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Introduction
Dihydrofolate reductase (DHFR) enzyme is a key player in the 
folate metabolic pathway that is necessary for biosynthesis of 
DNA, RNA, and proteins, it catalyzes the nicotinamide ade-
nine dinucleotide phosphate (NADPH)-dependent reduction 
of dihydrofolate to tetrahydrofolate and is critical for the syn-
thesis of purines, thymidine, and several amino acids.  Inhibition 
of this enzyme leads to the arrest of DNA synthesis and cell 
destruction.1 The enzyme has been widely investigated as a 
drug target for medical chemistry.1 DHFR inhibition has been 
proven as an effective agent for treating bacterial infections2 
and cancer therapy.3

Tuberculosis (TB), is one of the ten causes of death worldwide 
and the primary infection source from a single infectious agent.4 
With the increase in TB treatment, a series of drug-resistant 
strains have emerged, diagnosis and therapy of multidrug-resist-
ant-TB (MDR-TB) continues to be a major hurdle and is far 
from being fully solved.5 Extended drug resistance TB (XDR-TB) 
shows resistance to second-line drugs fluoroquinolones (FLQ) 

and aminoglycosides (AMI). It is estimated that 6% of MDR-TB 
cases are estimated to be XDR-TB.6

Hence, novel antimycobacterial drugs are urgently required 
to combat this resistance. Alongside this, better knowledge of 
the essentiality in the pathogenic organism and larger data-
bases of compounds can contribute to the discovery of new 
drug molecules. The number of protein structures, X-ray based 
and modeled, is increasing and now accounts for greater than 
> 80% of all predicted Mycobacterium tuberculosis proteins, 
allowing novel targets to be investigated.1

Methotrexate (MTX) is a DHFR inhibitor that binds to 
both human DHFR (h-DHFR) and mycobacterium tubercu-
losis DHFR (mt-DHFR) without any significant selectivity. 
This inhibition is the basis for the use of MTX in cancer 
chemotherapy and it has been widely used in the past for the 
treatment of a variety of malignancies, including breast, head 
and neck, leukemia, lymphoma, lung, osteosarcoma, bladder, 
and trophoblastic neoplasms.7,8 Nevertheless, MTX is not 
selective for mt-DHFR 9. Trimethoprim (TMP) and 
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pyrimethamine (PYR) are selective and powerful inhibitors of 
protozoan DHFR,9,10 but they have a low affinity for mt-
DHFR.9 The triazine Br-WR99210 has been shown to be a 
potent inhibitor of malaria DHFR but not mycobacteria.11

As DHFR is present in both prokaryotes and eukaryotes,12 
special attention must be paid to the selectivity between the 
two proteins; mt-DHFR and h-DHFR. This difference can be 
exploited for the design of a new selective inhibitor for mt-
DHFR, a glycerol molecule (glycerol A) is found close to the 
active site in a pocket (GOL pocket) in mt-DHFR.13 This 
pocket does not exist in the human protein.13

The aim of our study is to explore two new specific and selec-
tive inhibitors of mt-DHFR and h-DHFR, respectively, that 
have an affinity better than MTX and the natural ligand by 
screening a large library of molecules from chemical databases 
using structure-based drug design (SBDD), focusing on the key 
player in our workflow study, which is selectivity. Molecular 
docking and 3D pharmacophore modeling were used in virtual 
high-throughput screening to discover potential inhibitors of 
mt-DHFR and to highlight the main features involved in the 
biological inhibitory activity in the drugs used against the target 
protein and to examine the potency of the selective hit found and 
also to explore a new non-toxic inhibitor for h-DHFR protein.

Materials and Methods
Target selection and preparation of DHFR protein

The X-ray crystallographic structure of mt-DHFR (PDB ID: 
1DF7) with a resolution of 1.70 Å and h-DHFR (PDB ID: 
1OHJ) with a resolution of 2.50 Å were obtained from the 
Protein Data Bank (PDB) database.14 The protein structures 
were prepared using AutoDockTools-V.1.5.7,15 by removing 
water molecules and adding polar hydrogens and Kollman 
United Atom charges then the file was saved in “pdbqt” format.

