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Cybersecurity stands to benefit greatly from models able to generate predictions of

attacker and defender behavior. On the defender side, there is promising research

suggesting that Symbolic Deep Learning (SDL) may be employed to automatically

construct cognitive models of expert behavior based on small samples of expert

decisions. Such models could then be employed to provide decision support for

non-expert users in the form of explainable expert-based suggestions. On the attacker

side, there is promising research suggesting that model-tracing with dynamic parameter

fitting may be used to automatically construct models during live attack scenarios, and

to predict individual attacker preferences. Predicted attacker preferences could then be

exploited for mitigating risk of successful attacks. In this paper we examine how these

two cognitive modeling approaches may be useful for cybersecurity professionals via two

human experiments. In the first experiment participants play the role of cyber analysts

performing a task based on Intrusion Detection System alert elevation. Experiment results

and analysis reveal that SDL can help to reduce missed threats by 25%. In the second

experiment participants play the role of attackers picking among four attack strategies.

Experiment results and analysis reveal that model-tracing with dynamic parameter fitting

can be used to predict (and exploit) most attackers’ preferences 40 − 70% of the

time. We conclude that studies and models of human cognition are highly valuable for

advancing cybersecurity.

Keywords: cyber-security, cognitive modeling, behavioral simulations, deep learning, reinforcement learning,

decision support, XAI (eXplainable Artificial Intelligence), human-agent teaming

1. INTRODUCTION

The field of cybersecurity has as much to do with human agency as it does with computer network
integrity. However, while computer network technology changes rapidly on a regular basis, human
learning and decision mechanisms do not. This being the case, research focused on cognitive
science may provide the needed breakthrough capabilities for long-term network security and
a greater return on investment than efforts chasing the latest software vulnerabilities. Cognitive
science, and cognitive modeling in particular show a great promise for the field of cybersecurity
(Veksler et al., 2018).

The goal of this paper is to provide examples of how computational models of human cognition
may be employed to predict human preferences and behavior in cybersecurity. This paper focuses
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on two specific examples of the use of cognitive modeling in
the context of cybersecurity. On the defender side, we aim
to construct cognitive models of cyber analysts working with
Intrusion Detection Systems (IDS) based on expert behavior,
and employ these models to provide suggestions to non-expert
analysts. On the attacker side, we aim to construct models of
individual attacker decision biases, and employ these models to
reduce the risk of successful attacks.

IDS software provides analysts with aggregated logs of
network-activity alert records, where each record includes a
number of threat-relevant features, and the job of a cyber analyst
is to either elevate an alert as a potential threat, or to dismiss
it as a false alarm. Predicting expert cyber analyst behavior in
such a domain presents some challenges (Gonzalez et al., 2014).
Traditional approaches in Computer Science routinely employ
some Machine Learning (ML) classifier, training it on expert
decisions with alert record features being classifier inputs, and the
threat/no-threat classification being the output. Deep Learning
(DL) methodology in particular has gained much acclaim in the
recent decade as a successful technology for classifying large noisy
complex data. The problem is that the availability of labeled cyber
expert decision data is fairly sparse, often comprising just a few
dozen or hundreds of examples (whereas DL requires training
data with thousands or millions of examples). Additionally, DL-
based recommendations are not easily explainable, and thus
may not be well-suited for decision-aid software. Symbolic Deep
Learning (SDL) may be a better approach for constructing
models of expert behavior (Veksler and Buchler, 2019). The
advantage of this approach is that it addresses the challenge
of developing flexible and explainable models of cognition and
behavior based on small samples of data.

Attacker-defender dynamics are often modeled in terms of
Game Theory (GT). Game-theoretic approaches are useful for
determining optimal mixes of strategies for leaving an attacker
without a preferred strategy of their own. Moreover, GT-based
defense algorithms have been successfully applied in many
real-world security scenarios, including airport security, coast
guard, police, and anti-poaching (animal preservation) efforts
(Tambe et al., 2014). Veksler and Buchler (2016) and Cranford
et al. (2019) argue that cognitive modeling techniques, and
more specifically model-tracing1 and dynamic parameter fitting,
may be used to track individual attacker preferences in real
time, providing fairly high improvements over normative GT
approaches in reducing the potential for successful attacks.

The rest of this paper presents two experiments with
respective simulations and analyses, specifically aimed at
examining the two uses of cognitive modeling in cybersecurity
described above. In the first experiment participants play the role
of cyber analysts performing a task based on IDS alert elevation.
The SDL-based cognitive models are trained on data from top-
performing participants. Results from all other participants are
examined for degree of potential reduction in missed threats
based on the trained SDL models. In the second experiment
participants play the role of attackers picking among four

1Model-tracing comprises force-feeding individual human experiences into the

model. More on this in Dynamic CognitiveModels of Attacker Preferences section.

attack strategies, and playing against defenders based on either
normative game theory or against adaptive cognitive models
using model-tracing with dynamic parameter fitting. Results
from this experiment are analyzed for the degree to which human
attacker preferences can be predicted and exploited.

2. CONSTRUCTING COGNITIVE MODELS
OF EXPERT ANALYSTS

A large subset of cybersecurity professionals are analysts
working with Intrusion Detection Systems (IDS). This is often
a grueling job requiring constant real-time monitoring of
incoming network alerts for 12 hours straight (panama shifts).
Employee turnover in these jobs is very high, in part because
panama shifts are often incompatible with human health, mental
health, and family life (Stimpfel et al., 2012; Oltsik, 2019). The
job requires each analyst to sift through incoming alerts, picking
out which alerts are worth elevating, and which are false alarms
(D’Amico and Whitley, 2008). There is no way to train someone
for this job via standard schooling, because every network has
its own particularities, so all training is on-the-job training, even
for experienced IDS professionals. In other words, this is a field
where employees take a long time to gain expertise, and leave
fairly soon after gaining said expertise.

Just like in the medical industry, the largest number of errors
for IDS analysts happens after shift changes (which is the reason
why panama shifts are the industry standard—to minimize the
number of shift changes) (Friesen et al., 2008). After an employee
spends 12 hours gaining expertise for the context of that day’s
alerts, they go home and leave the job to someone who is now
missing all of the context needed for correct alert identification.
The prescribed operating procedure is for each analyst to leave
notes for the next shift, and to read notes left by analysts working
the prior shift. However, based on our interviews with cyber-
analysts, we found out that this rarely happens. Some analysts are
better at taking and leaving notes than others, but there is always
information lost between shifts.

A useful tool one might design for cyber-analysts would be a
decision-aid that could highlight the alerts that an expert might
elevate (whether we are talking about long-term expertise of
veteran professionals, or more localized expertise relating to the
state of recent network activity). This may be useful to enable
new employees to see potential decisions of veteran employees,
or it may be useful to enable analysts starting a shift to see
potential decisions of analysts from the prior shift. In either case
what is required is to train a model on contextualized expert
decision-making and use it to predict future alert elevation.

