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Abstract: Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections
(DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the
conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a
specific environment based on the wound-like medium biofilm model. The adaptation of isolates
was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative
Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main
virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the
four S. aureus had adapted their metabolism, with the development of small colony variants and
the loss of β-hemolysin expression. The in vivo nematode model suggested a decrease of virulence,
confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal
virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved
in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of
environment on the adaptation switch of S. aureus to prolonged stress environmental conditions.
These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.

Keywords: adaptation; biofilm; diabetic foot infection; EDIN; in vitro model; nematode; Panton–
Valentin leukocidin; Staphylococcus aureus; virulence

Key Contribution: This paper highlights the impact of environmental conditions on Staphylococcus
aureus in an in vitro model mimicking the conditions encountered in diabetic foot infections, a
genomic and transcriptomic adaptation of S. aureus that could drive the escape to the host immune
response and foster chronicity of the wound.

1. Introduction

Diabetes mellitus is a public health problem representing a major cause of mortal-
ity and morbidity worldwide [1]. This disease affects 442 million adults in the world
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and represents the seventh leading cause of death (Global report on diabetes: Executive
Summary. Available online: https://www.who.int/health-topics/diabetes/publications&
publication=who-nmh-nvi-16.3 (accessed on 14 March 2021)). One of the most serious com-
plications of diabetes mellitus is foot ulceration due to the triopathy associating ischemia,
neuropathy, and arteriopathy [2–4]. It is a source of major suffering and financial costs for
the patient, but also for the health care professionals and facilities and society. Infection in
diabetic foot ulcer (DFU) is particularly frequent and, untreated, ultimately results in lower-
limb amputation [5]. Diabetic foot infection (DFI) is estimated to be the most common cause
of diabetes-related admission in hospitals. Outcomes in patients presenting with a DFI
are poor with a high mortality following this complication (around 15% in the following
year) [1,5]. DFIs are polymicrobial and Staphylococcus aureus is the most frequent pathogen
isolated [6,7]. This Gram-positive coccus is a leading cause of a wide range of diseases,
from skin and soft tissue infections (SSTIs) (e.g., impetigo, carbuncles) to life-threatening
bacteremia, toxic shock syndrome, endocarditis, and osteomyelitis [6,8]. However, the
mechanisms of S. aureus pathogenicity and switch from colonization to infection in DFI
remain unclear.

S. aureus deploys an arsenal of virulence factors to colonize, invade, and destroy
tissues and host immune cells [9,10]. These virulence factors include adhesins (called
microbial surface components recognizing adhesive matrix molecules (MSCRAMMs),
such as fibronectin binding proteins (FnBPs), that bind to different host proteins and are
important for tissular colonization [11,12]. The protein A (SpA) promotes immune evasion
and protects against host-mediated clearance [10]. S. aureus also secretes toxins (e.g.,
the pore-forming cytotoxin alpha-hemolysin (Hla), which can lead to tissue necrosis. In
addition, the superantigens can induce an unregulated polyclonal activation of lymphocyte
T cells, leading to a cytokine storm. The regulation of these virulence factors is complex and
extensive, but virulence is very closely regulated in S. aureus, notably owing to the agr gene.
This bacterium can also secrete specific toxins such as the Panton–Valentine Leukocidin
(PVL), which is a pore-forming toxin [6,13], or the exoenzymes EDINs (EDIN-A, -B, and -C),
which inactivate the small GTPase RhoA to promote bacterial dissemination [14,15]. These
cytolytic toxins can damage membranes of host cells, leading to cell lysis [16]. Finally, to
adapt to the environmental conditions, S. aureus is able to survive in a metabolically inactive
state while preserving the integrity of the host cell by forming small-colony variants (SCVs).
SCVs differ metabolically and phenotypically to ordinary S. aureus isolates [17].

During DFI, S. aureus has been shown to activate its virulence factors to invade
the tissue [18]. However, this infection is chronic and complex, with a different clinical
presentation to SSTIs, notably with the mitigated impact of toxinogenic strains [6]. Indeed,
S. aureus is exposed to various stress conditions in DFU: elevated glucose concentration,
decreased temperature, decreased tissue oxygenation, and presence of antibiotics for
several weeks [19]. Previous studies have analyzed the impact of antibiotics or glucose on
the virulence of S. aureus strains during short-term [20–24] or long-term exposure [25–27]
in a stress environment. These lifestyles involve forming quasi-dormant sub-populations
and the presence of persister cells and SCVs [28]. Under prolonged nutrient limitation, the
downregulation or loss of agr has been reported and seems to play a crucial role [17,28].

The purpose of this study was to evaluate the impact of an in vitro model mimicking
the conditions encountered in DFU on the adaptation/switch in the virulence profile
of S. aureus. This manuscript used the Lubbock wound pathogenic biofilm model [29]
firstly adapted by De Leon et al. [30]. This model contains physiological concentrations
of blood components, notably utilizing a chopped-meat-based medium supplemented
with heparinized plasma and red blood cells. This medium was formulated to represent
the conditions of human wounds and better simulate the nutrient environment in the
chronic ulcer. In this study, the media formulation was modified by the addition of 10%
glucose (allowing a concentration above 150 mg/dL, the limit that defined an uncontrolled
diabetes) and two antibiotics at sub-inhibitory concentrations (a condition frequently
observed in this pathology due to arteriopathy). The antibiotics used correspond to two
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of the main molecules used in DFI: vancomycin, a glycopeptide that inhibits cell wall
synthesis by binding to the D-Ala-D-Ala terminal of the growing peptide chain during cell
wall synthesis; and linezolid, an oxazolidinone that disrupts bacterial growth by inhibiting
the initiation process of protein synthesis by binding to a site on the bacterial 23S ribosomal
RNA of the 50S subunit. Thus, S. aureus virulence was evaluated in this in vitro wound-like
medium (WLM) that mimics a diabetic environment.

2. Results
2.1. Phenotypic Effects on S. aureus after a Prolonged Culture in a Medium Mimicking a
DFU Environment

Firstly, we investigated the impact of the WLM supplemented with 10% glucose
and/or vancomycin and linezolid tested at 0.5×minimum inhibitory concentration (MIC)
on three virulent S. aureus strains (NSA739, NSA1077, and NSA7475) isolated from DFI
and one colonizing strain (NSA1385) (Table 1). First, the presence/absence of β-hemolysis
on blood agar plates and the emergence of SCVs were determined.

Table 1. S. aureus strains used in the study.