Construction of ligands data set and f iltration

To search for ligands that have structural complementarity with 
the active site of the target in BindingDB16 and selleckchem17 
databases. A library of 8 412 molecules was collected and then 
downloaded under spatial data file (SDF) format with 3D con-
formation, the elimination of duplicates and the conversion into 
a PDB file format was carried out by OpenBabel.18 Drug-
likeness score prediction of those compounds was evaluated by 
calculating the descriptors in Molecular Operating Environment 
(MOE). From 8 412 molecules, 54 compounds were selected for 
molecular docking preparation that respects Lipinski’s rule of 
five (RO5) and Veber rules.

The toxicity assessment of the molecules used in our study 
was performed using Mcule Toxicity Checker,19 StopTox,20,21 
and Protox-II.22 Based on this evaluation, only 11 compounds 
have been selected for molecular docking with the mt-DHFR 
and h-DHFR, all the ligands were prepared and contain atom 
types supported by AutoDock tools plus extra records that 
specify rotatable bonds and then saved in pdbqt format.

Five known approved drugs against mt-DHFR were col-
lected from literature, namely, Bromo_WR99210, methylben-
zoprim, MTX, PYR, TMP, and also the dihydrofolic acid as a 
positive control. From each of them, we searched for their 3D 
structures using the PubChem database.23

Docking and scoring

After selecting the active site residues of DHFR protein using 
AutoDock tools 1.5.7,24 this allowed the preparation of the 
grid box, with a spacing of 1 Å and center coordinates fixed at 
X = 10.16 Å, Y = 37.35 Å, Z = 14.58 Å and a size of X = 18 Å, 
Y = 18 Å, Z = 18 Å. The grid settings file was saved via the out-
put option of the grid menu.

To select ligands with lower affinity values, AutoDock 
Vina was used to assess the binding affinity and binding con-
formation of these selected ligands. The tool is designed for 
protein–ligand docking, using multiple CPUs simultane-
ously, making it faster and more accurate, and uses Lamarckian 
genetic algorithm and semi-empirical free energy field to 
generate ten ligand poses after docking.25 Three-dimensional 
protein–ligand interactions were visualized in PyMol.26

Three-dimensional pharmacophore building

To build the training set of the five compounds commonly 
used as inhibitor DHFR protein, pharmacophore query 
methodology was used, this method is based on searching 3D 
distances between features like HBD/HBA, hydrogen bond 
(H-bond) donors/acceptors; PI, positive ionizable; ARO, aro-
matic ring; Hyd, hydrophobic centers; ML, metal ligand; Cat, 
cation; Ani, anion.27 For this purpose, MOE tool was used.

Energy optimization and minimization of these compounds 
were done and aligned through the flexible alignment tool of 
MOE, and the generation of the best pharmacophoric model 
with the lowest S value and with the first common features has 
been done using the pharmacophore query editor tool.

The test set of the best four of 11 final compounds was cre-
ated and then screened against the pharmacophore model to 
find the best matches in terms of root mean square deviation 
(RMSD) between pharmacophore query features and corre-
sponding ligand points. The compound with the lowest RMSD 
value (close to 0) was selected as the more potent compound that 
has the best binding affinity and biological activity. In parallel, 
we used the scatter plot to highlight the best ligand with the 
lowest (RMSD), which provides the mapping between features 
and annotation points of ligands in several conformations.

Molecular dynamics simulations

To analyze protein–ligand interaction energy, MD simulations 
of 100 ns interval were performed using GROMACSv.2020.4,28 
for the following complexes: the human protein h-DHFR 
with the best ligand found by docking, human protein 
h-DHFR with MTX, mycobacterium protein mt-DHFR 
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with the best compound found by docking, and mycobacte-
rium protein mt-DHFR with MTX.

The CHARMM27 force field29 was used to describe the 
interactions between the protein and the solvent, while TIP3P30 
was used as the water model. A cubic simulation box with an 
edge length of 1.0 nm was used to solvate the protein. The sys-
tem was neutralized by adding an equal number of positive and 
negative ions to reach a target ion concentration. The system 
was then minimized using the steepest descent algorithm, and 
equilibrated at 300 K using V-rescale for 100 ps as NVT ensem-
ble, and finally, production runs were carried out using an NPT 
ensemble with a time step of 100 ps followed by equilibration at 
1 atm pressure using Parrinello–Rahman algorithm.31 While 
LINCS algorithm was applied for bond constraints with dis-
tance cut-off using Verlet during the simulation.28

Molecular dynamics analysis

To gain a better understanding of the structural changes that 
occur during the simulation, The RMSD of atomic coordi-
nates, root mean square fluctuation (RMSF), radius of gyration 

(Rg), solvent accessible surface area (SASA), and H-bond 
parameters were calculated using the gmx_rms tool in 
GROMACS.32

Results
Data set generation

Table 1 depicts the 11 selected potential inhibitors with their 
toxic/non-toxic report and the five commonly used inhibitors 
of the protein as a test reference.