In Machine Learning terms, the problem may be framed as
a supervised classification problem where a model is trained on
expert behavior, and its predictions are used for suggestions.
Deep Learning in particular has garnered much attention over
the last decade as being a highly successful ML technique for
classification of complex and noisy data (e.g., Rusk, 2015).
However, DL requires much larger training sets than are available
in the context of expert analysts. Moreover, DL approaches are
largely unexplainable and prone to catastrophic interference.
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That is, (1) there is no way for an analyst to ask “why” a specific
alert was highlighted, and (2) updating the model with new
expert decision data could cause the model to “forget” prior
learned classifications.

Veksler and Buchler (2019) propose Symbolic Deep Learning
(SDL) as an alternative approach to constructing user models.
A symbolic version of deep learning is promising in that this
method is capable of building classifiers from a small number of
examples (Dutra et al., 2017; Zhang and Sornette, 2017; d’Avila
Garcez et al., 2018). In this way, SDL learning efficiency is more
akin to that of humans, and SDL is much more appropriate
for creating models from individual or small-group data than
DL. Whereas, DL builds up a black-box model of behavior,
SDL builds up an explainable model of expert cognition—
an expandable hierarchical memory network based on expert
experiences and decisions.

More specifically, a traditional deep neural network has a
pre-specified number of layers, with a pre-specified number of
nodes in each layer, and with nodes of each pair of successive
layers being fully interconnected via weighted links (see Figure 1,
left). As the network learns, the weights on these links change,
but at no point can one look at those links and comprehend
what exactly the network has learned. Because all knowledge
is distributed among the links, the network has to be large
enough to be able to learn a given problem, and thus requires
thousands or millions of iterations to learn even simple input-
output mapping. Symbolic deep nets, on the other hand, start
with no nodes between input and output layers, and learn
these nodes based on perceived input node co-occurrences (see
Figure 1, middle and right). These deep nodes are essentially
combinations of input features (a.k.a., chunks or configural cues),
and in the case of modeling human memory, deeper chunks are
taken to represent deeper domain expertise (Feigenbaum and
Simon, 1984; Gobet, 1998). Due to the symbolic nature of chunk-
based hierarchical memory, one can look at the learned chunks at
any time so as to gain insight into what the network has learned.
Because of the nature of chunk learning (one-shot learning),
simple feature combinations can be learned quickly, enabling
symbolic nets to learn at speeds on par with human learning—
from just a few examples, rather than tens of thousands.

The major hurdle for symbolic deep models of memory
has been a combinatoric explosion of memory. For example,
the configural-cue model of memory (Gluck and Bower, 1988)
creates a configural node (i.e., chunk) for every unique set of
potential inputs, thus creating amaximum of (k+1)n−1memory
chunks, where n is the number of input dimensions and k is the
number of possible input values along each input dimension2.
However, this problem is alleviated when chunks are created in

2Given n features (e.g., large, square, white), we can create a chunk for

every combination of feature presence and absence ({large}, {square}, {white},

{large, square}, {large,white}, {square,white}, and {large, square,white}). If we

represent feature presence as a 1 and feature absence as a 0, we can represent each

chunk as a binary number, and the total number of possible chunks is the total

number of possible binary numbers, minus the blank chunk, which is 2n−1.When

each feature dimension can have two potential values, the total number of possible

chunks is 3n − 1. With k possible values on n feature dimensions, we can have at

most (k+ 1)n − 1 possible chunks to represent all potential feature combinations.

a more conservative manner. For example, Veksler et al. (2014)
employed the ACT-R (Anderson, 1993; Anderson and Lebiere,
1998) rational memory activation mechanism, where memory
activation is based on its recency/frequency of use, as a selection
mechanism for which memory nodes could be chunked.

In Experiment 1 below we gather data from participants
classifying threats in an IDS-like environment, so as to examine
how SDL-based cognitive models and DL-based behavior models
may be able to learn from smallish data sets of expert behavior
in such an environment, and to what degree these methods
may be helpful in highlighting alerts for non-expert participants.
Specifically, for the simulations below we employ a popular DL
framework TensorFlow (Abadi et al., 2016) and the conservative-
rational SDL framework (Veksler et al., 2014). The conservative-
rational framework was originally proposed as an amalgamation
of two other models of symbolic hierarchical memory—the
configural-cue memory structure (Gluck and Bower, 1988), and
the ACT-R cognitive architecture chunk activation mechanism
(Anderson, 1993; Anderson and Lebiere, 1998)—for the purposes
of combining the category-learning abilities of the configural-
cue model and the computational efficiency of rational memory
activation in ACT-R.

The purpose of the simulations below is to provide evidence
that the SDL cognitive modeling technique may be useful in
the context of aiding security analysts, rather than to find
optimal model performance. Thus, we did not perform any
parameter search for SDL, and merely used default framework
parameters. For DLwe attempted simulations with a few different
network shapes, so as to establish a more fair comparison
of DL and SDL, because network shape is of a very high
importance to DL modeling (not so for SDL, since its shape
changes automatically). We found that a five-layer network
of the shape {input, 50, 100, 100, output} performed better than
networks of smaller or greater depth and networks of smaller
or greater widths3.

We also attempted different numbers of training epochs for
both DL and SDL. Employing multiple training epochs is of
high importance for DL when working with smaller datasets.
Essentially, if you have 1,000 training samples, training the
network for 100 epochs enables you to simulate a dataset of
100,000 samples. Using an overly high number of epochs comes
at a cost of overfitting. That is, the model might begin to perform
very well on the training data, but will fail to generalize to
a new dataset (test data) if the number of epochs is overly
high. This is not as important for SDL, as it requires less than
ten epochs to reach peak performance even on small datasets,
but it is important nonetheless. All simulation results reported
below are based on best-performing numbers of epochs for
each model.

All simulation results below are averaged over one hundred
simulation runs.

3All performance comparisons were in terms of the sensitivity heuristic, d′.

Network layer depths were incremented and decremented by one layer for

comparisons. Network layer widths were incremented and decremented by 25–50

nodes for comparisons.
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FIGURE 1 | Traditional Deep Neural Net and Symbolic Deep Net structures for networks with a single output node. Each circle represents a network node. Top row of

each net represents the input layer, bottom row is output nodes. Thicker arrows going from a node container to a node or another container represent a fully

interconnected vector/matrix of weighted feed-forward links. Thinner arrows between nodes represent symbolic (i.e., not weighted) feed-forward links.

TABLE 1 | Experiment 1 threat classification rules.

Events are threats if they meet all four criteria:

1. Time Stamp between 0:00 and 5:00 h

2. Source Port < 80 or > 5,000

3. Destination Countries: Russia, China

4. Alerts including suspicious, encrypted, exploit, and virus

2.1. Experiment 1
Experiment 1 was designed as a part of a larger study
(unpublished) to examine human ability to evaluate cyber-threats
in a simplified IDS-like environment based on a small set of
instructions. In this experiment participants were presented with
four batches of cyber activity records, where Batch 1 had 40
records, Batch 2 had 60 records, Batch 3 had 80 records, and
Batch 4 had 100 records. Batch order was randomized. Each
record consisted of four features relating to the detected network
activity: time stamp, source port number, country, and alert
description (e.g., “FTP - Suspicious MGET Command,” “ET
TROJAN Qhosts Trojan Check-in”).