Strains Characteristics References

NSA739 S. aureus strain isolated from DFI (Grade 3),
PVL-, edin-, agr2, ST8 [31]

NSA1385 S. aureus strain isolated from colonized DFU (Grade 1),
PVL-, edin-, agr1, ST8 [31]

NSA1077 S. aureus strain isolated from DFI (Grade 3),
PVL+, edinB+, agr1, ST152 [32]

NSA7475 S. aureus strain isolated from DFI (Grade 3),
PVL-, edinB+, agr1, ST25 [32]

DFI, diabetic foot infection; DFU, diabetic foot ulcer; PVL, Panton–Valentine Leukocidin; ST, sequence type.

2.1.1. Addition of 10% Glucose

The WLM had no impact on the phenotype of the S. aureus strains tested after 24 h
incubation, with or without the addition of glucose (Supplementary Materials Table S1).
However, after 16 weeks in WLM alone, all the bacteria displayed mostly β-hemolytic
activity (98–99%), with low level SCV (1–2%) (Table 2). The addition of 10% glucose
significantly modified the phenotype of the virulent strains with a clear loss of β-hemolytic
production (particularly for NSA739 and NSA1077) and a high level of SCVs compared
with the medium without glucose (p < 0.01). Interestingly, the colonizing NSA1385 was not
significantly affected under any of the conditions tested (Table 2).

Table 2. Phenotypical modifications of S. aureus cultivated in an in vitro wound-like medium (WLM) mimicking the
conditions encountered in chronic wounds and with the addition of other stress parameters (high glucose concentration,
addition of antibiotics) for 16 weeks. Bold results are statistically significant (p < 0.01) compared with WLM alone.

Strains In Vitro WLM Alone WLM +
10% Glucose

WLM +
Vancomycin

WLM +
Linezolid

WLM +
10% Glucose +
Vancomycin

WLM +
10% Glucose +

Linezolid

β-hemol 1 SCV 2 β-hemol SCV β-hemol SCV β-hemol SCV β-hemol SCV β-hemol SCV

NSA739 99% ± 2 2% ± 2 12% ± 5 22% ± 2 93% ± 5 2% ± 2 28% ± 4 5% ± 2 5% ± 2 30% ± 7 13% ± 6 18%± 7
NSA1077 98% ± 3 2% ± 2 5% ± 5 11% ± 2 91% ± 7 2% ± 3 55% ± 5 20% ± 5 8% ± 4 18% ± 5 10% ± 10 10%± 5
NSA7475 98% ± 2 1% ± 2 65% ± 3 24% ± 2 88% ± 7 4% ± 2 48% ± 2 15% ± 4 50% ± 5 15% ± 3 37% ± 8 17%± 8
NSA1385 99% ± 2 0% ± 2 93%± 7 4% ± 2 100% ± 2 0% ± 2 75% ± 5 7% ± 2 94% ± 2 2% ± 2 91% ± 5 3% ± 3

1 β-hemolysis. 2 SCV, small colony variant. % corresponds to a mean of counts (±standard deviation) performed on three independent
experiments on an average of 200 colonies.

2.1.2. Addition of Antibiotics

The addition of sub-MICs of vancomycin (0.5× MIC) and linezolid (0.5× MIC) in
WLM supplemented with 10% glucose produced the same observations with a significant
modification of the phenotype of the virulent strains (Table 2): a loss of β-hemolytic
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production (50–95%) and a high level of SCVs (10–30%) compared with WLM alone
(p < 0.01). These modifications did not affect the colonizing strain NSA1385.

To clearly evaluate the effect of antibiotics, vancomycin and linezolid were tested alone
in WLM. Interestingly, in sub-MIC of vancomycin alone, the modifications of S. aureus
phenotype were variable, with a significant effect only on the β-hemolytic activity on
NSA1077 and NSA7475 (p < 0.01). No statistical effect was noted for the level of SCV. The
addition of linezolid alone significantly altered the β-hemolytic activity of all four tested
strains (p < 0.01).

2.2. Effect of a Prolonged Culture in a Medium Mimicking DFU Environment on S. aureus Virulence
2.2.1. Addition of 10% Glucose

In the C. elegans model, all S. aureus strains killed the nematodes more rapidly than the
avirulent E. coli OP50 strain used as nutrient for the nematodes (p < 0.001) (Table 3). The LT50
was similar for the three virulent strains (NSA739, NSA1077, and NSA7475), but significantly
shorter (p < 0.001) for the colonizing strain (NSA1385) (1.7 to 2.3 days ± 0.3 vs. 4.3 ± 0.3,
respectively; Table 3). The differences in virulence were not due to differences in the survival
and proliferation of strains within the nematode intestine, as the intestine colonization by the
strains was not significantly different (Supplementary Materials Table S2).

Table 3. 50% lethal time (in days) of Caenorhabditis elegans infected by different S. aureus cultivated in an in vitro wound-like
medium (WLM) mimicking the conditions encountered in chronic wounds and with the addition of stress factors (high
glucose concentration, sub-minimum inhibitory concentration (MIC) of antibiotics). The results are representative of at least
four independent trials for each strain.

Strains Length of
Preculture

Without
Pre-Culture

in WLM

WLM
Alone

WLM + 10%
Glucose

WLM +
Vancomycin

WLM +
Linezolid

WLM +
10% Glucose +
Vancomycin

WLM +
10% Glucose
+ Linezolid

NSA739 24 h 24 h 1.7 ± 0.3 3.5 ± 0.2 3.5 ± 0.3 3.4 ± 0.2 3.8 ± 0.3 3.9 ± 0.2 5.00 ± 0.4
NSA739 16-week 16 weeks NA 3.9 ± 0.2 4.9 ± 0.2 3.2 ± 0.3 4.9 ± 0.2 5.0 ± 0.2 4.9 ± 0.2

NSA1077 24 h 24 h 2.2 ± 0.2 3.9 ± 0.2 4.2 ± 0.3 4.1 ± 0.1 4.3 ± 0.2 4.4 ± 0.1 4.9 ± 0.2
NSA1077 16-week 16 weeks NA 4.4 ± 0.1 5.4 ± 0.4 3.7 ± 0.2 5.4 ± 0.4 5.5 ± 0.3 5.5 ± 0.4

NSA7475 24 h 24 h 2.3 ± 0.3 3.8 ± 0.2 3.9 ± 0.3 3.7 ± 0.2 3.5 ± 0.2 3.8 ± 0.2 5.2 ± 0.4
NSA7475 16-week 16 weeks NA 4.3 ± 0.3 5.3 ± 0.4 3.5 ± 0.2 4.7 ± 0.3 5.4 ± 0.4 5.0 ± 0.2

1385 24 h 24 h 4.3 ± 0.3 4.8 ± 0.3 4.6 ± 0.3 4.3 ± 0.4 5.1 ± 0.2 4.8 ± 0.3 4.4 ± 0.2
1385 16-week 16 weeks NA 5.0 ± 0.4 5.2 ± 0.2 5.1 ± 0.2 5.1 ± 0.3 4.9 ± 0.3 4.9 ± 0.2

OP50 (Control
strain) - 7.7 ± 0.2 NA NA NA NA NA NA

In bold, p < 0.01 after a pairwise comparison between LT50s (strain in WLM alone vs. others) using a log rank test. NA, not applicable.

