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Abstract 17 

The aging process involves numerous molecular changes that lead to functional decline and in-18 

creased disease and mortality risk. While epigenetic aging clocks have shown accuracy in pre-19 

dicting biological age, they typically provide single estimates for the samples and lack mechanis-20 

tic insights. In this study, we challenge the paradigm that aging can be sufficiently described 21 

with a single biological age estimate. We describe Ageome, a computational framework for 22 

measuring the epigenetic age of thousands of molecular pathways simultaneously in mice and 23 

humans. Ageome is based on the premise that an organism’s overall biological age can be ap-24 

proximated by the collective ages of its functional modules, which may age at different rates and 25 

have different biological ages. We show that, unlike conventional clocks, Ageome provides a 26 

high-dimensional representation of biological aging across cellular functions, enabling compre-27 

hensive assessment of aging dynamics within an individual, in a population, and across species. 28 

Application of Ageome to longevity intervention models revealed distinct patterns of pathway-29 

specific age deceleration. Notably, cell reprogramming, while rejuvenating cells, also accelerated 30 

aging of some functional modules. When applied to human cohorts, Ageome demonstrated het-31 

erogeneity in predictive power for mortality risk, and some modules showed better performance 32 

in predicting the onset of age-related diseases, especially cancer, compared to existing clocks. 33 

Together, the Ageome framework offers a comprehensive and interpretable approach for as-34 

sessing aging, providing insights into mechanisms and targets for intervention. 35 

  36 
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Introduction 37 

Aging is a complex biological process characterized by the progressive accumulation of molecu-38 

lar and cellular damage, leading to functional decline across various organ systems and ultimate-39 

ly increased mortality risk 1. While the precise mechanisms underlying aging are not fully eluci-40 

dated, substantial evidence points to the critical role of epigenetic alterations in this process 2. 41 

Among these epigenetic modifications, DNA methylation has emerged as a key area of focus in 42 

aging research. 43 

In mammalian systems, DNA methylation primarily occurs as 5-methylcytosine (5mC), a modi-44 

fication catalyzed by DNA methyltransferases (DNMTs) 3,4. Age-associated changes in DNA 45 

methylation patterns have been well-documented, with studies revealing a general trend of global 46 

hypomethylation accompanied by localized regions of hypermethylation 5–8. These age-related 47 

methylation changes exhibit remarkable consistency across individuals, enabling the develop-48 

ment of highly accurate predictive models known as ‘epigenetic aging clocks’ 9–11. These clocks 49 

have demonstrated a stronger correlation with various health metrics compared to chronological 50 

age, suggesting their potential as more accurate indicators of biological age 12,13. However, de-51 

spite their predictive power, these tools face limitations with regard to interpretability. Most no-52 

tably, they typically provide a single estimate of biological age for the entire sample, tissue or 53 

organism, potentially overlooking heterogeneity in aging rates across functional modules within 54 

the body. 55 

This limitation is particularly significant given that aging is not a uniform process across all bio-56 

logical systems. Different functional modules within an organism may age at varying rates, in-57 

fluenced by factors such as environmental exposures, genetic differences, and specific interven-58 

tions. For instance, calorie restriction (CR) has been shown to primarily affect glucose metabo-59 

lism pathways, while rapamycin treatment predominantly impacts the mTOR pathway 14. Recent 60 

studies on transcriptomics provide further evidence for this heterogeneity in aging processes. For 61 

example, cancer has been associated with pro-aging inflammatory responses and anti-aging 62 

changes in differentiation and ECM organization modules, while Klotho knock-out models ex-63 

hibit accelerated aging in respiration and energy metabolism pathways, but not in inflammation 64 

15. These observations underscore the need for a more mechanistic approach to measuring bio-65 

logical age that can capture the differential aging rates across various functional modules. 66 
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To address this gap, we developed Ageome, an interpretable aging clock framework designed to 67 

simultaneously measure the epigenetic age of thousands of molecular pathways in both mice and 68 

humans. Our approach is premised on the hypothesis that the overall biological age of an organ-69 

ism is determined by the collective biological ages of its constituent functional modules. The 70 

age-related epigenetic changes on module-related genes may either directly impact the gene ex-71 

pression or reflect regulatory changes (or lack thereof) on specific functional pathways during 72 

aging. Unlike conventional epigenetic clocks, Ageome provides a distribution of biological ages 73 