For each such record participants were able to click either
“Threat” or “No Threat” radio button. Half of the records
in each batch were threats. Participants were not provided
feedback as to whether their threat classifications were correct,
however, threat classification rules (see Table 1) were always
visible to the participants.

This study was performed online, using Amazon Mechanical
Turk to recruit adult residents of the United States for pay. We
recruited sixty one participants for this experiment.

2.1.1. Results

For the purposes of all model analyses below we employ Batches
1, 2, and 3 as model learning data (i.e., training sets), and Batch

4 (containing 100 record cases) for examination (i.e., test set).
The highest overall identification score for Batches 1, 2, and 3
was 0.883, and this score was achieved by four participants. We
classify these four participants as “experts” and train SDL and DL
models only on those participants’ decisions from Batches 1, 2,
and 3 (not Batch 4).

Average overall score on Batch 4 for non-expert participants
was 71.3% (random-level behavior is 50%), with average hitrate
(HR; correctly identified threats) being 0.725 and false-alarm rate
(FA) being 0.2984. According to Signal Detection Theory (Swets,
1964, 1996), given the same training time we could have pushed
participants toward a higher hitrate at the cost of increasing false-
alarms or a lower false-alarm rate at the cost of a lower hitrate,
depending on the perceived subjective utilities of hits, misses,
false alarms, and correct rejections, though what would remain
constant is their ability to discriminate what constitutes a threat
– the sensitivity characteristic, d′. In this experiment the non-
expert sensitivity on Batch 4 was d′ = 1.128 (higher d′ suggests
higher sensitivity; d′ for random-level behavior is 0).

SDLmodel trained5 on expert decisions from Batches 1, 2, and
3 (180 cases × 4 experts) produced an average score of 86.4%
on Batch 4, with average hitrate being 0.796 and average false-
alarm rate being 0.069, d′ = 2.31. DL model trained6 on expert
decisions from Batches 1, 2, and 3 produced an average score of
77.6% on Batch 4, with average hitrate being 0.701 and average
false-alarm rate being 0.149, d′ = 1.57. When trained on just

4All analyses include only Batch 4 cases where participants made a threat/no-threat

classification. Not all presented cases were answered by all participants. Forty nine

participants provided all 100 answers, four of the participants provided only 99

answers, one participants provided only 77 answers, and three other participants

provided <20 answers each.
53 epochs.
6100 epochs.
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FIGURE 2 | Average correct classification score for SDL and DL models on

Batch 4. Models were trained on Batch 1 of expert data (4 experts × 40

decisions each = 120 total cases), Batches 1 and 2 of expert data (4 experts

× 100 decisions each = 400 total cases), and Batches 1, 2, and 3 of expert

data (4 experts × 180 decisions each = 720 total cases). Gray baseline

labeled “Human” represents average performance on Batch 4 for human

non-expert participants.

Batches 1 and 2 (100 cases× 4 experts) SDL7 and DL8 d′ statistics
fell to 1.76 and 0.16, respectively. When trained on just Batch
1 (40 cases × 4 experts) SDL9 and DL10 d′ statistics fell to 0.84
and 0.14, respectively. Figure 2 displays the overall performance
scores for SDL and DL given the three training set sizes.

Perhaps more important than a standalone model score on
Batch 4 is the degree to which suchmodels can aid non-experts in
their decision-making. Assuming that we employ SDL trained on
expert decisions from Batches 1, 2, and 3 to highlight potential
threats on Batch 4, and assuming that non-expert participants
always classified the highlighted records as threats, non-expert
hitrate would go up to 90.4%. This is a 25% improvement on
correctly identified threats. This would come at a cost of false
alarms rate increasing to 34.3% (15% increase); however, the
overall ability to discriminate signal from noise for such human-
agent teams would go from d′ = 1.13 to d′ = 1.71. Even if
SDL was trained only on 100 decisions from each of the four
experts (just Batches 1 and 2), the overall sensitivity to the threat
signal would improve, d′ = 1.54 (HR = .870, FA = 0.338).
Employing SDL trained only on Batch 1 (40 decision from each
of the four experts) would provide no decision improvement,
d′ = 1.12 (HR = .861, FA = 0.486). As would be expected
based on standalone model performances, an analogous DL-
based decision could help humans improve to a slightly lesser
degree when trained on expert decisions from Batches 1, 2, and 3,
d′ = 1.62 (HR = 0.913, FA = 0.397), and not at all when trained
only on Batches 1 and 2, d′ = 0.98 (HR = 0.801, FA = 0.447), or
only on Batch 1, d′ = 1.05 (HR = 0.767, FA = 0.372). Figure 3
displays the overall performance scores that can be achieved for
non-expert human-agent teams given different sizes of expert
decision training sets.

76 epochs.
8200 epochs.
98 epochs.
10200 epochs.

FIGURE 3 | Average correct classification score for non-experts on Batch 4

with the assumption that the non-experts would adopt all threat suggestions

provided by a given helper-agent. The displayed results are for SDL and DL

helper-agents that were trained on Batch 1 of expert data (4 experts × 40

decisions each = 120 total cases), Batches 1 and 2 of expert data (4 experts

× 100 decisions each = 400 total cases), and Batches 1, 2, and 3 of expert

data (4 experts × 180 decisions each = 720 total cases). Gray baseline

labeled “Human” represents average performance on Batch 4 for non-expert

participants without any helper-agent suggestions.

2.2. Discussion
One of the most clear results above is that SDL performs much
better with smaller datasets than traditional DL methods. This
matters a great deal in the field of cybersecurity, where expert
data is difficult to come by, or where expertise is localized
to a single 12-hour shift. Perhaps it should not be surprising
that cognitive modeling methodology is more appropriate for
building decision aids based on small samples of individual
decisions than AI methods designed for large data mathematical
optimization. Unfortunately, due to the popularity of traditional
ML methodology, cognitive computing is often not taken into
account, even when it may be the right tool for the job.

Note that the expert decisions that models were trained on
were only 88.3% correct and SDL was able to achieve nearly
this same performance, 86.4%, on the 100 test cases. If non-
experts were to have complete trust that records highlighted as
threats by the SDL decision aid are correct, their performance
could improve from 71.3 to 78.1%. We could presume that if
expert performance was better, and if more expert data was
available, SDL performance and the degree to which it could help
non-experts would improve, as well. On the flip side, if expert
performance was worse, or if less expert data were available,
we would expect worse performance from both SDL and DL.
This suggests that experiments of this ilk may not replicate with
smaller samples of participants. More importantly, selection of
expert performers in the real world is of the highest concern for
generating similar decision-aid training data.

One question that may come to mind is whether humans
are needed at all. If it is the case that SDL performance is
86.4% whereas non-expert human performance is expected to
be between 71.3 and 78.1% even with the SDL-based decision-
aid, why not just train agents on expert behavior and let them
loose without non-expert interference? However, this questions
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presumes static non-expert performance, whereas humans learn
and adapt. Human novices may begin with lower levels of
performance, but when provided with expert feedback, their
performance improves. Cognitive modeling -based decision
support isn’t meant to supplant non-experts, but rather to give
them immediate expert-based feedback, so as to help them
make better decisions in the early trials, and reach expert-level
performance at a faster rate than otherwise would have happened.