Infecting S. aureus strains pre-cultivated for 24 h in WLM showed significantly de-
creased virulence compared with the same strains without pre-culture (1.7–2.3 days ± 0.3
vs. 3.5–3.9 ± 0.2, respectively; p < 0.001, Table 3). No impact was noted on virulence when
these strains were pre-cultivated for 16 weeks (3.5–3.9 ± 0.2 vs. 3.9–4.4 ± 0.2, respectively;
p = not significant (NS), Table 3). Interestingly, no significant difference of LT50 was noted
for the colonizing strain, irrespective of the length of pre-culture (24 h vs. 16 weeks),
although an increased nematode lifespan was noted: 4.3 days ± 0.3, without pre-culture;
4.8 ± 0.3, with a 24 h pre-culture; and 5.0 ± 0.4, with a 16-week pre-culture (p = NS)
(Table 3).

When the infecting S. aureus strains were pre-cultivated in WLM supplemented with
10% glucose, their virulence was similar to that observed after pre-culture in WLM alone
(3.5–3.9± 0.2 vs. 3.5–4.2± 0.3, respectively; p = NS, Table 3). In contrast, the virulence of the
three infecting strains was significantly decreased after a 16-week pre-culture in the glucose
supplemented medium compared with medium alone (4.9–5.4 ± 0.4 vs. 3.9–4.4 ± 0.3,
respectively; p < 0.001, Table 3).

As previously observed, no significant modification of lifespan of the C. elegans was
observed in the colonizing strain NSA1385 after a short or a long pre-culture in the WLM
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with or without glucose (24 h: 4.8 ± 0.3 vs. 4.6 ± 0.3 and 16-week: 5.0 ± 0.4 vs. 5.2 ± 0.2,
respectively; p = NS, Table 3).

2.2.2. Addition of Antibiotics

The addition of vancomycin to the WLM had no effect on the lifespan of nematodes
in the presence of S. aureus. No significant difference of LT50 of nematodes fed with the
different strains was observed when these strains were pre-cultivated for 24 h or 16 weeks
in medium plus antibiotic (p = NS) (Table 3). However, a trend for increased virulence
could be noted for the three infecting S. aureus strains pre-cultivated with vancomycin
versus without pre-culture (LT50: 3.2–3.7 days ± 0.4 vs. 3.9–4.4 ± 0.3, respectively; p = NS,
Table 3).

The addition of linezolid also had no significant impact on the virulence of the infecting
S. aureus pre-cultivated in supplemented WLM for 24 h compared with a pre-culture
in WLM medium alone (3.5–4.3 ± 0.3 vs. 3.5–3.9 ± 0.2, respectively; p = NS, Table 3).
Interestingly, during a long period of pre-culture (16 weeks), a significant increase of
the lifespan of the C. elegans was observed in two of the three virulent S. aureus strains
(NSA739 and NSA1077) (4.9–5.4 ± 0.4 vs. 3.9–4.4 ± 0.2, respectively; p < 0.001, Table 3).
No significant modification of lifespan of the C. elegans was observed in the colonizing
strain NSA1385 after a short or long pre-culture in the WLM with or without addition of
antibiotics (24 h: 4.8 ± 0.3 vs. 5.1 ± 0.2 and 16-week: 5.0 ± 0.4 vs. 5.1 ± 0.3, respectively;
p = NS, Table 3).

The addition of vancomycin to WLM supplemented with 10% glucose showed the
same observation as pre-cultivation without antibiotic. A significant decrease of S. au-
reus virulence was shown for the isolates pre-incubated for 16 weeks (5.0–5.5 ± 0.4 vs.
3.9–4.4 ± 0.3, respectively; p < 0.001, Table 3), suggesting a role of glucose alone in this effect.

While the same observation was noted for the long exposure of two of the three
isolates (NSA739 and NSA1077) in WLM medium supplemented with 10% glucose and
linezolid (4.9–5.5 ± 0.4 vs. 3.9–4.4 ± 0.2, respectively; p < 0.001, Table 3), a clear impact of
linezolid was also observed after a short exposure (24 h) of the three infecting S. aureus to
this medium (4.9–5.2 ± 0.4 vs. 3.5–3.9 ± 0.2, respectively; p < 0.001, Table 3), suggesting an
effect of linezolid on S. aureus virulence in the WLM supplemented with glucose.

Finally, no impact of the addition of antibiotics and glucose to WLM medium was
noted for the colonizing strain NSA1385 (Table 3).

2.3. Effect of a Prolonged Culture in a Medium Mimicking DFU Environment on Kinetics of
S. aureus Biofilm Formation

The Biofilm Ring test® was performed to evaluate the effect of WLM with or without
the addition of 10% glucose and antibiotics on the capacity of S. aureus to form biofilm.

2.3.1. Addition of 10% Glucose

The pre-cultivation of S. aureus in WLM supplemented with glucose had no signif-
icant effect on biofilm formation for all the studied strains after a short exposure (24 h)
(Supplementary Materials Table S3).

After a long exposure (16 weeks) of the infecting strains with the WLM supplemented
with 10% glucose, all the strains had impeded potential to form biofilm (Figure 1).

For NSA739 and NSA7475, biofilm was completely formed after 5 h of incubation
(BFI = 1.5 ± 0.2). When the strain was pre-cultivated in WLM + 10% glucose, we observed
a trend of faster formation of biofilm (at 2 and 3 h), but no impact on the biofilm formation
at the end-point (5 h).

For NSA1077, the strain pre-cultivated with glucose showed a significantly faster
biofilm formation than the strain pre-cultivated in WLM alone at 2, 3, and 4 h, with the
beads immobilized after 4 h (BFI = 1.6 ± 0.2) (p < 0.001).