Docking and scoring

The 11 molecules that passed the RO5, Veber, and toxicity fil-
ters were compared with five reference molecules in addition to 
the natural ligand of the target (dihydrofolic acid). The results 
showed that MTX is the best reference inhibitor as shown in 
Figure 1A, with an affinity of –8.7 and an H-bond number of 6.

Based on the binding affinity, 11 molecules with the best 
binding affinity to mt-DHFR ranging from –9.6 to –7.4 kcal/
mol were selected. As shown in Figure 1B, ligand 1 and 

Table 1. All selected inhibitors, dihydrofolic acid, and their IUPAC identifier and their toxicity test.

MOLECULE IUPAC TOxICITy

BDBM18226 5-[3-[(2,4-diamino-5-methylpyrido[2,3-d]pyrimidin-6-yl)methyl]-4-methoxyphenoxy]
pentanoic acid

Non-toxic

BDBM50145795 3-[11-[(2,4-diaminopteridin-6-yl)methyl] benzo [b][1] benzazepin-3-yl] oxypropanoic 
acid

Non-toxic

BDBM18225 4-[3-[(2,4-diamino-5-methylpyrido[2,3-d]pyrimidin-6-
yl)methyl]-4-methoxyphenoxy]butanoic acid

Non-toxic

BDBM18227 6-[3-[(2,4-diamino-5-methylpyrido[2,3-d]pyrimidin-6-yl)methyl]-4-methoxyphenoxy]
hexanoic acid

Non-toxic

BDBM18228 4-[2-[(2,4-diamino-5-methylpyrido[2,3-d]pyrimidin-6-yl)methyl]-4-methoxyphenoxy]
butanoic acid

Non-toxic

BDBM18234 4-[11-[(2,4-diaminopteridin-6-yl)methyl]benzo[b][1]benzazepin-3-yl]but-3-ynoic acid Non-toxic

BDBM18235 5-[11-[(2,4-diaminopteridin-6-yl)methyl]benzo[b][1]benzazepin-3-yl]pent-4-ynoic acid Non-toxic

BDBM18236 6-[11-[(2,4-diaminopteridin-6-yl)methyl]benzo[b][1]benzazepin-3-yl]hex-5-ynoic acid Non-toxic

BDBM50145798 4-[11-[(2,4-diaminopteridin-6-yl)methyl]benzo[b][1]benzazepin-3-yl]oxybutanoic acid Non-toxic

BDBM50145799 5-[11-[(2,4-diaminopteridin-6-yl)methyl]benzo[b][1]benzazepin-3-yl]oxypentanoic acid Non-toxic

BDBM50514994 1 N-[2-(2-amino-4-oxo-3,7-dihydropyrrolo[2,3-d]pyrimidin-6-yl)ethyl]-4 N-(pyridin-2-
ylmethyl)benzene-1,4-dicarboxamide

Non-toxic

Bromo_WR99210 1-[3-(4-bromophenoxy)propoxy]-6,6-dimethyl-1,3,5-triazine-2,4-diamine Non-toxic

Methylbenzoprim 5-[4-[benzyl(methyl)amino]-3-nitrophenyl]-6-ethylpyrimidine-2,4-diamine Non-toxic

Methotrexate (2 S)-2-[[4-[(2,4-diaminopteridin-6-yl)methyl methylamino] benzoyl]amino] 
pentanedioic acid

Toxic

Pyrimethamine 5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine Non-toxic

Trimethoprim 5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Non-toxic

Dihydrofolic acid (2 S)-2-[[4-[(2-amino-4-oxo-7,8-dihydro-3 H-pteridin-6-yl)methylamino]benzoyl]amino]
pentanedioic acid

Non-toxic
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ligand 2 (BDBM18226 and BDBM50145795) were the 
most important ones as they showed a greater affinity than 
the rest of the inhibitors with the best affinity (–9.6 kcal/
mol) for mt-DHFR and (–7.3 kcal/mol) for h-DHFR, the 
affinity of the 11 molecules toward the two target proteins, 
the number of H-bonds are shown in Table 2.