across different functional modules, offering a more comprehensive and granular view of the ag-74 

ing process. By applying Ageome to various models of aging and longevity interventions, we 75 

aim to establish a deeper understanding of rejuvenation and age acceleration mechanisms. This 76 

approach not only allows for the identification of pathways most affected by specific interven-77 

tions but also holds the potential to inform the development of targeted anti-aging strategies 78 

through a high-dimensional representation of biological aging. 79 

Results 80 

Constructing Ageome clocks 81 

We first obtained DNA methylation profiles of whole blood from 141 mice (C57Bl/6, 3- to 35-82 

month-old, 16 age groups) 16, and 2,664 human subjects 17,18. Biological features were assigned 83 

to CpG sites based on the annotations of nearby genes and cis-regulatory regions (Figure 1a, 84 

Methods) 19. Combining pathways and epigenetic information and applying elastic net regres-85 

sion, we constructed aging clocks for each pathway from Kyoto Encyclopedia of Genes and Ge-86 

nomes (KEGG), Reactome, and Hallmark geneset 20–22, resulting in 1,863 Ageome clocks. 87 

In human samples, applying Ageome to the Hallmark gene set, comprising 50 pathways, resulted 88 

in a mean absolute error (MAE) of 3.70 years and Pearson’s R of 0.879 between predicted and 89 

actual age in the test set (Figure 1b). For the KEGG gene set, encompassing 186 pathways, the 90 

mean MAE was 4.53 years, and Pearson’s R was 0.812. In Reactome, the largest gene set ana-91 

lyzed consisted of 1600 pathways; the mean MAE was 5.12 years, accompanied by a mean Pear-92 

son’s R of 0.750. Despite the complexity and variation in different gene sets, Ageome was able 93 

to maintain a reasonable level of accuracy in predicting chronological age. 94 
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Similarly, in mouse samples, the Hallmark gene set yielded a mean MAE of 3.90 months and 95 

Pearson’s R of 0.912 (Figure 1b); KEGG pathways featured a mean MAE is 4.71 months and 96 

Pearson’s R of 0.866; and Reactome pathways exhibited a mean MAE of 5.28 months and Pear-97 

son’s R of 0.818. These results collectively demonstrate the consistent performance of the 98 

Ageome framework across various functional modules, suggesting its utility in studying aging 99 

mechanisms across species. To obtain a single summary of Ageome, we also calculated the in-100 

verse-error-weighted average of all components of Ageome (termed as MetroAge, Figure 1c). 101 

MetroAge provided an accurate estimate of the age of the mice, with an MAE of 3.73 months 102 

and a Pearson’s R of 0.93. 103 

Different Ageome modules show distinct predictive power of aging 104 

We hypothesized that the difference in performance across different biological pathways is driv-105 

en by two factors: 1) the number of genes in the gene set, and 2) the association of epigenetic 106 

changes in gene regulatory regions with age. To test this hypothesis, we performed a regression 107 

analysis between the MAE and the number of genes in the gene set (Figure 1d). There was a sig-108 

nificant inverse linear relationship between test MAE and log-transformed number of genes in 109 

the gene set for both human (p < 2.2e-16, Pearson’s R = -0.85) and mouse (p < 2.2e-16, Pear-110 

son’s R = -0.65). These results suggest that the performance of Ageome clocks is partially driven 111 

by the number of genes in the gene set. To understand the association between Ageome and ag-112 

ing, we calculated the adjusted MAE for each pathway by regressing out the number of genes in 113 

the pathway. Upon adjusting for the number of genes in pathways, we found that the pathways 114 

most predictive of aging in humans were primarily associated with lipid metabolism (Figure 2a). 115 

The top five lipid metabolism pathways were: Linoleic acid metabolism (residual -1.51), Synthe-116 

sis of very long chain fatty acyl CoAs (residual -1.27), Alpha-linolenic (omega 3) and linoleic 117 

(omega 6) acid metabolism (residual -1.16), Biosynthesis of unsaturated fatty acids (residual -118 

1.13), and Fatty acyl CoA biosynthesis (residual -1.04). Conversely, pathways that were least 119 

predictive of aging (those with positive residuals) were mainly related to immune system regula-120 

tion and DNA replication. These include the Activation of C3 and C5 (residual 3.11), Assembly 121 

of the ORC complex at the origin of replication (residual 2.64), and E2F-enabled inhibition of 122 

pre-replication complex formation (residual 2.34). 123 
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Similarly, we found that the top age-predicting pathways in mice were predominantly associated 124 

with ion transport and neurological signaling (Figure 2b). The top five were: Ca2+ activated K+ 125 

channels (residual -2.81), Regulation of localization of FOXO transcription factors (residual -126 