Moreover, the projected proportion of missed threats for the
human-agent team, 9.6%, is lower than it would be either for the
non-expert humans, 17.5%, or for standalone SDL, 20.4%. Thus,
if we caredmore aboutmissed threats than false alarms, as is often
the case in cyber, human-agent teaming is the ultimate option in
this paradigm.

To be clear, SDL missed-threat rate can be decreased at the
cost of a higher false alarm rate via a different reward structure
(it is the case that the conservative-rational SDL framework
includes a reinforcement learning component that is sensitive to
the reward structure). However, if it was the case that the human
analyst had a high degree of trust in SDL-based alert highlights,
the human-agent team elevated alerts would be a superset11 of
those that would have been elevated by the human and a superset
of a large proportion of SDL-elevated alerts.

We would be remiss not to point out that a decision aid
will cease to be helpful without a degree of trust from the
human analyst. We project that SDL-generated cognitive models
of expert analysts will impart a high degree of trust for at least
two reasons – (1) model-based suggestions promise to greatly
improve overall non-expert performance, and (2) according
to Veksler and Buchler (2019), SDL promises to be a more
transparent technique than DL, one that is able to provide some
explainability for each of its suggestions. The full extent to which
such performance improvement and transparency may aid in
establishing trust with human participants remains a topic for
future research.

Overall, we find these results promising, and argue strongly
that cognitive modeling can be highly useful for learning from
expert analyst preferences and simulating expert-like decisions in
the context of cyber support or training.

3. DYNAMIC COGNITIVE MODELS OF
ATTACKER PREFERENCES

Cybersecurity is, at its core, a fundamentally adversarial
paradigm. It comprises a repeated cycle where cyber defense
specialists attempt to predict potential attack paths, and a cyber
attacker attempts to pick an attack path to overcome the potential
defense strategies. This formalism lends itself well to Game
Theory (GT) -based approaches for repeated security games.

Indeed, GT-based software has been successfully applied in
real-world security contexts, including airport security, coast
guard, police, and anti-poaching (animal preservation) efforts
(Tambe et al., 2014), providing much-needed evidence that
theory based on small toy problems scales to real-world

11Set A is a superset of B, or equivalently set B is a subset of A, if B is contained in A.

asymmetric12 security contexts. Real world security decision
aids go beyond normative game theory (picking some optimal
mix of actions assuming a perfectly rational opponent), and
attempt to include attacker subjective utilities in the equation.
Recent research has shown that GT approaches to defense can
be improved by relaxing the assumption of human optimal
behavior and updating assumed attacker subjective utilities based
on known attacker actions and feedback (Abbasi et al., 2015; Kar
et al., 2015; Cooney et al., 2019; Cranford et al., 2019).

Veksler and Buchler (2016) provide simulation predictions
showing that cognitive modeling -based approaches can
thwart 10–50% more attacks than normative GT approaches.
Specifically, they describe how Reinforcement Learning (RL)-
type models may be tuned to individual attacker’s subjective
preferences and learning abilities via model tracing and dynamic
parameter fitting. The model tracing technique makes use of
boot-strapping to force-feed the participant’s current experiences
to the cognitive model. That is, if the participant and the model
were to choose different strategies, model actions would be
overwritten with participant actions in the model’s memory.
This method was employed in computerized instructional aids,
“cognitive tutors,” for students learning high school math
(Anderson et al., 1995). Dynamic parameter fitting is used to
adjust model parameters based on known data points, so as to
make better individual predictions for future behavior. That is,
if there is a free parameter in the model (such as the learning-
rate parameter in the Veksler and Buchler, 2016, simulations), a
range of values for this parameter are plugged into the model,
and the value that best fits individual’s recorded behavior is
then retained for predicting their future behavior. This method
was employed to predict performance of individual F-16 pilot
teams (Jastrzembski et al., 2009) and is employed in software
that predicts optimal training schedules based on individual
performance histories (Jastrzembski et al., 2014).

The RL model used in the Veksler and Buchler (2016)
simulations, as well as in the experiments described below,
is based on the ACT-R utility learning mechanism (Fu and
Anderson, 2006; Anderson, 2007). The model-tracing RL
assumes a human attacker’s action preferences will change based
on their experience. For example, if the attacker chooses A1 and
happens to lose, they will be less likely to choose A1 in future
attacks, regardless of whether A1 is ultimately a good choice.
Conversely, if the attacker chooses A1 and happens to win, they
will be more likely to choose A1 in future attacks, regardless
of whether A1 is ultimately a poor choice. More formally, after
performing some action,A, the expected utility of this action,UA,
is incremented by the following term:

1UA = α(R− UA), (1)

where α is the learning rate, and R is the value of the feedback
(e.g., success/failure, reward/punishment).

Experiments 2a and 2b below attempt to validate Veksler and
Buchler (2016) predictions and provide an in-depth analysis as

12Attacker-defender dynamics are naturally asymmetric, where the attacker is

much less limited in their methods than the defender in their countermeasures.
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to overall and individual effectiveness of using predictive models
to pick strategies against human attackers. The simulations
employed an abstract security game paradigmwhere the defender
and attacker each had four potential strategies to choose from
(payoff table showing attack success probabilities displayed as
Table 3). Although the security game setup is abstract enough
that it can fit any security context13, we would argue that it is
particularly relevant in the context of cyber security, as this is
a domain where the state of the task-environment and human
actions are immediately recordable.

3.1. Experiment 2a
Experiment 2a was designed to validate Veksler and Buchler
(2016) simulation predictions for how the use of model tracing
(MT) andmodel tracing in combination with dynamic parameter
fitting (MT++) can improve upon game theory-based Fixed-
strategy14 and optimal Mixed-strategy15 approaches. That is,
this experiment comprised a repeated game scenario where
each human participant played the role of an attacker, playing
against some computational agent defender. The four between-
subject conditions in this experiment corresponded to four types
of computational agent defenders that human attackers were
playing against: Fixed, Mixed, MT, and MT++.

This study was performed online, using Amazon Mechanical
Turk to recruit adult residents of the United States for pay. We
recruited 40 participants per condition.

Participants were payed 50 cents, plus five cents per win
(maximum total of $3.00), and were notified as to this pay
structure prior to the study. Experiment instructions were
randomly altered to employ one of two contexts corresponding
to cybersecurity and physical security games (see Table 2).

Each human participant played 50 games (i.e., trials) against
their respective opponent. On each trial participant made two
binary choices (see experiment instructions in Table 2), thus
choosing among four potential attack types for that game. The
computational agent also chose among four potential actions.
Just as in the predictive simulations described by Veksler and
Buchler (2016), the probability of a successful attack was based
on the strategy selections of both players, as shown in Table 3.
After a participant made their choices, they were alerted as to
whether the attack was successful or not, and then the next game
instance began.