For the colonizing strain NSA1385, the addition of glucose had no impact on the
kinetics of biofilm formation: the BFI values were similar between all conditions tested.
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2.3.2. Addition of Antibiotics

As observed with glucose supplementation, pre-cultivation of S. aureus in WLM plus
antibiotics (with or without 10% glucose) had no effect on biofilm formation for all the
studied strains after a short exposure (24 h) (Supplementary Materials Table S3).

For the three infecting strains NSA739, NSA1077, and NS7475, the kinetics of biofilm
formation were slowed in the presence of sub-MIC of vancomycin alone, with a biofilm
not constituted after 5 h (p < 0.0001) (Figure 1). Interestingly, although the addition of
sub-MICs of linezolid had no effect on the biofilm formation of NSA7475 or NSA1077,
pre-cultivation of these strains in WLM plus antibiotics and 10% glucose had a significant
effect, with the beads immobilized at 3 h (p < 0.001).

Antibiotic pressure had no significant impact on the kinetics of biofilm formation for
the colonizing strain NSA1385 (Figure 1).

Toxins 2021, 13, x FOR PEER REVIEW 6 of 21 
 

 

2.3. Effect of a Prolonged Culture in a Medium Mimicking DFU Environment on Kinetics of S. 
aureus Biofilm Formation 

The Biofilm Ring test® was performed to evaluate the effect of WLM with or without 
the addition of 10% glucose and antibiotics on the capacity of S. aureus to form biofilm. 

2.3.1. Addition of 10% Glucose 
The pre-cultivation of S. aureus in WLM supplemented with glucose had no signifi-

cant effect on biofilm formation for all the studied strains after a short exposure (24 h) 
(Supplementary Materials Table S3). 

After a long exposure (16 weeks) of the infecting strains with the WLM supplemented 
with 10% glucose, all the strains had impeded potential to form biofilm (Figure 1). 

For NSA739 and NSA7475, biofilm was completely formed after 5 h of incubation 
(BFI = 1.5 ± 0.2). When the strain was pre-cultivated in WLM + 10% glucose, we observed 
a trend of faster formation of biofilm (at 2 and 3 h), but no impact on the biofilm formation 
at the end-point (5 h). 

For NSA1077, the strain pre-cultivated with glucose showed a significantly faster bio-
film formation than the strain pre-cultivated in WLM alone at 2, 3, and 4 h, with the beads 
immobilized after 4 h (BFI = 1.6 ± 0.2) (p < 0.001). 

For the colonizing strain NSA1385, the addition of glucose had no impact on the ki-
netics of biofilm formation: the BFI values were similar between all conditions tested. 

 

 
Figure 1. Cont.



Toxins 2021, 13, 230 7 of 19Toxins 2021, 13, x FOR PEER REVIEW 7 of 21 
 

 

 

 
Figure 1. Effects of a pre-culture in a wound-like medium (WLM) and 10% glucose combined with 
sub-minimum inhibitory concentration (MIC) of vancomycin (0.5× MIC) and linezolid (0.5× MIC) 
on S. aureus biofilm formation after 16 weeks of culture. The kinetics of the early phase of biofilm 
formation were determined on (a) NSA739; (b) NSA1077; (c) NSA7475; and (d) NSA1385 by the 
BioFilm ring test® (BioFilm Control, France). The control corresponds to the evaluation of biofilm 
formation of strains in Brain Heart Infusion (BHI) medium alone. Dotted horizontal lines: >7, no 
biofilm; <2, fixed biofilm. Means ± standard errors of the mean of biofilm indexes (BFIs) for at least 
three independent replicates are presented. Statistical differences between the different culture 
conditions at each time were obtained using two-way analysis of variance (ANOVA), followed by 
Dunnett’s multiple-comparison test. 

2.3.2. Addition of Antibiotics 
As observed with glucose supplementation, pre-cultivation of S. aureus in WLM plus 

antibiotics (with or without 10% glucose) had no effect on biofilm formation for all the 
studied strains after a short exposure (24 h) (Supplementary Materials Table S3). 

For the three infecting strains NSA739, NSA1077, and NS7475, the kinetics of biofilm 
formation were slowed in the presence of sub-MIC of vancomycin alone, with a biofilm 
not constituted after 5 h (p < 0.0001) (Figure 1). Interestingly, although the addition of sub-
MICs of linezolid had no effect on the biofilm formation of NSA7475 or NSA1077, pre-
cultivation of these strains in WLM plus antibiotics and 10% glucose had a significant 
effect, with the beads immobilized at 3 h (p < 0.001). 

Antibiotic pressure had no significant impact on the kinetics of biofilm formation for 
the colonizing strain NSA1385 (Figure 1). 

Figure 1. Effects of a pre-culture in a wound-like medium (WLM) and 10% glucose combined with
sub-minimum inhibitory concentration (MIC) of vancomycin (0.5×MIC) and linezolid (0.5×MIC)
on S. aureus biofilm formation after 16 weeks of culture. The kinetics of the early phase of biofilm
formation were determined on (A) NSA739; (B) NSA1077; (C) NSA7475; and (D) NSA1385 by the
BioFilm ring test® (BioFilm Control, France). The control corresponds to the evaluation of biofilm
formation of strains in Brain Heart Infusion (BHI) medium alone. Dotted horizontal lines: >7, no
biofilm; <2, fixed biofilm. Means ± standard errors of the mean of biofilm indexes (BFIs) for at
least three independent replicates are presented. Statistical differences between the different culture
conditions at each time were obtained using two-way analysis of variance (ANOVA), followed by
Dunnett’s multiple-comparison test.

2.4. Effect of a Prolonged Culture in a Medium Mimicking DFU Environment on S. aureus
Genes’ Expression

To assess the impact of WLM on bacteria at the genetic level, the expression levels of
some important genes involved in S. aureus virulence were measured. Their log relative
transcription levels are shown in Supplementary Materials Table S4 for all the strains and
Figures 2 and 3 for NSA1077 and NSA739, respectively.
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Globally, the expression of studied genes was not significantly affected in strains
pre-cultivated in WLM alone (Supplementary Materials Table S4).

2.4.1. Addition of 10% Glucose

After 24 h of exposure to WLM and 10% glucose, spa gene, which encodes protein A
(a major colonizing factor), was significantly decreased in all the infecting S. aureus strains
(p < 0.05 to p < 0.001) (Supplementary Materials Table S4). Moreover, the two toxinogenic
pvl and edin-B genes were significantly upregulated (p < 0.001) in the two strains harboring
these genes: NSA1077 (Figure 2) and NSA7475 (Supplementary Materials Table S4).