Figure 2A shows the 3D interaction between the mt-
DHFR and ligand 1, the result shows that BDBM18226 
binds with the target protein with seven H-bonds; one H-bond 
to the following residues ILE-5, ARG-32, ARG-60, ILE-94, 
TYR-100, and two H-bonds with MET-36. While 

BDBM50514994 binds with the h-DHFR with four H-bonds 
with four residues; ILE-7, GLU-30, GLN-35, and TYR-121, 
and an affinity of 9.9 kcal/mol (Figure 2B).

Toxicity profile prediction

The best molecules obtained were compared with the best drug 
used (MTX) based on affinity score, H-bonds, and toxicity 
prediction.

The toxicity profile of MTX in comparison with the two 
best selective molecules found in BDBM18226 and 

Figure 1. The results of the docking analysis: (A) The binding affinity of the known inhibitors against mt-DHFR protein. (B) Bar graph representing the 

binding energy (in kcal/mol) for the 11 ligands and the potent reference ligand; methotrexate with the two targets; h-DHFR in pink and mt-DHFR in purple.
h-DHFR indicates human dihydrofolate reductase.
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BDBM50514994 shows that MTX clearly ranks in the most 
dangerous class (Supplemental Figure S1); class 1 with a 
median lethal dose (LD50) of 3 mg/kg, while the other two 
molecules rank in less critical classes with an affordable lethal 
dose (Supplemental Figure S2).

Pharmacophore model result

Based on the five known reference inhibitors with biological 
inhibitory activity against the DHFR protein, a pharmacophore 
map was generated to highlight the main features that are 
involved in this inhibitory effect as shown in Figure 3.

The map clearly shows that there are five features: F1: 
ML|Don|Acc, F2: ML|Hyd|Acc|Don, F3: ML|Aro|Hyd|Acc, 
F4: Aro|Hyd, and F5: ML|Hyd|Acc, respectively (Figure 3A 
and B).

The distances between the pharmacophore features were 
determined in Table 3, and it represents how the pharmacoph-
oric features are involved in interactions against the DHFR 
target protein.

As it was concluded that MTX is the best reference inhibi-
tor, we took ligands that have a better affinity than the refer-
ence indicated and which bind with mt-DHFR better than 
h-DHFR, which are in the order of four molecules. The 
resulting compounds were then subjected to screening against 

the pharmacophore model to find which one is close to the 
reference model, and which has the lowest RMSD close to 
zero, and corresponding ligand points, Figure 3C shows the 
best result obtained after the pharmacophore search, the best 
compound that has a low RMSD and has the characteristics 
described in the pharmacophore model is ligand 1 with the 
following ID: BDBM18226. This result was confirmed by cal-
culating the RMSD values obtained from the four molecules 
in different conformations, Figure 4 shows a scatter plot that 
clearly describes that BDBM18226 is closer to zero than the 
other molecules.

Molecular Dynamic Analysis of Ligand–Protein 
Complex
mt-DHFR–ligand 1 complex

The dynamic simulation was performed by simulating two dif-
ferent complexes: mt-DHFR–MTX and mt-DHFR–ligand 1.

The result of the simulations was analyzed using RMSD, 
RMSF, Rg, SASA, and hydrogen bonding analysis, the results 
are shown in Figure 5 and Table 4 presents the mean and stand-
ard deviation. By quantifying the deviation from the simulated 
complex structure, the RMSD values indicate for the 
mt-DHFR–ligand 1 complex a closer match to the reference 
structure with a low RMSD value (0.16 ± 0.02) compared to 

Table 2. Docking results of mt-DHFR, h-DHFR, and selected molecules.