3.1.1. Results

The top of Figure 4 shows the performance of the different
computational agents against the human attackers from
Experiment 2a over the 50 trials. Performance is measured by
whether or not the computational agent selected the response
that maximized its probability of winning against the attacker,

13In the experiments belowwe employed both cyber and physical security contexts,

and found no significant difference in performance between the two contexts,

p > 0.2.
14In game theory a fixed strategy— always employing the same action path—is

often employed to establish a baseline level of performance.
15In game theory an optimal mixed strategy is one where strategies are selected

randomly from a specific distribution that is tuned so as to leave the opponent no

preferred choices.

referred to as the optimal response16. As there are four possible
responses, and a single response that maximizes the probability
of winning, random play would result in selecting the optimal
response 25% of the time.

To test for differences between the computational agent
strategies and random play, we ran a mixed effect logistic
regression using whether the computational agent selected
an optimal response as the dependent variable, the type of
computational agent as fixed effects, and the participant against
which it played as random effects, with a fixed intercept of
log(1/3), i.e., 25%. The logistic regression addresses the binary
nature of our outcome measure; the random effects account for
the multiple measures coming from the same participant; and
the fixed intercept provides comparisons with our baseline of
interest (random play). Although both computer and human
agents may learn over time, the regression focuses on “aggregate”
performance over the 50 trials and does not include a covariate
for trial. The fixed strategy does significantly worse than random
play, whereas both model tracer strategies do significantly better
than random play. As the mixed strategy is effectively random,
it did not significantly differ from the random play baseline,
as expected.

While both model tracer strategies did better than random
play, the effect sizes (approx. +7 percentage points for MT,
and +5 percentage points for MT++) were relatively modest.
We speculate (and test this speculation in Experiment 2b) that
participants may have been able to adapt to the model tracer
strategies, learning to be more “unpredictable.” In post-hoc
analysis, we evaluated how well MT and MT++ models could
predict human decisions across all four treatments. Both MT and
MT++ models appear better at predicting participant behavior
in the fixed and mixed conditions than in the model tracing
conditions (see Figure 5). There also appears to be a potential
interaction in that each model tracer may be better at predicting
behavior in the condition for the other model tracer (MT++

predicts a higher rate of decisions where human participants
are playing against MT than against MT++, and MT predicts
a higher rate of decisions where human participants are playing
against MT++ than against MT). In combination, these findings
are consistent with participants adapting to the model tracer
agents, making themselves less predictable.

In analyzing the last 20 trials of the MT++ condition we find
that 40–60% of the decisions were still predictable for ten out of
the 40 participants (25%); 25 of the remaining participants were
predictable 15–35% of the time (25% is chance), and the final
five participants in this condition were predictable for ≤ 10% of
their last 20 decisions (see Figure 6). The chances of the predicted
choice being avoided 20 times in a row, as one of the participants
managed to do, are about 3:1,000. The indication is that these
individuals can predict what the predictive agent will predict,
and do the opposite. Thus, it seems that keeping predictive

16Maximizing the probability of winning is actually what the defender agents are

designed to do; so optimal response is, in effect, a direct measure of success for

the defender agent. Of course, when different attacker action paths are aimed at

different targets of unequal value, optimal response is one that maximizes the

likelihood of preventing an attack weighed by target value.

Frontiers in Psychology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 1049

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Veksler et al. Cognitive Models in Cybersecurity

TABLE 2 | Experiment 2 instructions.

Cyber game IED game

In this study you will play multiple rounds of the Cyber game. The game has

two sides the Blue Force and the Red Force. The Blue Force aims to protect

sensitive data. The Red Force aims to hack into the Blue Force computer

network and steal the protected data.

The Blue Force player will be controlled by the computer. In each round

Blue Force will pick its strategy regarding which parts of the network to scan

for intrusions, and how to perform those scans.

You are assigned the role of Commander of the Red Force. In each round

you will make 2 choices to select Red Force strategy:

• Whether to focus your team’s attack on the main server, or to distribute

the attack over multiple servers.

• Whether to scan for vulnerabilities intermittently (safer, less likely that the

scan will be detected), or to scan continuously (faster).

At the end of each round you will be notified whether you win the round (i.e.,

data acquired), or lose the round (i.e., no data was acquired).

In this study you will play multiple rounds of the IED game. The game has two

sides the Blue Force and the Red Force. The Blue Force aims to deliver aid

to a village. The Red Force aims to block the Blue Force form getting to the

village by planting Improvised Explosive Devices (IEDs) along village routes.

The Blue Force player will be controlled by the computer. In each round Blue

Force will pick its strategy regarding which roads to use to get to the village,

and whether to deliver aid fast, or to use more caution.

You are assigned the role of Commander of the Red Force. In each round

you will make 2 choices to select Red Force strategy:

• Whether to plant all IEDs along the main road, or split your IEDs up and

plant them along multiple roads leading into your village.

• Whether to use stealth movements (safer), or to go without stealth

(faster).

At the end of each round you will be notified whether you win the round (i.e.,

Blue Force is defeated), or lose the round (i.e., Blue Force succeeds in their

mission).

TABLE 3 | Payoffs for the attacker (probability of successful attack) in a security

game used for Veksler and Buchler (2016) simulation predictions, as well as in

Experiments 2a and 2b.

Attacker

A1 A2 A3 A4

D1 0.15 0.45 0.50 0.90

D2 0.55 0.10 0.90 0.45

D3 0.50 0.90 0.15 0.45

D
e
fe
n
d
e
r

D4 0.90 0.50 0.50 0.10

There are four possible actions for the defender {D1,D2,D3,D4}, and four possible actions

for the attacker {A1,A2,A3,A4}.

abilities hidden until some critical juncture would increase model
ability to thwart attacks at said juncture. Experiment 2b examines
this hypothesis.

3.2. Experiment 2b
Experiment 2a results suggest that human opponent decisions are
easier to predict when said opponent does not know that they
are playing against a predictive agent. In other words, if we can
predict attacker actions, but then withhold this predictive ability,
we can achieve high levels of success at some later critical point
in time. Experiment 2b was designed to validate this hypothesis.

The methods in Experiment 2b are the same as those in
Experiment 2a, with the exception of defender agent types.
Specifically, this study includes three conditions, corresponding
to three new agent types. The first of the agents is the MT++

agent from Experiment 2a, but it plays a fixed strategy for the
first 30 of the 50 games (Fixed-MT++). The second of the agents
is the MT++ agent from Experiment 2a, but it plays a mixed
strategy for the first 30 of the 50 games (Mixed-MT++). The
third agent, added as a control condition, plays a mixed strategy
for the first 30 games, and plays a fixed strategy for the remaining
20 (Mixed-Fixed).

3.2.1. Results

The bottom of Figure 4 shows the performance of the new
multiple strategy computational agents against the human

attackers from Experiment 2b over the 50 trials. As in Experiment
2a, performance is measured by optimal response.