No modification in the expression of any tested gene was noted in the colonizing
strain NSA1385 (Supplementary Materials Table S4).

The same trend was observed after a long exposure of the infecting strains in WLM
supplemented with 10% glucose: hla, which encodes the α-hemolysin (another major
virulence factor); sea, which encodes the staphylococcal enterotoxins (exotoxins with pyro-
genicity, superantigenicity, and capacity to enhance lethality of endotoxin); and the global
regulator of the staphylococcal virulence, agr genes, were significantly down-regulated
(p < 0.001) (Supplementary Materials Table S4, Figure 3). Moreover, the expressions of the
toxinogenic PVL- and EDIN-encoding genes were also significantly decreased (p < 0.001)
(Supplementary Materials Table S4, Figure 2). In contrast, spa and fnbpA genes were signifi-
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cantly over-produced when S. aureus strains were pre-cultivated in WLM supplemented
with 10% glucose (p < 0.001) (Supplementary Materials Table S4, Figure 3).
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The expression of the studied genes was not modified in any conditions of pre-
cultivation for the colonizing strain NSA1385 (Supplementary Materials Table S4).

2.4.2. Addition of Antibiotics

With sub-MIC of vancomycin: Short pre-cultivation of the infecting S. aureus strains in
WLM plus vancomycin (24 h) did not significantly modify the expression of the virulence
genes tested (Supplementary Materials Table S4).

After a long exposure of the infecting strains with the WLM + sub-MIC of vancomycin,
hla, sea, and agr genes were significantly up-regulated (p < 0.001). In contrast, the expression
of fnbpA and spa genes was significantly decreased (p < 0.001) (Supplementary Materials
Table S4, Figure 3). Interestingly, although pvl gene was not affected by this pre-cultivation,
the toxinogenic edinB gene was significantly under-expressed (p < 0.001) (Supplementary
Materials Table S4, Figure 2).

No significant modification in the expression of any studied gene was observed for
any pre-cultivating conditions of the colonizing strain NSA1385 (Supplementary Materials
Table S4).
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With sub-MIC of vancomycin + 10% glucose: The infecting S. aureus strains pre-
cultivated for 24 h presented a significant increase of fnbpA, spa, pvl, and edinB expression
(p < 0.001) (Supplementary Materials Table S4). Moreover, a decrease of the expression of
hla gene was noted for NSA1077 (p < 0.05).

Contrary to the results with WLM plus vancomycin alone, hla, sea, and agr genes were
significantly down-regulated after a long exposure of the infecting strains in WLM + glucose
+ vancomycin (p < 0.001) (Supplementary Materials Table S4, Figure 3). Moreover, the
expression of fnbpA and spa genes was significantly increased (p < 0.001) (Supplementary
Materials Table S4, Figure 3). Finally, the PVL- and EDIN-encoding genes were significantly
under-expressed (p < 0.001) (Supplementary Materials Table S4, Figure 2).

After a long exposure of the colonizing strain NSA1385 to the medium, an increased
expression of fnbpA gene (p < 0.001) and a decrease of hla gene (p < 0.05) (Supplementary
Materials Table S4) were observed.

With sub-MIC of linezolid: After a 24 h exposure of the infecting strains in the WLM +
linezolid, hla, sea, and spa genes were significantly down-regulated (with the exception of
spa gene in NSA739) (p < 0.05 to p < 0.001). In contrast, the expression of fnbpA gene was
notably increased in NSA739 (p < 0.001) (Supplementary Materials Table S2). Interestingly,
while PVL-encoding genes were over-produced in this condition, the toxinogenic edinB
genes were significantly under-expressed (p < 0.001) (Supplementary Materials Table S4).

After a 16-week exposure of the infecting strains to WLM + linezolid, hla, sea, and agr
genes were significantly down-regulated (p < 0.001) (Supplementary Materials Table S4,
Figure 3). In contrast, the expressions of fnbpA and spa genes were significantly increased
(p < 0.001) (Supplementary Materials Table S4, Figure 3). All the toxinogenic-encoding
genes were significantly under-expressed (p < 0.001) (Supplementary Materials Table S4,
Figure 2).

No significant modification of the expression of the studied genes was observed in any
conditions of pre-cultivation for the colonizing strain NSA1385 (Supplementary Materials
Table S4).

With sub-MIC of linezolid + 10% glucose: The addition of glucose replicated the results
observed with linezolid alone. Two infecting S. aureus strains (NSA739 and NSA1077)
pre-cultivated in this condition for 24 h presented a significant decrease of hla and sea genes’
expression (p < 0.05), and the infecting strain NSA7475 showed a decrease of spa gene
(p < 0.001) (Supplementary Materials Table S4). Moreover, an increase of the expression of
fnbpA gene was noted for NSA739 (p < 0.001). The PVL-encoding gene was over-expressed
in this condition (p < 0.001). The only difference concerned the toxinogenic edinB gene,
which was not significantly modified (Supplementary Materials Table S4).

These different observations were replicated after a long exposure, with a significant
decrease of expression of hla, sea, and agr genes (p < 0.001) and a significant over-expression
of fnbpA and spa genes (p < 0.001) (Supplementary Materials Table S4, Figure 3). The PVL-
and EDIN-encoding genes were significantly under-expressed in this condition (p < 0.001)
(Supplementary Materials Table S4, Figure 2).

Finally, the colonizing strain NSA1385 was significantly affected after a long exposure,
with a decrease of hla gene expression (p < 0.05) and an increase of fnbpA gene expression
(p < 0.001) (Supplementary Materials Table S4).

3. Discussion

The host–microbiota interface is often the key point in the development of wound
infections. Various studies have described the DFU microbiota to determine the role of
microorganisms [33]. Although they have produced interesting results and confirmed that
the microbiota is a highly dynamic microbial community that maintains a relationship
with the host, better understanding of the complex competitive or synergistic interaction
between commensal and/or pathogenic microorganisms is necessary as it could affect the
severity and progression of the wound [7]. The virulence capacity of a bacterium has a
direct impact on the equilibrium between colonization and infection [34]. However, in
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chronic wounds, bacteria can adapt their virulence, such as forming a polymicrobial biofilm
community [35]. These biofilms may be responsible for the delayed healing of these chronic
wounds [36]. Bacterial interactions play an important role in pathogenesis, competing
and cooperating in order to support their mutual growth in a specific environment [37].
However, it seems that the behavior of bacteria can also be greatly influenced by the
environmental conditions [24]. Here, we evaluated the role of a high glucose concentration
and sub-MICs of two antibiotics in a WLM mimicking the conditions encountered in DFU
on a series of clinical bacterial strains isolated from this clinical situation. To study bacterial
virulence, most studies have previously used in vitro planktonic cultures on rich media
or in vivo diabetes animal models (e.g., db/db mice), but without the ability to create
genuine wound chronicity [7]. The WLM represents a convenient and reliable model to
study bacteria in a relevant environment [29,30].