LIGAND NUMBER MOLECULE AFFINITy (kcal/mol) H-BONDS

MT-DHFR H-DHFR MT-DHFR H-DHFR

Ligand 1 BDBM18226 –9.6 –7.3 7 4

Ligand 2 BDBM50145795 –9.6 –7.3 6 7

Ligand 3 BDBM18225 –9.4 –8.2 7 7

Ligand 4 BDBM18227 –9 –8 8 6

Ligand 5 BDBM18228 –8.9 –8.9 7 6

Ligand 6 BDBM18234 –7.3 –8 5 4

Ligand 7 BDBM18235 –8.8 –6.9 5 2

Ligand 8 BDBM18236 –9.2 –8 5 3

Ligand 9 BDBM50514994 –8.9 –9.9 5 4

Ligand 10 BDBM50145798 –8 –6.3 8 6

Ligand 11 BDBM50145799 –9.6 –8.2 6 3

Ligand 12 Bromo_WR99210 –7.4 –7.6 2 6

Ligand 13 Methylbenzoprim –8.3 –7.6 5 3

Ligand 14 Methotrexate –8.9 –8.5 6 8

Ligand 15 Pyrimethamine –8 –7.3 2 3

Ligand 16 Trimethoprim –7.5 –6.7 5 5

Ligand 17 Dihydrofolic acid –8.8 –9.2 4 7

Abbreviation: h-DHFR, human dihydrofolate reductase.
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the mt-DHFR–MTX complex. In addition; by measuring the 
mobility or flexibility of the residues in the complex; RMSF 
values showed that mt-DHFR–ligand 1 complex shows low 
flexibility with an RMSF value of (0.06 ± 0.02) compared to 
mt-DHFR–MTX complex showing a higher value 
(0.09 ± 0.05). The Rg values indicated a more compact shape 
for mt-DHFR–ligand 1 (1.53 ± 0.008) in contrast to 
mt-DHFR–MTX (1.55 ± 0.001). SASA values revealed a 
greater solvent-exposed surface area for the mt-DHFR–ligand 
1 complex, compared to mt-DHFR–MTX, indicating more 
potential interactions with its environment. Finally, H-bond 
analysis, showed a higher number of H-bonds for the 

mt-DHFR–ligand 1 complex with numbers that can reach 12 
H-bonds while the complex mt-DHFR–MTX can reach only 
six H-bonds, contributing to its stability and target specificity 
compared its mt-DHFR–MTX.

H-DHFR–ligand 9 complex

Concerning the h-DHFR–ligands simulations, the results of 
molecular dynamics between h-DHFR–MTX and h-DHFR–
ligand 9 complex showed differences in various parameters, 
such as RMSD, RMSF, Rg, SASA, and H-bonds. Figure 6 and 
Table 4 present the mean and standard deviation. The RMSD 

Figure 2. The 3D interactions between the target protein and the best ligand found: (A) The 3D interactions between mt-DHFR–-ligand 1. (B) The 3D 

interaction between the h-DHFR–ligand 9.
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values indicated a higher degree of structural stability with a 
good agreement between the h-DHFR protein and the ligand 
9 with a low RMSD value of (0.17 ± 0.04) compared to the 

h-DHFR–MTX complex that has a value of (0.29 ± 0.05). 
The RMSF value revealed that h-DHFR–ligand 9 interaction 
reduces flexibility in certain regions of the protein and the 

Table 3. Pharmacophore features (F1, F2, F3, F4, and F5) with distance constraints (Å)..

FEATURE TyPE F1. ML|DON|ACC 
(Å)

F2. ML|HyD|ACC|DON 
(Å)

F3. ML|ARO|HyD|ACC 
(Å)

F4. ARO|HyD (Å) F5. ML|HyD|ACC 
(Å)

F1. ML|Don|Acc 0 2.29 2.35 7.22 10.31

F2. ML|Hyd|Acc|Don 2.29 0 2.02 5.40 8.39

F3. ML|Aro|Hyd|Acc 2.35 2.02 0 5.09 8.19

F4. Aro|Hyd 7.22 5.40 5.09 0 3.13

F5. ML|Hyd|Acc 10.31 8.39 8.19 3.13 0

Figure 3. The 3D-pharmacophore results. (A) The pharmacophore map generated after the flexible alignment of the five reference inhibitors, it shows the 

different features explored in the model structure. (B) A simplified view of the model without ligands. (C) The best molecule obtained after the screening 

with the reference pharmacophoric map.
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model is more stable compared to the h-DHFR–MTX com-
plex. The h-DHFR–ligand 9 complex had also a lower Rg 
value (1.60 ± 0.1). The SASA results showed an increase in the 
exposed surface area of the protein in the h-DHFR–ligand 9 
complex with a value of (93.98 ± 0.9). Finally, the H-bond 
analysis showed a higher number of H-bonds formed in the 
complex h-DHFR–ligand 9 that can reach 14 H-bonds, while 
the complex h-DHFR–MTX can reach only a number of six 
H-bonds.