2.79), Potassium channels (residual -2.76), Phase 0 rapid depolarisation (residual -2.75), and Do-127 

pamine neurotransmitter release cycle (residual -2.75). In contrast, pathways that were least pre-128 

dictive of aging were mainly related to DNA replication and various metabolic processes. These 129 

include the Assembly of the ORC complex at the origin of replication (residual 4.01), Synthesis 130 

of 12-eicosatetraenoic acid derivatives (residual 3.35), and Maturation of SARS-CoV-1 spike 131 

protein (residual 3.33). 132 

We also found that the adjusted MAE across pathways is significantly conserved between hu-133 

mans and mice (Pearson’s R = 0.51, p-value < 2.2e-16, Figure 2c). Notably, pathways related to 134 

voltage-gated potassium channels, hedgehog signaling, and genes defining early response to es-135 

trogen exhibited strong negative residuals in both species. Similarly, lipid metabolism pathways, 136 

including linoleic acid metabolism, alpha-linolenic (omega3) and linoleic (omega6) acid metabo-137 

lism, and biosynthesis of unsaturated fatty acids, emerged as highly accurate age predictors. On 138 

the other hand, pathways that showed less predictive power and hence had positive residuals 139 

were primarily related to DNA replication and immune system regulation. These include E2F-140 

enabled inhibition of pre-replication complex formation, CD22-mediated BCR regulation, at-141 

tachment of GPI anchor to uPAR, CDC6 association with the ORC: origin complex, and assem-142 

bly of the ORC complex at the origin of replication. In summary, these findings underscore the 143 

potential of certain conserved pathways to accurately predict age across different species. This 144 

suggests that, despite complexity of aging, there are common biological underpinnings that are 145 

reflected in these conserved pathways. 146 

To further investigate the evolutionary conservation of age-related epigenetic changes across 147 

species, we performed a scaling law analysis of pathway-specific methylation rates in 42 mam-148 

mals with varying maximum lifespans (Figure 2d). We observed a general trend of decreasing 149 

methylation rates with increasing maximum lifespan across mammalian species, consistent with 150 

previous findings of slower epigenetic aging in longer-lived species 23. However, the rate of this 151 

decrease varied substantially among different pathways. Upon further investigation, we found 152 

that while the average scaling law was independent of the pathway size, our confidence in the 153 
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inference decreased with the size of the pathway (Extended Data Figure S1 a, b). For this pur-154 

pose, we developed a size-sensitive null hypothesis based on random simulations of pathways of 155 

different sizes and associated a two-tailed p-value to each pathway (Extended Data Figure S1 c). 156 

These results suggest that evolutionary pressures on longevity affect various biological processes 157 

proportionally to the age-related number of sites included in pathways. 158 

Notably, twelve pathways exhibited significantly different methylation rates scaling patterns 159 

across species lifespans compared to the genome-wide baseline. Three of them remain signifi-160 

cant after being corrected for multiple tests with FDR, namely ESR-mediated signaling, signal-161 

ing by nuclear receptors, and mRNA splicing. Among them, ESR-mediated signaling and signal-162 

ing by nuclear receptors show a significantly slower or no decline in methylation rates with in-163 

creasing lifespan, suggesting that these pathways may play conserved roles in aging processes 164 

across mammals, regardless of species-specific longevity. In contrast, mRNA splicing showed 165 

more rapid declines in methylation rates with increasing lifespan, hinting at potential adaptive 166 

changes in longer-lived species, possibly reflecting more efficient regulation of this process in 167 

animals with extended lifespans. 168 

Ageome predicts mortality risk and reveals hallmark agers 169 

To assess the clinical relevance of Ageome, we applied our framework to the Normative Aging 170 

Study (NAS) cohort, comprising 1,488 individuals with a 38.8% mortality rate (Figure 3a). We 171 

analyzed the association between 1,863 Ageome clocks and mortality risk, revealing significant 172 

heterogeneity in the predictive power of different pathways. Among the clocks tested, 1,506 173 