Using the WLM, we observed that this environment clearly impacts bacterial behavior,
and its virulence. Firstly, we observed that a long exposure of S. aureus in the medium
significantly decreased the bacterial virulence in a C. elegans model (Table 3). Moreover,
the addition of 10% glucose (a condition similar to that encountered in DFU) more dras-
tically affected the behavior of the infecting bacteria (Table 4): the strains significantly
decreased their virulence in the nematodes model (Table 3), in parallel with dramatic
under-expression of the virulent genes (and decreased β-hemolytic activity) and an over-
expression of genes involved in adhesion and colonization (Figure 3, Supplementary
Materials Supplementary Materials Table S4), as observed by Kalan et al. [38]. The bacterial
stress induced by the glucose accelerated biofilm formation (Figure 1) and significantly
increased SCV phenotypes (Table 2). These observations support previous clinical studies
demonstrating that biofilms were implicated in 60 to 80% of chronic wounds versus 6%
for acute wounds [39,40]. Bacteria within biofilms evade the host’s natural defenses and
are resistant to the host immune defense. Stimulation of the immune system without
effectively eradicating the infection causes collateral damage to surrounding tissue and
causes chronic inflammation [41]. This persistent chronic inflammation, exacerbated by
the diabetic immune context, leads to the production of auto-inflammatory cytokines that
aggravate the wound and slow the healing process. The influence of glucose on bacterial
virulence has been studied by Regassa et al. [42]. They noted that glucose inhibited the
expression of agr gene in S. aureus. The effect on this regulator gene directly reduced the
virulence expression, as observed in our study. Moreover, the influence of glucose on
the poly-N-acetylglucosamine synthesis, the most common components of biofilm in S.
aureus, has been previously described [43–45]. Glucose stimulates the gbaAB operon that
regulates biofilm formation through activating the expression of the ica operon in S. aureus.
GbaA is modulated by inducing compounds and facilitates S. aureus to adapt to stress
via aggregation of biofilm formation [46], as we found here. Interestingly, the response of
neutrophils towards S. aureus also varies depending on the available glucose. S. aureus-
mediated NET (neutrophil extracellular trap) release (a process used by neutrophils to
kill or trap pathogens) is impaired at a high glucose concentration [47], notably due to an
ejection of NET by vesicles outside neutrophils [48]. NET diffusion contributes to extensive
tissue damage in the host and could participate in wound chronicity.

Antistaphylococcal regimens must be taken into account in the influence on bacterial
virulence, as previously determined [24]. In our study, we observed that vancomycin and
linezolid acted differentially on S. aureus virulence. This could be explained by the impact
of these antibiotics on the expression of regulation of several virulence genes, possibly
affecting the expression of the agr system. Previous in vitro studies have shown a decreased
level of virulence expression upon treatment with ribosomally active antibiotics [24]. Here,
the same trend was noted when the bacteria were pre-cultivated in WLM plus linezolid for
24 h. This effect was amplified after a long exposure (16 weeks) to the WLM, especially
when combined with a high glucose concentration and sub-MIC of the antibiotic (Figures 2
and 3), applying stress involving a rapid biofilm formation and consistent with the devel-
opment of a hyper-adhesive phenotype, as previously observed [49]. Studies have shown



Toxins 2021, 13, 230 12 of 19

that linezolid was a potent inhibitor of hla and sea genes’ expression in a concentration-
dependent manner owing to a positive regulation of agr gene [24]. Our results confirmed
that these three genes were clearly affected in the same manner by the environmental
condition encountered in DFI, while these genes were significantly over-expressed in the
presence of sub-MICs of linezolid alone or in combination with glucose (Table 4). The
effect of linezolid on agr expression is of importance. The link between the dysfunction
of this major virulence regulatory system in S. aureus and chronic infections has been
described [50]. As we noted in our study, this gene plays a crucial role in the evolution to
persister cells’ formation and SCVs under antibiotic pressure [50]. The negative impact of
linezolid on hemolytic activity has also been noted [51]. Moreover, sub-MICs of linezolid
induced a decrease in spa expression [21,52]. Although this trend was observed in all
the studied strains after a short exposure (24 h) (Supplementary Materials Table S4), the
opposite results were observed after a long exposure in the WLM plus linezolid alone or
in combination with glucose, suggesting that S. aureus clearly modified its virulence in
this environment.

Table 4. Overview of effect of glucose and sub-MIC antibiotic concentrations on S. aureus virulence
expression from an in vitro wound-like medium (WLM) mimicking the conditions encountered in
chronic wounds.

Effect on Expression of Virulence Factor 1

PVL EDIN Alpha-Hemolysin Protein A

Short exposure in WLM added to
Glucose ↑↑ ↑↑ - ↓

Vancomycin - - - -
Linezolid ↑↑ ↓ ↓ ↓

Long exposure in WLM added to
Glucose ↓ ↓ ↓ ↑

Vancomycin - ↓↓ ↑ ↓
Linezolid ↓↓ ↓↓ ↓ ↑

1 ↑, significant increase; ↑↑, >8-fold significant increase; ↓, significant decrease; ↓↓, >8-fold significant decrease; -,
no significant effect.

The influence of vancomycin on bacterial virulence was totally different compared
with linezolid exposure. This antibiotic had limited effects on S. aureus virulence after a
short exposure, as previously published [24]. In C. elegans, no significant modification of
bacterial virulence could be noted (Table 3). As seen above, the impact of antibiotics on agr
expression is crucial. Vancomycin increased the expression of this regulator influencing
the virulence by acting on the expression of several virulence genes and by limiting the
colonizing behaviour of the bacteria. This trend was confirmed by a huge impact of
vancomycin to β-hemolytic activity and the low presence of SCVs even after prolonged
exposure in the WLM. Vancomycin-induced upregulation of enterotoxin expression has
previously been described during the first 8 h in an in vitro hollow-fiber infection model,
followed by a downregulation [53]. Our study confirmed this result. Moreover, previous
studies indicated that the effects of vancomycin on spa expression were variable [24]. We
confirmed that this antibiotic had no relevant impact when used in sub-MIC after a short
exposure. In contrast, a significant decrease of spa expression was found after a long
exposure in the WLM (Table 4).