Discussion
Our study treats two topics, the first one is to identify the spe-
cific features required to prevent the activity of mt-DHFR pro-
tein and to explore a new compound for selective inhibition 
through a computational approach to solve the resistance to 
treatments of TB, due to the mutations of this bacterium, and 
the second one is about the exploration of a new non-toxic 
h-DHFR inhibitor that can be used as an alternative to MTX 
in cancer therapy as MTX is a toxic drug and used like medi-
cine that target DHFR protein.

The current study uses the advantages of virtual high-
throughput screening approaches to identify molecules target-
ing mt-DHFR protein. In the extension of the mt-DHFR 
ligand pocket, there is a small hydrophobic pocket that hosts a 
glycerol molecule (GOL), this pocket does not exist in the 
human protein.13 Based on these data, and considering that 
DHFR is present in both humans and bacteria, selectivity 
becomes an important criterion in the design and development 
of new compounds.

To explore selective inhibitors for mt-DHFR, the study was 
executed with two target proteins mt-DHFR and h-DHFR. A 
database of 8 412 compounds from the binding database and 
selleckchem was created and screened against mt-DHFR, the 
results obtained were subsequently screened against h-DHFR 
to study the selectivity. Among the 8 412 molecules, 11 com-
pounds that obeyed Lipinski’s RO5 and Veber’s rules, and are 
non-toxic were selected and docked against both human and 

bacterial enzymes to measure the potency as well as the 
selectivity.

As a positive control, five known and Food and Drug 
Administration (FDA)-approved inhibitors that have inhibi-
tory activity against the target protein and the natural substrate 
(dihydrofolate) were selected, all five inhibitors of reference 
have shown a good affinity toward the enzyme, the most potent 
one is MTX that showed the lowest value of affinity energy 
(–8.9 kcal/mol), this molecule is used usually as an anticancer 
drug,7 based on the aforementioned information, MTX was 
taken as the inhibitor of reference in terms of energy score to 
compare its activity and potency with the 11 selected 
molecules.

The total of the 11 molecules was docked against the human 
enzyme (h-DHFR) and the bacterial enzyme (mt-DHFR) 
with glycerol to see the effect of the extra glycerol pocket on 
the selectivity of the inhibitors and if we can use this informa-
tion in the design of specific drugs.

The inhibition of DHFR is the basis for the use of MTX as 
a cancer chemotherapy drug.7 In our study, we approved the 
toxic profile of this drug using in silico approach, MTX was 
found to be in class 1 in toxicity level with an LD50 of 3 mg/
kg, which was approved by another study; a meta-analysis 
reported across Asian, Caucasian, pediatric, and adult patients 
that treats three systematic reviews on MTX-induced toxic-
ity,33 another research on MTX doses described that MTX is 
administered at doses ranged from 12 mg intrathecally and 
20 mg/m2 orally, or intravenously as weekly maintenance 
chemotherapy for all to doses as high as 33 000 mg/m2, higher 
given intravenously are defined as high-dose MTX (HDMTX) 
therapy that can cause significant toxicity, which not only leads 
to morbidity and occasional mortality but may also interrupt 
cancer treatment.34

Searching for a non-toxic alternative drug that has a better 
affinity than MTX for h-DHFR was the second part of this 
study. The h-DHFR docking results showed that only 
BDBM50514994 with (–9.9 kcal/mol) has a better affinity 

Figure 4. Scatter plot representation that groups all the RMSD values of the four candidate molecules in different conformations. Each point presents a 

conformation with an RMSD value.
RMSD indicates root mean square deviation.
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Figure 5. Protein–ligand molecular dynamics analysis for mycobacterium tuberculosis protein. (A) The RMSD analysis of mt-DHFR–ligand 1 (green) and 

mt-DHFR–MTx (blue) calculated for 100 ns. (B) The RMSF of each mt-DHFR–ligand 1 and mt-DHFR–MTx complex according to residue numbers. (C) 