To test for differences between the computational agents
and random play and to look at performance across the
distinct strategy phases, we ran a mixed effect logistic regression
using optimal response as the dependent variable, the type of
computational agent interacted with whether the trials were in
the first segment (first 30 trials) or in the second segment (last 20
trials) of the game as fixed effects, and the participant as random
effects, with a fixed intercept of log(1/3). We reproduce our
results from Experiment 2a in both portions of the game for each
strategy—finding that the fixed strategy is significantly less likely
to select the optimal response, and both model-tracing strategies
are significantlymore likely to select the optimal response relative
to random play in both portions of the game. The mixed strategy
is not significantly different from random play. In addition, in
our multiple strategy agents, we find that the Fixed-MT++ agent
is significantly less likely to select the optimal response in the first
30, and more likely to select the optimal response in the last 20
compared to random play; the Mixed-MT++ is not significantly
different from random play in the first 30, but significantly more
likely to select the optimal response in the last 20; and the Mixed-
Fixed is not significantly different from random play in the first
30, but significantly less likely to select the optimal response in
the last 20.

To look more closely at how performance changes in the
multiple strategy agents, and to compare the multiple strategy
MT++ agents to baselines, we (1) test contrasts of agent
performance between the first and second segments of the
multiple strategy agents, and (2) test contrasts of MT++

performance in the last 20 trials of the multiple strategy MT++

agents and MT++ performance in the first 30 and last 20 trials
of the MT++ strategy from Experiment 2a. These contrasts are
tested as a single family using the mvt adjustment from the R
lsmeans package.

In terms of performance changes, results confirm that between
the first 30 and the last 20 trials, performance significantly
increases in the Fixed-MT++ agent (Figure 4 bottom-row, left),
p < 0.001; significantly increases in the Mixed-MT++ agent
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FIGURE 4 | Optimal response by trial for computational agent. Markers represent percentage of optimal response per trial. Lines represent a LOESS curve fit on data

from individual participants. Solid lines (top) are from Experiment 2a and dashed lines (bottom) from Experiment 2b. Experiment 2b results all include a shift (i.e., a

switch) from one type of opponent to another after 30 trials (e.g., in the fixed-mt++ condition, human participants play against a Fixed-strategy agent for 30 games,

and then against MT++ agent for the last 20 games). Dotted horizontal line indicates expected performance from random play.

FIGURE 5 | MT and MT++ post-hoc predictions of participant behavior

across all 4 treatments. Dots represent individual participants and dashes

represent averages. Horizontal dotted lines represent expected percent of

correct predictions from random guesses.

(Figure 4 bottom-row, middle), p < 0.001; and significantly
decreases in theMixed-Fixed agent (Figure 4 bottom-row, right),
p < 0.001.

FIGURE 6 | Proportion of correct predictions of individual human participant

choices in the last 20 games of the MT++ condition. Horizontal dashed line

represent expected percent of correct predictions from random guesses.

In terms of relative performance, we find that when the Fixed-
MT++ agent shifts to MT++ in the last 20 trials, it outperforms
the normalMT++ agent in both its first 30 trials, p =<0.001, and
its last 20 trials, p < 0.001; and outperforms the Mixed-MT++

agent in the last 20 trials, p = 0.048. When the Mixed-MT++

agent shifts to MT++ for the last 20 trials, it outperforms the
normal MT++ agent in both its first 30 trials, p = 0.006, and the
last 20 trials, p = 0.008.

In conjunction with the analysis of changes in performance,
individual performance in the first and second segments of
each game was plotted in Figure 7. Post-hoc exploratory analysis
suggests additional differences between the performance of the
strategies. Notably, we see a positive correlation between first
and second segment behavior in the Fixed and MT agents, which
suggests an element of “skill” – either on the part of the human
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FIGURE 7 | Individual performance in first and second segments by each agent. Ellipses represent 95% confidence.

FIGURE 8 | Proportion of correct predictions of individual human participant

choices in the last 20 games of the MT++ condition. Horizontal dashed line

represents expected proportion of correct predictions from random guesses.

player or the computational agent. In contrast, neither the Mixed
nor MT++ agents show any correlation, meaning that people
(and computational agents) that perform relatively better in
the first segment are no more likely to perform better in the
second segment. This suggests that, while the MT and MT++

strategies may have similar optimal response rates as suggested
by Experiment 2a, there are nonetheless differences in the way
these strategies interact with their opponents.

A second relationship of interest can be noted in the second
row of Figure 7. In particular, the Fixed-MT++ agent shows a
negative correlation between first and second segments whereas
the Mixed-MT++ shows a weak one—if any. One possible
interpretation of this negative correlation is that, the switching
strategy may be particularly effective if the opponents are able to
adopt some counter-strategy in the initial trials.

When we break down the results by individual predictability
we find that keeping predictive abilities hidden greatly mitigates
attacker ability to adapt and become less predictable. For
example, in the last 20 games of the Mixed-MT++ condition,

FIGURE 9 | Number of participants whose choices were predictable,

unpredictable, or incorrect playing against MT++ in the last 20 trials of the

experiment. Participants were labeled as predictable if more than 40% of their

decisions were correctly predicted by the model, unpredictable if their

decisions were predicted between 15 and 35% (25% is chance), and incorrect

if their decisions were the opposite of what was predicted.

40–65% of the choices were predicted for 25 of the participants
(62.5%), 15–35% of the choices were predicted for fourteen of the
participants, and only one individual was predictable on 10% of
their choices (see Figure 8). The results from the last 20 trials of
the Fixed-MT++ condition are better still, with 32 individuals
being predictable at 40–70%, and the remaining 8 at 20–35%.
The overall predictability of attackers playing against MT++ the
entire time (from Experiment 2a) and MT++ after switching
fromMixed and Fixed strategies are shown in Figure 9.

3.3. Discussion
Results from these experiments confirm the general prediction
that cognitive modeling techniques can be more effective than
normative GT in the context of predicting attacker decisions.
However, the average advantage of cognitive modeling over GT
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seems to be greatly diminished when attackers realize they are
playing against a predictive agent. That is, when human players
know that they are matched against a predictive agent, their
play changes and becomes less predictable. However, this does
not mean that all participants learn to play [pseudo-]randomly
against predictive agents. Rather, some individual game-play
remained predictable, some looked more like chance play, and
some of the individuals began to predict the predictive agent,
adopting a “Theory of Mind” (ToM) strategy17. The less “smart”
of an agent human participants were matched against, the more
predictable their play became, with participants that played
against a Fixed-strategy agent becoming the most predictable,
those playing against a Mixed-strategy agent being less so, and
those playing against MT++ being the least predictable.

Ultimately, by keeping track of prediction success for each
individual attacker, a defender agent should be able to ascribe
the correct model to the attacker: random play, RL, or ToM.
Once the correct model of the attacker is determined, the
defender can choose its own appropriate strategy: Mixed strategy,
a predictive strategy, or the opposite of the predictive strategy,
respectively. Seemingly, once the human attacker realizes that
they are playing against a predictive agent and switches to
a reciprocal strategy, and the agent switches its strategy in
turn, the two opponents may continue to switch their game-
play continuously. However, it is not the case that this would
necessarily end with Mixed strategy level of play by the two
opponents, as humans are notoriously bad at being random.
West and Lebiere (2001) predict that chaos-like game-play may
actually be an emergent property of reciprocal and predictable
human choices.