Finally, the addition of glucose and antistaphylococcal antibiotics demonstrated the
main influence of glucose on the bacterial virulence. If the association of glucose plus
linezolid impacted more negatively the expressions of S. aureus virulence genes, the com-
bination of glucose and vancomycin was clearly influenced by glucose, while a reversed
effect of vancomycin alone on genes’ expression level was observed. This is probably due
to preferentially interaction between glucose and regulatory genes of S. aureus virulence.
Further investigations must be developed to confirm this trend.

The PVL is the most studied bi-component leukotoxin produced by S. aureus [6].
This toxin confers cytotoxicity on neutrophils and monocytes-macrophages, leading to a
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high virulence [54]. The PVL-positive strains are responsible for SSTIs, severe necrotizing
pneumonia, and aggressive bone and joint infections [55–57]. In DFI, the role of PVL in
the pathogenicity of S. aureus is not clearly established. Firstly, the PVL-producing strains
are rarely isolated from this pathology [6]. Its prevalence varies between countries: France
(~3%), Algeria, and The Netherlands (~14%) [6]. Classically, the different PVL clones are
equally distributed among the various DFI grades. The majority of Grade 1 ulcers where
PVL-positive strains were isolated had a rapid clinical amelioration [31]. Moreover, no
strains harboring pvl gene have been isolated from diabetic foot osteomyelitis (DFOM) [58].
In this study, we explored the impact of environmental conditions on the expression of this
gene. We observed that NSA1077 presented a significant decrease of the pvl expression
after a long exposure in the WLM plus glucose, linezolid, and glucose + linezolid and
glucose + vancomycin (Table 4). The antitoxin effect of sub-MICs of linezolid has been
previously published [24]. This antibiotic induced concentration-dependent decreases in
pvl expression and PVL production. Surprisingly, the pvl expression was strongly increased
after a short exposure to linezolid, in contrast to previous publications. One hypothesis
could be the role of the medium used in this study. Interestingly, we observed the same
effect when the bacteria were exposed to glucose + linezolid, although to a lesser degree
(Figure 2). Sub-MICs of vancomycin have no relevant impact on pvl expression [24]. Despite
confirming this trend in our study after 24 h exposure to this antibiotic, we observed a
significant effect when vancomycin was combined with 10% glucose, with an increase of
pvl expression after 24 h and a strong decrease of expression after 16 weeks. We suggest
that the observed effect was mainly due to glucose.

The same trend was also observed for EDIN toxins. These proteins are members
of a group of major bacterial virulence factors targeting host Rho GTPases [59]. Recent
findings suggest that EDIN toxins might favor bacterial dissemination in tissues by a
hematogenous route, through the induction of large transcellular tunnels in endothelial
cells named macroapertures [60–62]. In addition, Munro et al. showed that EDIN toxins
promote the formation of infection foci in a mouse model of bacteremia [63]. Previous
studies on the prevalence of edin genes in DFI showed that these genes are rarely isolated in
this pathology [64]. EDIN might collaborate with the arsenal of S. aureus virulence factors
to confer a higher potential for systemic infection [60]. However, bacteremia is a rare
complication in DFI [5], possibly because of the impact of environment, as we observed
in this work. Altogether, our study corroborates that S. aureus can adapt to different
environments and infection phases; this adaptation is modulated by tight transcriptional
and (post)translational regulation of its virulence factors.

4. Conclusions

DFI is a complex environment where multiple bacterial species coexist. The interface
between host and bacteria directly affects the healing of the wound. In these chronic ulcers,
the virulence of bacteria is influenced by their intrinsic virulence profile and virulent factor
equipment, but also by the environmental conditions and the phenotypic switch that these
environmental stresses induce. Here, we showed that toxinogenic and non-toxinogenic
S. aureus decreased their virulence in a WLM mimicking the conditions encountered in
chronic wounds or/and required to establish chronic wounds. Our observations deserve
to be placed in perspective with the clinical situation and epidemiological data where
toxinogenic strains are absent from DFI or DFOM, suggesting that these strains have no
clear virulence in this context. Subsequent studies are required to understand how bacteria
could adapt their virulence in chronic conditions and to correlate these in vitro data using
clinical strains. Such studies are pivotal for better ways to manage of DFU and could help
in defining new therapeutics.
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5. Materials and Methods
5.1. Bacterial Strains and Growth Conditions

All bacterial strains used in this study are listed in Table 1.
NSA739, 1077, and 7475 are infecting strains isolated from deep DFI. The strain 1077

was PVL+ and EDIN-B+; the strain 7475 was EDIN-B+. NSA1385 was a colonizing strain
isolated from an uninfected ulcer, and NSA739 was isolated from DFI.

The avirulent Escherichia coli OP50 was used as a food source and a control for the
nematode assays.

We used the in vitro WLM adapted from De Leon et al. that mimics the conditions
encountered in the wound [30]. Briefly, the WLM contained 45% Bolton broth, 50% bovine
plasma, and 5% laked horse red blood cells. A 1 mL volume of VLM was placed in a 14.5 cm
by 1.8 cm glass tube, inoculated with approximatively 104 to 105 CFU of S. aureus. The
strains were grown in different conditions described in Figure 1. Thus, bacteria were grown
at 37 ◦C with shaking at 220 rpm in WLM supplemented with 10% glucose and/or sub-
inhibitory concentration of antibiotics (sub-MICs, 0.5×MIC linezolid and vancomycin).
Every day, the optical density was adjusted to OD 0.1. Cultures were maintained for
16 weeks (Figure 1).

The vancomycin and linezolid MICs were determined for each strain by the microdi-
lution method in Mueller–Hinton (MH) as recommended by the European Committee for
Antimicrobial Susceptibility Testing (EUCAST) [65]. The impact of sub-MIC exposure for
16 weeks on MICs of the different S. aureus strains was evaluated each week. No significant
difference could be noted (less than threefold dilution). However, the concentration of
antibiotics used in the prolonged cultures was always adapted to these MICs.

Then, 100 µL samples of culture were plated on Columbia agar supplemented with
5% fresh sheep blood (bioMérieux, Marcy l’Etoile, France) at 37 ◦C each week to assess the
loss of beta-hemolysin in each condition.