Ageome clocks showed a significant association with mortality risk after correction for multiple 174 

testing (FDR < 0.05, Figure 3a). Several pathways, including gluconeogenesis, RHOF GTPase 175 

cycle, and amino acid regulation of mTORC1, exhibited both high statistical significance and 176 

hazard ratios for mortality risk. Interestingly, there are 11 models that show inverse association 177 

with mortality, similar to AdaptAge, suggesting that these modules may potentially contribute to 178 

protective changes during aging. We also showed that the accuracy of Ageome clocks was only 179 

weakly correlated with their predictive power for mortality (Figure 3b). This suggests that the 180 

biological processes most indicative of chronological age may not necessarily be the most pre-181 

dictive of mortality risk. 182 
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We then focused our analysis on the 12 hallmarks of aging, which have Pearson’s correlation 183 

coefficient of at least 0.5 with chronological age (Figure 3c-d, Methods). Notably, transcriptional 184 

alterations, stem cell exhaustion, and nuclear DNA instability demonstrated the strongest correla-185 

tions with age. When examining the relationship between hallmark clocks and mortality risk, we 186 

found that sterile inflammation, degradation of proteolytic systems, and nuclear DNA instability 187 

were associated with the highest hazard ratios (Figure 3e). These particular hallmarks may there-188 

fore play a more significant role in determining lifespan. Moreover, the age deviation term of all 189 

12 hallmarks shows a significant positive correlation with each other, except between nuclear 190 

DNA instability and transcriptional alterations, as well as degradation of proteolytic systems 191 

(Figure 3f). 192 

Intriguingly, our clustering analysis identified distinct clusters of individuals who show positive 193 

age deviation on specific hallmark pathways (i.e., specific hallmark agers, Figure 3g). These in-194 

dividuals, representing 29.50% of the cohort, showed accelerated aging primarily in one or a few 195 

specific hallmarks. The distribution of these hallmark agers varied, with multi-hallmark agers 196 

being the most common, followed by those predominantly affected by sterile inflammation and 197 

senescent cell accumulation (Figure 3g). These hallmark agers tended to have more prior health 198 

conditions compared to non-hallmark agers based on regression analysis on disease count (P = 199 

0.004). This finding suggests that aging trajectories assessed at the epigenetic level can differ 200 

significantly between individuals, consistent with previous reports leveraging alternative omics 201 

measurements 24–26. Some people may experience accelerated aging in specific biological pro-202 

cesses while maintaining relative youth in others. This heterogeneity in aging patterns could have 203 

important implications for personalized approaches to age-related interventions and preventive 204 

strategies. 205 

Ageome predicts the risk of diseases and separates disease types 206 

To evaluate clinical utility of Ageome, we applied our framework to the Mass General Brigham 207 

(MGB) cohort, comprising 4,246 individuals (Figure 4a) 27. We assessed the association between 208 

1,863 Ageome clocks and the risk of 43 diseases (including three general disease categories), 209 

spanning cardiovascular, cancer, respiratory, liver, and other conditions, comparing with four 210 

state-of-the-art published models (GrimAgeV2, DunedinPACE, PhenoAge, and YingDamAge) 211 

based on previous benchmarking result (Table 1)28. 212 
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For cardiovascular diseases (Figure 4b), Ageome showed superior performance for 6 out of 11 213 

conditions. Notably, for arterial embolism/thrombosis, the Interleukin 1 signaling pathway (HR 214 

= 2.24, p = 5.96e-04) and fatty acid metabolism (HR = 2.25, p = 1.16e-03) were particularly pre-215 

dictive. In cardiomyopathy, the Role of second messengers in netrin 1 signaling pathway (HR = 216 

1.42, p = 2.42e-05) outperformed existing models. For peripheral vascular disease, the Disas-217 

sembly of the destruction complex and recruitment of axin to the membrane pathway (HR = 218 

1.49, p = 6.65e-08) showed superior predictive power. 219 

In cancer prediction (Figure 4c), Ageome outperformed traditional risk factors for multiple can-220 

cer types (8 out of 14, including general cancer, which includes all cancer subtypes). For bladder 221 

cancer, the Transport of mature transcript to cytoplasm pathway (HR = 2.86, p = 9.61e-07) and 222 

Polymerase switching on the C strand of the telomere pathway (HR = 2.59, p = 1.58e-06) were 223 

highly predictive. In leukemia, the Mitotic G2 G2 M phases pathway (HR = 4.61, p = 8.35e-14) 224 

showed remarkable predictive power. For lung cancer, the Diseases of DNA repair pathway (HR 225 

