movement to one of eight directions).

Considering eq. (4), we identified the random variable uZ(t) with

the random variable estimated in the particle filter circuit. The

hidden states of this variable are the direction-color pairs (d,c) for

8 possible directions d and 2 colors c. The random variable uX (t)
has 8 states encoding that movement in direction d leads to a

reward. This random variable can be computed through

marginalization over color c. Hence, the conditional probabilities

were given by P(uX ~d DuZ~(d ’,c))~1 for d~d ’ and

P(uX ~d DuZ~(d ’,c))~0 otherwise. With these conditionals, we

obtained the synaptic weights through eq. (6) with a~0:2, leading

to an estimation sample size of 80 in the action readout layer.

For Figure 1, spiking activity was averaged over 50 successful

trials (87 successful trials out of 100), temporally (10 ms running

average) and spatially (mean activity of 10 neighboring neurons for

neurons ordered by their preferred direction).

Continuous time Markov chains
A continuous time Markov chain is characterized by transition

rates qij for each pair of distinct states, i.e., for i,j[f1, . . . ,Ng and

i=j. Assume that at some time t’ the state is u(t’)~i. To sample a

sequence of states from the Markov chain starting at t’, a Poisson

process Pj with rate qij is started for each state j=i. The time of

the next state transition is given by the first event in these processes

and the next state is given by the index of the process that

produced the event. After a transition, the chain starts afresh at the

transition time.

Task class C: Bayesian filtering
We show that the membrane potentials given in Table 1

approximate the set of differential equations (13). These equations

can be formulated as two sets of coupled equations, one for

evidence integration and one for prediction of dynamics:

d

dt
pev

i (t)~p
dyn
i (t)

X
l

(lli{1)ŷyl(t){li

" #
ð37Þ

d

dt
p

dyn
i (t)~

X
j=i

qjip
ev
j (t){pev

i (t)
X
j=i

qij , ð38Þ

where we assume identical initial conditions for pev
i and p

dyn
i . pev

i is

represented by Lev and the change of the expected probability

masses corresponds to the changes in eq. (37) as shown above.

We show here that the membrane potentials given in eq. (14)

lead to changes in the expected probability masses of Ldyn that

approximate those of eq. (38). Assume that the membrane

potentials evolve according to eq. (14) with weights w
dyn
ij ~

qji

M

where we defined qii:
1

t
{
X

j=i
qij . For given spikes in layer

Lev, the summed firing rates rdyn,i(t)~
P

n rn
dyn,i(t) in layer Ldyn

evaluate to

rdyn,i(t)~M
X

j

w
dyn
ij Zev,j(t)

~
X
j=i

qjiZev,j(t)z
1

t
Zev,i(t){Zev,i(t)

X
j=i

qij :

The change of the expected probability masses in Ldyn is

d

dt
SXdyn,i(t)T~Srdyn,i(t)T{Srdyn,i(t{t)T

~
X
j=i

qjiSZev,j(t)T{SZev,i(t)T
X
j=i

qij

z
1

t
SZev,i(t)T{Srdyn,i(t{t)T:

The last term is due to EPSPs that end at time t which needs to

be compensated. It is approximately compensated by the second to

last term since SZev,i(t)T&SXdyn,i(t)T~
Ð t

t{t Srdyn,i(s)Tds&
tSrdyn,i(t{t)T under the assumption that the expected firing rate

(i.e., the represented probability distribution) changes slowly on the

time scale of the EPSP. Altogether we obtain

d

dt
SXdyn,i(t)T&

X
j=i

qjiSZev,j(t)T{SZev,i(t)T
X
j=i

qij

as needed.

Computer Simulations for task class C: Bayesian filtering
Figure 7. Parameters for the example run, panels C,D:

q12~23:4Hz; P(u(0)~1)~0:16. The true posterior was comput-

ed analytically as

P(u(t)~1)~P(u(0)~1)e{tq12 :

Circuit parameters were chosen identical to those for Figure 5:

Number of neurons per state M~2000; target estimation sample

size L~400; lateral inhibition scaling I lat
0 ~0:5.

Particle filtering in a generic setup for task class

C. State sequences were generated according to the HMM

described in the main text. Once a new state was drawn, it was

maintained for at least 60 ms. Point-event observations were

produced with rates

lij~50
l’j iP
j l’ij

z0:1,

where l’ij were set according to Gaussian tuning functions with

means mj and standard deviation sj~2:5 for all j
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l’ij~exp {
(i{mj)

2

2s2
j

 !
: ð39Þ

The means were set to m1~10, m2~15, m3~16, m4~20, m5~25.

Weights from evidence neurons to the evidence layer were set

according to these observation rates.

Circuit parameters: Number of neurons per state M~2000;

target estimation sample size L~400; lateral inhibition scaling

I lat
0 ~2:5. The circuit was initialized at t~0 with the prior

distribution P(u(0)~1)~0:8 and P(u(0)~j)~0:05 for j~2, . . . ,5.

Panel Af: All simulations were performed in discrete time with a

discretization time step of 0.5 ms. The optimal Bayesian filtering

was performed by implementing the filtering equations (37) – (38).

The optimal estimate based on the most recent observation was

computed in the following way: If there was no observation at time

t, the estimate was identical to the estimate at time t{1. If there

was an observation y(t) at time t, then the distribution over states

was given by the posterior P(u(t)Dy(t)). The errors were computed

as follows: At each discrete time step, the maximum over the

posterior distribution was taken as the predicted state ~uu(t). The

error was then computed as the fraction of incorrect predicted

states
1

T

XT

n~1
D~uu(nDt){u(nDt)D, where T is the number of time

steps of the simulation run and Dt is the discretization time step.