5.2. Nematode Killing Assay

The C. elegans infection assay was performed as previously described using the Fer-15
mutant line, which has a temperature sensitive fertility defect [66]. Fer-15 was provided
by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for
Research Resources (NCRR). To synchronize the growth of nematodes, eggs were collected
using the hypochlorite method. Overnight cultures of E. coli strains in nematode growth
medium (NGM) were harvested, centrifuged, washed once, and suspended in phosphate
buffered saline solution (PBS) at pH 7.0 at a concentration of 105 CFU/mL. NGM agar
plates were inoculated with 10 µL of bacterial suspension in different conditions (without
pre-incubation in WLM, after pre-incubation in WLM alone or with 10% glucose, sub-MICs
of vancomycin or linezolid) and incubated at 37 ◦C for 8–10 h. Plates were brought back to
room temperature and seeded with L4 stage C. elegans (≈30 per plate). Plates were then
incubated at 25 ◦C and scored each day for live nematode under a stereomicroscope (Leica
MS5). A nematode was considered dead when it no longer responded to touch. C. elegans
that died from being trapped by the wall of the plate were excluded from the analysis.

At least three replicates repeated twice were performed for each selected strain. Lethal
time 50% (LT50) corresponded to time (in days) required to kill 50% of the nematodes.
The definition of virulence is limited to a narrow definition of virulence and the direct
impact of S. aureus on the mortality of the worms. Three replicates were performed for
each condition.

5.3. Feeding Behavior Assays

For occupancy assays, each bacterial strain was cultured overnight at 25 ◦C in LB
media, spotted as a circular lawn on NGM plates, and dried at room temperature for 20 min.
Approximately 30 L4 animals were placed in the center of the bacteria lawn. The number of
nematodes inside or outside each lawn was counted after 16 h, as previously described [66].
The results were described in percent occupancy corresponding to the number of C. elegans
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in the bacterial lawn/the total number of nematodes. The experiments were performed
in triplicate.

The number of bacteria within the C. elegans digestive tract was obtained as previously
described [67]. Briefly, nematodes were picked at 72 h, and the surface bacteria were
removed by washing the nematodes twice in M9 medium containing 25 µg/mL gentamicin.
The C. elegans were then mechanically disrupted in M9 medium containing 1% Triton X-
100 [56]. Serial dilutions of the sample were then plated on LB-agar and the colonies were
counted after 24 h. Three replicates were performed for each strain.

5.4. Biofilm Formation

To evaluate the biofilm formation, we used the Biofilm ring Test® (BioFilm Control®,
Saint Beauzire, France) following the manufacturer recommendations [68]. Briefly, stan-
dardized bacterial cultures were incubated at 37 ◦C in 96-well microtiter plates in the
presence of magnetic beads. At set time-points, the plates were placed onto a magnetic
block and put in the reader. The images of each well before and after magnetic attraction
were analyzed with the BioFilm Control software, which gives a biofilm index (BFI). A
high BFI value (>7) corresponds to high mobility of the beads under magnetic action (no
biofilm), while a low value (<2) corresponds to full immobilization of the beads due to
the sessile cells. Three experiments with two repeats were performed per strain and per
incubation time.

All the experiments were performed in BHI medium (=control) as recommended by
the manufacturer. To study the impact of different conditions tested on biofilm formation,
the strains were pre-cultured for 24 h or 16 weeks in WLM with or without 10% glucose
and sub-MICs of vancomycin or linezolid. The experiments were done in BHI (the WLM
was not adapted to the technology).

5.5. qRT-PCR Assays

Virulence genes’ expressions of S. aureus were quantified under different stress con-
ditions after 24 h and 16 weeks. The virulence and regulator genes tested were adhesins
(fnbpA, spa), toxins (hla, pvl, sea, edinB), and the global regulator agr (Supplementary Materi-
als Table S5).

Briefly, overnight S. aureus cultures obtained in different media were diluted to an
OD600 of 0.1 in MH broth and cultured again until an OD600 of 0.7 was reached. The
OD at 600 nm was then adjusted to 0.75 in Tris buffer (10 mM). A 1.5 mL aliquot of OD-
adjusted and washed bacterial suspension was centrifuged at 10,000× g for 10 min, and
the pellets were treated with lysostaphin (Sigma) at a final concentration of 200 µg/mL.
Total RNA from bacteria pellets was extracted as described by the manufacturer using
Qiagen RNeasy Mini kit (Qiagen, Courtaboeuf, France) during exponential stages. RNA
was treated with the RNase-Free DNase Set (Qiagen, Courtaboeuf, France). Purity and
concentration were determined using the NanoDropTM 2000 spectrophotometer (Fisher
Scientific, Pittsburgh, PA, USA). cDNA was synthesized from 1 µg of total RNA for each
sample, using the iScript™ Select cDNA Synthesis Kit (Bio-Rad) with random primers
according to the manufacturer’s instructions.

Real-time PCR assays were performed in a LightCycler®480 device using the Light-
Cycler FastStart DNA MasterPLUS SYBRGreen I kit (Roche, Meylan, France) with 100 ng
of cDNA and 10 pmol of target primers (Supplementary Materials Table S5) [18,69–74].
The specificity of the PCR products was tested by melting point analysis. Amplifications
were performed in triplicate from three different RNA preparations. The 2−∆∆CT method
was used to analyze transcriptional changes in target genes using gyrB as the housekeep-
ing control gene (Supplementary Materials Table S5). Error bars indicate the standard
deviation (SD) of three independent experiments. Cycle threshold (Ct) values of the dif-
ferent target genes were compared with the Ct-values of the house-keeping gene (gyrB).
The normalized relative expressions of the studied genes were obtained for each strain
following the equation: 2−∆∆Ct (∆∆Ct = (Ctgene − CtgyrB)studied strain in different conditions −
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(Ctgene − CtgyrB)studied strain in LB medium) [75]. The results obtained for each gene were
log-transformed to obtain a fold change difference between strains and conditions used.

5.6. Statistical Analysis

Statistics and graphs were prepared using the software package (GraphPad Prism 8.0,
GraphPad Software, San Diego, CA, USA).

The comparison between the behavior of S. aureus in the in vitro medium alone versus
in different conditions was assessed using one-way analysis of variance (ANOVA) followed
by Dunnett’s multiple comparisons test.

For the nematode killing assays, differences in survival rates between the different
strains were tested by a log-rank (Mantel-cox) test for statistical significance.

Log-transformed data were used for qRT-PCR. The effects of the different additions to
the WLM medium on the expression of selected genes and a regulator of S. aureus were
assessed using one-way analysis of variance (ANOVA), followed by Dunnett’s multiple
comparisons test.

The kinetics of biofilm formation were compared by two-way ANOVA, followed by
Dunnett’s multiple comparison test.

A p < 0.05 was considered to reflect a statistically significant difference.
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