= 2.37, p = 8.80e-05) outperformed existing models. Non-Hodgkin lymphoma (NHL) prediction 226 

was significantly improved by the Cytosolic DNA sensing pathway (HR = 3.52, p = 1.06e-16), 227 

as well as Systemic Lupus Erythematosus (SLE) pathway (HR = 4.83, p = 2.64e-12), consistent 228 

with clinical observations that the SLE patients are at greater risk for NHL 29. 229 

For respiratory diseases (Figure 4d), Ageome again demonstrated superior predictive capabilities 230 

(7 out of 8), particularly for asthma and bronchiectasis. The Miscellaneous transport and binding 231 

events pathway (HR = 1.55, p = 3.13e-07) was highly predictive for asthma, while the TRAF6 232 

mediated IRF7 activation in TLR7 8 or 9 signaling pathway (HR = 1.41, p = 8.34e-05) showed 233 

superior performance for bronchiectasis. In liver diseases (Figure S2), Ageome still provided 234 

valuable insights. For instance, the MASTL facilitate mitotic progression pathway was highly 235 

associated with non-alcoholic liver disease and general chronic liver disease risk. For other dis-236 

eases, Ageome showed particular strength in predicting Type 1 Diabetes, with the NLRP3 237 

inflammasome pathway (HR = 1.79, p = 1.78e-07) and DARPP 32 events pathway (HR = 1.65, p 238 

= 3.80e-08) outperforming existing predictors, which agrees with the investigated relationship 239 

between NLRP3 inflammasome and T1D 30. 240 

To further validate our findings, we conducted an independent benchmarking analysis (Figure 241 

4e) comparing Ageome to established aging clocks, specifically GrimAgeV2 and PhenoAge, us-242 
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ing the ComputAgeBench framework 31. This analysis evaluated the ability of these clocks to 243 

differentiate between aging acceleration conditions and healthy control samples across various 244 

disease categories, namely immune system diseases (ISD), musculoskeletal diseases (MSD), 245 

neurodegenerative diseases (NDD), progeroid syndromes (PGS), and respiratory diseases (RSD), 246 

metabolic diseases, and cardiovascular diseases. Ageome consistently matched the predictive 247 

power of GrimAgeV2 and PhenoAge across the examined disease categories. 248 

To investigate the bidirectional relationship between disease onset and epigenetic age accelera-249 

tion, we employed a novel bidirectional analysis approach using the MGB dataset. We conducted 250 

two types of tests: forward (βForward) and reverse (βReverse) for each of the Ageome predic-251 

tors. The forward test assessed how DNAm age acceleration might promote disease risk, while 252 

the reverse test examined how disease onset could potentially accelerate epigenetic aging. Delta 253 

beta (Δβ) represents the difference between the forward (βForward) and reverse (βReverse) ef-254 

fects (i.e., βReverse - βForward) for each disease. It quantifies the net direction and magnitude of 255 

the relationship between epigenetic age acceleration and disease. A negative Δβ indicates a 256 

stronger tendency for accelerated aging to precede disease onset, while a positive Δβ suggests 257 

that disease onset more strongly influences subsequent epigenetic age acceleration. The distribu-258 

tion of this metric across Ageome predictors provides a comprehensive summary of the domi-259 

nant direction in the aging-disease relationship for each condition studied. 260 

Our analysis uncovered distinct patterns across various diseases (Figure 4f, Figure S3). Certain 261 

conditions, including various cancers, other chronic hepatitis, and arterial embolism/thrombosis, 262 

showed stronger effects in the forward direction (βForward > βReverse), indicating that acceler-263 

ated epigenetic aging may be a more significant factor in their onset. Conversely, chronic bron-264 

chitis and type 2 diabetes displayed stronger effects in the reverse direction (βReverse > 265 

βForward), suggesting that their onset may have a more pronounced impact on accelerating the 266 

epigenetic aging process. Overall, this suggests that while accelerated aging can increase disease 267 

risk for many conditions, the onset of certain diseases may also contribute to further acceleration 268 

of the aging process. This complex interaction underscores the importance of considering both 269 

directions when studying age-related diseases and developing interventions. 270 
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Ageome reveals potential functional impacts of established longevity interventions 271 