The radius of gyration of the two protein–ligand complexes calculated at the two simulations. (D) The SASA analysis calculated for the mt-DHFR–ligand 1 

and mt-DHFR–MTx for 100 000 ps. (E) The hydrogen bonds analysis of the two complexes.
mt-DHFR indicates mycobacterium dihydrofolate reductase; MTx, methotrexate; RMSD, root mean square deviation.
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than the reference ligand (MTX) with a binding energy of 
–8.5 kcal/mol—and the natural ligand itself (dihydrofolic acid) 
that have an affinity of 9.2 kcal/mol, In regards to the 

mt-DHFR docking results, showed that only four compounds 
of 11 have better affinity than the inhibitor of reference (MTX) 
that have binding affinity energy of –8.9 kcal/mol and the 

Figure 6. Protein–ligand molecular dynamics analysis for the human protein. (A) The RMSD analysis of h-DHFR–ligand 9 (cyan) and h-DHFR–MTx 

(pink) calculated for 100 ns. (B) The RMSF values according to residue numbers of the human protein. (C) Radius of gyration (Rg) of the h-DHFR–ligand 9 

and h-DHFR–MTx calculated at the two simulations for 100 000 ps. (D) The SASA analysis calculated for the h-DHFR–ligand 9 and h-DHFR–MTx. (E) 

The hydrogen bonds analysis of the two complexes.
h-DHFR indicates human dihydrofolate reductase; MTx, methotrexate; RMSD, root mean square deviation; RMSF, root mean square fluctuation; SASA, solvent 
accessible surface area.
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dihydrofolic acid (natural ligand) that have a binding energy of 
–8.8 kcal/mol, the lowest affinity value registered is (–9.6 kcal/
mol) and it is the same shared between ligands 1, 2, and 11, 
followed by ligand 3 (–9.4 kcal/mol) with 7, 6, 6, 7 H-bonds, 
respectively. The ligands BDBM18226 (ligand 1) and 
BDBM50514994 (ligand 9) proved to be the most effective 
compounds promising to inhibit mt-DHFR and h-DHFR, 
respectively.

To identify the features involved in the inhibitory activity of 
the five known inhibitors, a reference pharmacophoric map was 
generated in our study, the map clearly shows that the five mol-
ecules share five features that are: F1: ML|Don|Acc, F2: 
ML|Hyd|Acc|Don, F3: ML|Aro|Hyd|Acc, F4: Aro|Hyd, and 
F5: ML|Hyd|Acc, respectively, as was clearly shown in Figure 
3, and to evaluate the inhibitory activity of the four best com-
pounds found, the resulting compounds were screened against 
the pharmacophore model, and a search in the pharmacophoric 
scaffold was carried out, the best with a lowest RMSD that has 
all the features found in the map model is the compound 
5-[3-({2,4-diamino-5-methylpyrido[2,3-d]pyrimidin-6-yl}
methyl)-4-methoxyphenoxy]pentanoic acid, that present an 
RMSD close to zero, this compound has been identified as a 
50% inhibition of growth in the culture at 0.0011 mM for 
DHFR protein of Bacillus cereus.35

Based on the structure of these compounds, the pharmaco-
phoric map showed that the hydrophobic Hyd groups and the 
donor/acceptor region play a vital role in their binding to the 
mt-DHFR protein. HBA groups enforce the interaction 
between the ligands and the pocket site of the target 
protein.36-38

BDBM18226 (ligand 1) and BDBM50514994 (ligand 9) 
have shown promising potential as inhibitory agents of mt-
DHFR and h-DHFR, respectively. To assess the stability and 
quality of the protein–ligand complex models, we compared 
these compounds with MTX using molecular dynamics simula-
tions and various parameters including RMSD, RMSF, Rg, 
SASA, and H-bonds. The h-DHFR/mt-DHFR–MTX com-
plexes were found to be less optimal, as reflected by the higher 
RMSD and RMSF values and larger Rg values, indicating less 
stability and compactness.39 The most significant fluctuations in 

the RMSF values were observed in the active site residues, par-
ticularly Asn19, Glu44, Lys55, Ser59, Lys80, Asp145, Arg150, 
Ser153, and Gly164 for h-DHFR, and Gly17, Asp70, Glu122, 
and Ala123 for mt-DHFR. The limited number of H-bonds 
formed by MTX with the h-DHFR/mt-DHFR protein and the 
higher SASA values suggest that MTX is less buried in the com-
plex and less protected by the solvent environment, leading to 
instability. Overall, BDBM18226 and BDBM50514994 showed 
better stability and specificity compared to MTX, making them 
promising candidates for inhibitory agents against mt-DHFR 
and h-DHFR for therapeutic intervention against TB and 
cancer.40