This paper only explores standalone RL as a potential
cognitive model for predicting attacker choices. More
sophisticated attacker models, including those based on
ToM strategies, the work ofWest and Lebiere (2001), and models
that include domain-specific knowledge, should be able to
account for a greater range of attacker behavior. Attacker models
can be further seeded based on types of attacker personalities,
risk-tolerance, and attack-types common to specific geographic
regions (e.g., Sample, 2015). Having a greater wealth of model
types would be a major boon to dynamically fitting individual
attacker behavior, and would result in more precise and accurate
predictions of further attacker choice. In a more general sense,
we argue that Cognitive Modeling as a discipline is useful for
predicting individual preferences and behavior, and is thus
highly relevant for real-time cybersecurity decision support.

4. SUMMARY

Prior work has argued that cognitive modeling techniques can
be trained on expert data so as to provide such expertise as
an aid for non-experts, and that CM-based Symbolic Deep
Learning would be more useful in this endeavor than ML-based
Deep Learning frameworks, especially in fields like cybersecurity
where expert data is not highly abundant (Veksler and Buchler,
2019). In a similar vein, other work has made strong predictions

17The concept of Theory of Mind refers to one’s ability to infer others’ beliefs and

intentions (e.g., Hiatt and Trafton, 2010).

that cognitive modeling may be useful in predicting opponent
decision preferences in repeated security games, and be more
useful than normative GT-based security aids, especially in fields
like cybersecurity where behavior/feedback of attackers can be
dynamically observed/updated (Veksler and Buchler, 2016). We
presented Experiments 1 and 2 above so as to examine these
predictions against human data.

Experiment 1 results revealed that CM-based SDL framework
is more effective than ML-based DL framework in learning from
experts and has much more potential for improving non-expert
performance. The separation between SDL and DL effectiveness
greatly increases as the available training data gets more sparse.
Regardless of model type or training data, it is the case that a
human-agent team where the human non-expert always accepts
model suggestions for elevating alerts will have a higher alert
hitrate than either a lone human or a lone model. Future
work in this domain will focus on the topic of trust, and
examining the degree to which SDL-based decision-aids will be
trusted by human non-experts. We project that the overall level
of performance improvement and the potential for decision-
explainability that SDL-generated cognitive models can provide
will create enough trust to develop highly effective teams of
human-agent analysts.

Experiment 2 results revealed thatmodel-tracing and dynamic
parameter-fitting techniques can be used to continuously update
cognitive models of attackers and to accurately predict a high
percentage of their decisions. Results further indicate that when
model predictive capabilities are hidden from the opponent,
the opponent’s decisions become more predictable, especially
when said opponent believes they are playing against an
unsophisticated defender. Our conclusion is that in adversarial
repeated cybersecurity contexts cognitivemodels should be tuned
to individual attacker’s preferences, but model predictive abilities
should be held hidden until some critical juncture so as to
maximize effect. Future work will focus on development of
more sophisticated models, such that when attackers recognize
a model’s predictive abilities and attempt to pivot to unforeseen
strategies, the model can make a timely pivot, as well.

The experiment and simulation results presented here look
promising. However, this paper presents theoretical models
examined in absence of real-world confounds. Future work
will focus on stress-testing these models in the context of real
cybersecurity data. Although it is the case that “[t]here is nothing
so useful as a good theory,” (Lewin, 1951, as cited by Gray and
Altmann, 2001) it is also the case that “[n]othing drives basic
science better than a good applied problem” (Newell and Card,
1985, as cited by Gray and Altmann, 2001). We believe that
the methods presented in this paper can be of great use for
cybersecurity, but also that the applied problem of cybersecurity
itself and the datasets derived in this domain can serve to refine
these methods and to push them from research stages and
toward production.

On a more general note, we would argue that Cognitive
Science, and specifically Cognitive Modeling as a discipline,
is highly relevant and holds great promise in cybersecurity
and analogous domains. Models of human cognition can be
automatically tuned to either defender or attacker preferences,
and such models can then be used in simulations, training, and
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decision aids. Whereas network/software vulnerabilities change
constantly, the fundamentals of human learning and decision-
making principles remain the same. In taking advantage of
established and emerging cognitive and behavioral research
and technology we can vastly improve our overall long-term
network safety.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by U.S. Army Research Laboratory. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

Project funding from the Office of the Under-Secretary of
Defense for Research & Engineering (OUSD(R&E)) Cyber
Technologies Program. CG, MY, and CLe were funded by
the Army Research Laboratory under Cooperative Agreement
W911NF-13-2-0045 (ARL Cyber Security CRA). The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The authors thank research assistants
in the Dynamic Decision Making Laboratory, Carnegie Mellon
University, for their help with data collection.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.

(2016). TensorFlow: large-scale machine learning on heterogeneous distributed

systems. arXiv [Preprint]. arXiv:1603.04467.

Abbasi, Y. D., Short, M., Sinha, A., Sintov, N., Zhang, C., and Tambe, M.

(2015). “Human adversaries in opportunistic crime security games: evaluating

competing bounded rationality models,” in Proceedings of the Third Annual

Conference on Advances in Cognitive Systems ACS. (Atlanta, GA) 2.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe?

Oxford; New York, NY: Oxford University Press.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive

tutors: lessons learned. J. Learn. Sci. 4:167207. doi: 10.1207/s15327809jls0402_2

Anderson, J. R., and Lebiere, C. (1998). The Atomic Components of Thought.

Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

Cooney, S., Vayanos, P., Nguyen, T. H., Gonzalez, C., Lebiere, C., Cranford, E.

A., et al. (2019). “Warning time: optimizing strategic signaling for security

against boundedly rational adversaries,” in Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems (Montreal, QC:

International Foundation for Autonomous Agents and Multiagent Systems),

1892–1894.

Cranford, E. A., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., and Lebiere,

C. (2019). “Towards personalized deceptive signaling for cyber defense using

cognitive models,” in 17th Annual Meeting of the International Conference on

Cognitive Modelling (ICCM 2019) (Madison, WI).

D’Amico, A., and Whitley, K. (2008). “The real work of computer network

defense analysts,” in VizSEC 2007, eds J. R. Goodall, G. Conti, and K.

L. Ma (Berlin; Heidelberg: Springer), 19–37. doi: 10.1007/978-3-540-78

243-8_2

Dutra, A. R. A., Garcez, A., and D’Avila Garcez, A. S. (2017). “A comparison

between deepQ-networks and deep symbolic reinforcement learning,” in

Proceedings of the Twelfth InternationalWorkshop on Neural-Symbolic Learning

and Reasoning 2017 (London).

Feigenbaum, E., and Simon, H. (1984). EPAM-like models of recognition and

learning. Cogn. Sci. 8, 305–336. doi: 10.1207/s15516709cog0804_1

Friesen, M. A., White, S. V., and Byers, J. F. (2008). “Chapter 34: Handoffs:

implications for nurses,” in Patient Safety and Quality: An Evidence-Based

Handbook for Nurses, ed R. G. Hughes (Rockville, MD: Agency for Healthcare

Research and Quality), 285–332.