Computer Simulations for task class D: Context-
dependent Bayesian filtering

Particle filtering in a generic setup for task class

D. State sequences were generated according to the HMM

described in the main text, where state transition rates were chosen

according to the current context. The HMM started in context A

and context was switched whenever state 1 was entered. Point-

event observations were produced as in Particle filtering in a
generic setup for task class C, but with different tuning functions.

The tuning functions for states 1 to 3 were Gaussians with lij

defined as in eq. (39) with means m1~26:25, m2~8:75, m3~26:25
and standard deviations s1~2:5, s2~2:5, s3~5. Note that the

tuning curves for states 1 and 3 differed only in their standard

deviations, but not in their means. The tuning for state 4 was given

by a sum of two Gaussians with s4~5 with an additive offset

l’i4~exp {
(i{8:75)2

2s2
4

 !
zexp {

(i{26:25)2

2s2
4

 !
z1:

The tuning for state 5 was uniform l’i5~1. Weights from

evidence neurons to the evidence layer were set according to these

observation rates.

Circuit parameters were identical to those in Bayesian filtering
in a generic setup. 10 context neurons were used per context. They

produced Poisson spike trains with rate 50 Hz when active and no

spikes otherwise.

Panel Bf: Simulations were performed and errors were

computed as described in Particle filtering in a generic setup for
task class C. For the optimal context-dependent Bayesian filtering

(‘‘opt’’), the optimal transition rates were used for the current

context. For the optimal filtering without context (‘‘mix’’), the

weights to layer Ldyn were set according to the mixed transition

rates qmixed
ij ~0:5(qA

ij zqB
ij ), where qA

ij and qB
ij are the transition

rates for context A and B respectively.

Self-localization. For the full maze, we used coordinates

between 0 and 1 in each dimension. Locations of variables were

uniformly spaced on a 10610 grid in the maze (see Figure 10A). We

simulated an agent that navigated in the continuous space. Let

(x(t),y(t)) denote the location of the agent at time t. All afferent

neurons had a baseline firing rate of 0.1 Hz. The firing rate of each

afferent neuron was given by a Gaussian with a corresponding

center, an STD of 0.1, and a maximum rate of 50 Hz. The lower

four afferent neurons in Figure 10A, had identical positional tuning

in both chambers. Their firing rate at each time t was determined by

the Gaussian in the chamber where the agent was currently situated.

For y(t)w0:75, all afferent neurons spiked at baseline.

Circuit parameters: The network size N and estimation sample

size L was 250; I lat
0 ~4. 10 context neurons were used per context

ensemble, each producing a 50 Hz Poisson spike train in its context

and no spikes if the context did not match. The weights from

evidence neurons to neurons inLev were set according to the rates of

the afferent neurons when the agent would be exactly at the place of

the corresponding state. The weights to neurons in layer Ldyn were

set according to transition rates as follows. There were four groups of

populations in this layer, one for each context. Transition rates were

3.5 Hz for possible movements in the direction that corresponded to

the context of the population (dark gray arrows in Figure 10A).

Transition rates between other states with adjacent positions

(horizontally, vertically, or diagonal; states separated by the chamber

wall were considered non-adjacent) were 0.1 Hz (light gray lines in

Figure 10A). Transition rates between remaining states were 0 Hz.

Task class E: Graded integration of uncertain context
information

In task class E, it is advantageous to deal with context in a graded

manner. This is achieved by a simple modification the context-

dependent filtering circuit from task class D. In the modified circuit,

the membrane potential of neurons in Ldyn is given by

un
dyn,i,k(t)~

X
j,m

w
dyn,k
ij zm

ev,j(t){Idis cn
k(t)

� �

where cn
k(t) denotes the EPSP-filtered spike train of the nth neuron in

the kth ensemble that represents the distribution over contexts. In

comparison to the equation given in Table 2, each neuron in Ldyn is

disinhibited by a single context neuron. This leads to an approximate

linear mixture of the context-dependent transition rates

qij(t)&
X

k

~PP(c(t)~kDY(t))qk
ij ,

where qij(t) is the effective transition rate for the context-

dependent filtering circuit at time t and ~PP(c(t)~kDY(t)) is the

estimated posterior for the context variable at time t.

Computer simulations for task class E: The ambiguous
target task revisited

State sequences and spike trains of evidence neurons were

generated as in the simulation for the ambiguous target task, with

the exception that the fixation phase lasted for 250 ms. Circuit

parameters for the context-dependent filtering of u(t) and the

action readout layer were identical to those in the simulation for

the ambiguous target task (1000 neurons per sate; estimation

sample size 400; I lat
0 ~1:25). In the fixation-context, transition

rates between all pairs of states were 1 Hz.
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A particle filter circuit (without context) was employed to

estimate c(t), the current phase of the trial. The basic parameters

for this circuit were identical to the parameters of the context-

dependent filtering circuit (1000 neurons per sate; estimation

sample size 400; I lat
0 ~1:25). Other parameters for this circuit were

as follows. Synaptic weights to Ldyn were set according to

transition rates that were assumed to be 5 Hz between states

where a transition is possible and 0 Hz between other states.

Synaptic weights from evidence neurons to the evidence layer

were set according to the following observation rates (see also

Figure 11). A fixation cross in the CHT state or in the MEM state:

5 Hz; Any spatial cue in the SC state: 5/16 Hz; Any color cue in

the CC state: 2.5 Hz; For other observation rates, a baseline of

0.1 Hz was assumed.
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