The dynamic molecular analysis of mt-DHFR–ligand 1 
and h-DHFR–ligand 9 provided valuable insights into the 
binding behavior of these ligands. The RMSD value for 
mt-DHFR–BDBM18226 (0.16 ± 0.02 nm) and h-DHFR–
ligand 9 (0.17 ± 0.04 nm) was found to be lower than that of 
the DHFR–MTX complexes, indicating a tighter binding of 
these ligands to the mt-DHFR/h-DHFR proteins with stable 
interactions and a strong binding affinity. Moreover, the RMSF 
values for BDBM18226 and ligand 9 were lower (0.06 ± 0.02 
and 0.10 ± 0.03 nm, respectively), indicating a more stable and 
accurate model with fewer fluctuations. In addition, the Rg and 
SASA values of the complex models were found to be smaller, 
indicating that the two ligands induced a more compact struc-
ture and had stronger interactions with the mt-DHFR/h-
DHFR proteins. This could be attributed to the formation of 
new H-bonds between the protein and the ligand, as demon-
strated in the analysis of H-bonds, which showed that the 
complexes had a higher number of H-bonds (up to 14 
H-bonds). Overall, the dynamic molecular analysis of 
mt-DHFR–ligand 1 and h-DHFR–ligand 9 revealed impor-
tant information about their binding behavior, highlighting 
their strong affinity and stable interactions with the mt-
DHFR/h-DHFR proteins.41,42

Based on their stability and specificity, as evidenced by their 
low RMSD and RMSF values, as well as their ability to induce 
a more compact shape and a higher number of stable H-bonds, 
Ligand 1 (5-[3-[(2,4-diamino-5-methylpyrido[2,3-d]pyrimi-
din-6-yl)methyl]-4-methoxyphenoxy]pentanoic acid) and 

Table 4. The average of the analyzed parameters of mt-DHFR, h-DHFR, and the ligands 1 and 9.

MT-DHFR–MTx MT-DHFR–LIGAND 1 H-DHFR–MTx H-DHFR–LIGAND 9

RMSD (nm) 0.19 ± 0.01 0.16 ± 0.02 0.17 ± 0.04 0.29 ± 0.05

RMSF (nm) 0.09 ± 0.05 0.08 ± 0.04 0.14 ± 0.05 0.10 ± 0.03

Rg (nm) 1.55 ± 0.01 1.53 ± 0.008 1.66 ± 0.03 1.60 ± 0.1

SASA (nm2) 90.17 ± 0.10 89.39 ± 0.92 104.80 ± 1.17 103.98 ± 0.9

H-bond 0.57 ± 0.83 4.23 ± 1.86 2.48 ± 1.9 3.58 ± 2.09

Abbreviations: h-DHFR, human dihydrofolate reductase; mt-DHFR: mycobacterium tuberculosis dihydrofolate reductase; RMSD, root mean square deviation; RMSF, root 
mean square fluctuation; SASA, solvent accessible surface area.
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BDBM50514994 (4-[11-[(2,4-diaminopteridin-6-yl)methyl]
benzo[b][1]benzazepin-3-yl]oxybutanoic acid) have the 
potential to be effective inhibitory agents of mt-DHFR and 
h-DHFR, respectively. These findings suggest that these com-
pounds could be used for therapeutic intervention against TB 
and cancer therapy.

Conclusion
The problem of resistance to anti-TB drugs poses a signifi-
cant challenge in combating TB. The need to explore new 
alternative hits remains the most effective solution to combat 
this problem. The novo synthesis pathway of folic acid is a 
very powerful pathway and a very interesting therapeutic tar-
get. Our findings identified two new compounds; 
(5-[3-[(2,4-diamino-5-methylpyrido[2,3-d] pyrimidin-6-yl) 
methyl]-4- methoxyphenoxy] pentanoic acid) and 
(4-[11-[(2,4-diaminopteridin-6-yl) methyl] benzo[b][1] 
benzazepin-3-yl] oxybutanoic acid) that are selective for mt-
DHFR, and h-DHFR, respectively. These compounds could 
be developed as potential inhibitors for the DHFR protein 
and could significantly expand the chemical space for new 
mt-DHFR inhibitors. Our study presents promising oppor-
tunities to address the challenge of resistance to anti-TB 
drugs and provide new avenues for the development of drugs 
against cancer.
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