Fu, W. T., and Anderson, J. R. (2006). From recurrent choice to skilled

learning: a reinforcement learning model. J. Exp. Psychol. Gen. 135, 184–206.

doi: 10.1037/0096-3445.135.2.184

Garcez, A., Dutra, A. R. R., and Alonso, E. (2018). Towards symbolic reinforcement

learning with common sense. arXiv [Preprint].Retrieved from: http://arxiv.org/

abs/1804.08597

Gluck, M. A., and Bower, G. H. (1988). From conditioning to category

learning - an adaptive network model. J. Exp. Psychol. Gen. 117, 227–247.

doi: 10.1037/0096-3445.117.3.227

Gobet, F. (1998). Expert memory: a comparison of four theories. Cognition 66,

115–152. doi: 10.1016/S0010-0277(98)00020-1

Gonzalez, C., Ben-Asher, N., Oltramari, A., and Lebiere, C. (2014). “Cognition

and Technology,” in Cyber Defense and Situational Awareness. Advances in

Information Security, Vol 62, eds A. Kott, C. Wang, and R. Erbacher (Cham:

Springer), 93–117. doi: 10.1007/978-3-319-11391-3_6

Gray, W. D., and Altmann, E. M. (2001). “Cognitive modeling and human-

computer interaction,” in International Encyclopedia of Ergonomics and Human

Factors, Vol. 1, ed W. Karwowski (New York, NY: Taylor & Francis, Ltd.),

387–391.

Hiatt, L. M., and Trafton, G. J. (2010). “A cognitive model of theory of mind,” in

Proceedings of the 10th International Conference on Cognitive Modeling, ICCM

2010 (Philadelphia, PA).

Jastrzembski, T. S., Gluck, K. A., and Rodgers, S. (2009). “Improving military

readiness: a state-of-the-art cognitive tool to predict performance and optimize

training effectiveness,” in The Interservice/Industry Training, Simulation, and

Education Conference (I/ITSEC) (Orlando, FL).

Jastrzembski, T. S., Rodgers, S. M., Gluck, K. A., and Krusmark, M. A. (2014).

Predictive Performance Optimizer. U.S. Patent No. 8,568,145. Washington,

DC: U.S. Patent and Trademark Office.

Kar, D., Fang, F., Fave, F. D., Sintov, N., and Tambe, M. (2015). “A game

of thrones: when human behavior models compete in repeated Stackelberg

security games,” in 2015 International Conference on Autonomous Agents

and Multiagent Systems (Istambul: International Foundation for Autonomous

Agents and Multiagent Systems), 1381–1390.

Lewin, K. (1951). Field Theory in Social Science. New York, NY: Harper Row.

Newell, A., and Card, S. K. (1985). The prospects for psychological science in

human-computer interaction. Human Comput. Interact. 1, 209–242.

Oltsik, J. (2019). The Life and Times of Cybersecurity Professionals. Technical

report, Enterprise Strategy Group (ESG).

Rusk, N. (2015). Deep learning. Nat. Methods. 13:35. doi: 10.1038/nmeth.3707

Sample, C. (2015). Cyber + Culture Early Warning Study. Technical report, CERT.

Frontiers in Psychology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 1049

https://doi.org/10.1207/s15327809jls0402_2
https://doi.org/10.1007/978-3-540-78243-8_2
https://doi.org/10.1207/s15516709cog0804_1
https://doi.org/10.1037/0096-3445.135.2.184
http://arxiv.org/abs/1804.08597
http://arxiv.org/abs/1804.08597
https://doi.org/10.1037/0096-3445.117.3.227
https://doi.org/10.1016/S0010-0277(98)00020-1
https://doi.org/10.1007/978-3-319-11391-3_6
https://doi.org/10.1038/nmeth.3707
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Veksler et al. Cognitive Models in Cybersecurity

Stimpfel, A. W., Sloane, D. M., and Aiken, L. H. (2012). The longer

the shifts for hospital nurses, the higher the levels of burnout and

patient dissatisfaction. Health Affairs 31, 2501–2509. doi: 10.1377/hlthaff.201

1.1377

Swets, J. A. (1964). Signal Detection and Recognition by Human Observers, 1st Edn.

New York, NY: Wiley. doi: 10.1037/e444572004-001

Swets, J. A. (1996). Signal Detection Theory and ROC Analysis in Psychology and

Diagnostics: Collected Papers. New York, NY: Psychology Press.

Tambe, M., Jiang, A. X., An, B., and Jain, M. (2014). “Computational game

theory for security: progress and challenges,” in AAAI Spring Symposium on

Applied Computational Game Theory (Palo Alto, CA). doi: 10.2197/ipsjjip.

22.176

Veksler, V. D., and Buchler, N. (2016). “Know your enemy: applying cognitive

modeling in security domain,” in 38th Annual Conference of the Cognitive

Science Society (Philadelphia, PA).

Veksler, V. D., and Buchler, N. (2019). “Cognitive modeling with symbolic deep

learning,” in 17th Annual Meeting of the International Conference on Cognitive

Modelling (ICCM 2019) (Montreal, QC).

Veksler, V. D., Buchler, N., Hoffman, B. E., Cassenti, D. N., Sample, C.,

and Sugrim, S. (2018). Simulations in cyber-security: a review of cognitive

modeling of network attackers, defenders, and users. Front. Psychol. 9:691.

doi: 10.3389/fpsyg.2018.00691

Veksler, V. D., Gluck, K. A., Myers, C. W., Harris, J., and Mielke, T. (2014).

Alleviating the curse of dimensionality–A psychologically-inspired approach.

Biol. Inspired Cogn. Architect. 10, 51–60. doi: 10.1016/j.bica.2014.11.007

West, R. L., and Lebiere, C. (2001). Simple games as dynamic, coupled systems:

randomness and other emergent properties. Cogn. Syst. Res. 1, 221–239.

doi: 10.1016/S1389-0417(00)00014-0

Zhang, Q., and Sornette, D. (2017). Learning like humans with Deep Symbolic

Networks. arXiv [Preprint]. Retrieved from: http://arxiv.org/abs/1707.03377

Conflict of Interest: VV was employed by the company DCS Corp.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Veksler, Buchler, LaFleur, Yu, Lebiere and Gonzalez. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Psychology | www.frontiersin.org 13 June 2020 | Volume 11 | Article 1049

https://doi.org/10.1377/hlthaff.2011.1377
https://doi.org/10.1037/e444572004-001
https://doi.org/10.2197/ipsjjip.22.176
https://doi.org/10.3389/fpsyg.2018.00691
https://doi.org/10.1016/j.bica.2014.11.007
https://doi.org/10.1016/S1389-0417(00)00014-0
http://arxiv.org/abs/1707.03377
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Cognitive Models in Cybersecurity: Learning From Expert Analysts and Predicting Attacker Behavior
	1. Introduction
	2. Constructing Cognitive Models of Expert Analysts
	2.1. Experiment 1
	2.1.1. Results

	2.2. Discussion

	3. Dynamic Cognitive Models of Attacker Preferences
	3.1. Experiment 2a
	3.1.1. Results

	3.2. Experiment 2b
	3.2.1. Results

	3.3. Discussion

	4. Summary
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