We then applied Ageome to various models of established longevity interventions, including 272 

calorie restriction (CR), Snell dwarf mice, growth hormone receptor knockout, iPSC reprogram-273 

ming, and heterochronic parabiosis (Figure 5, Figure S4) 16,32. Since Ageome provides the distri-274 

bution of biological ages across functional modules, it offers an estimation of longevity effects 275 

with regard to individual pathways, thereby helping to identify major pathways and mechanisms 276 

associated with each of these models. We thus identified pathways that are primarily rejuvenated 277 

by each intervention, as well as common signatures of known lifespan-extending interventions 278 

(Figure 5). 279 

Compared to isochronic parabiosis, the summarizing MetroAge for whole blood samples of 280 

heterochronic parabiosis after detachment is significantly decelerated (p = 3.59E-04), and 421 281 

Ageome clocks are significantly decelerated after adjusting for multiple testing (Figure 5a). Top 282 

significant decelerated pathways are related to immune system regulation, including JAK-STAT 283 

signaling after Interleukin-12 Stimulation (decreased by 9.15 months, p = 2.42E-05), chemokine 284 

receptors bind chemokines (decreased by 13.42 months, p = 5.94E-05), and DDX58/IFIH1-285 

Mediated Induction of Interferon Alpha/Beta (decreased by 10.05 months, p = 2.12E-04). Simi-286 

larly, the pathway related to heme metabolism, porphyrin, and chlorophyll metabolism (de-287 

creased by 5.64 months, p = 6.17E-05) is also decelerated. This is consistent with previous re-288 

ports of broad rejuvenation induced by heterochronic parabiosis 32. A similar result is also ob-289 

served in the parabiosis model before detachment (Figure S4). 290 

For CR, the summarizing MetroAge is also significantly decelerated (p = 0.04) and 164 Ageome 291 

clocks are significantly decelerated (Fig 5B). We observed a significant deceleration in multiple 292 

facets of aging. Post-translational protein modification, a key process in protein biosynthesis and 293 

regulation, showed a notable deceleration of 4.31 months (p = 2.25E-07), as well as 294 

deubiquitination (5.45 months, p = 1.03E-06). Similarly, we observed significant age decelera-295 

tion in mitochondria function-related pathways, including voltage-gated potassium channels 296 

(4.41 months, p = 2.62E-07) and potassium channels (3.30 months, p = 6.82E-06). Furthermore, 297 

the functional systems associated with trans-Golgi network vesicle budding demonstrated age 298 

deceleration of 4.41 months (p = 5.17E-06) and metabolism of lipids (4.07 months, p = 9.72E-299 

07). Together, these findings underscore the impact of CR on a multitude of biological pathways. 300 
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Similarly, we also examined Ageome of growth hormone receptor knockout (GHRKO) and Snell 301 

dwarf mice (Figure S4). The summarizing MetroAges are significantly decelerated in both mod-302 

els (p= 0.0001 for GHRKO and p = 2.42E-05 for Snell dwarf), with 124 and 283 Ageome clocks 303 

significantly decelerated, respectively. For GHRKO, the top significant decelerated pathways are 304 

related to protein modification, including protein ubiquitination (deceleration of 6.05 months, p = 305 

1.52E-05) and the post-translational protein modification pathway (deceleration of 4.01 months p 306 

= 7.20E-05). Several pathways related to cell cycle regulation also showed significant decelera-307 

tion. This was observed in the G2 phase (5.49 months, p = 1.21E-04) and G2/M checkpoints 308 

(5.01 months, p = 1.45E-04). Concurrently, the pathway involved in the negative regulation of 309 

Notch4 signaling also experienced a marked slowdown (7.49 months, p = 3.25E-05). For Snell 310 

dwarfism, the top significant decelerated pathways are related to cellular structure, metabolism, 311 

and signaling. The adherens junction (7.17 months, p = 2.61E-07) and tight junction pathways 312 

(6.32 months, p = 6.63E-06) both show substantial deceleration. Similarly, Rho GTPase-related 313 

pathways, namely CDC42 GTPase cycle (5.08 months, p = 8.97E-06) and Rho GTPases activate 314 

CIT (7.74 months, p = 1.43E-05), were significantly slowed. Metabolic processes, including 315 

phospholipid metabolism (5.83 months, p = 1.01E-07) and glycolysis (5.87 months, p = 6.25E-316 

06), also show significant deceleration. In the context of protein regulation, the SUMOylation of 317 

DNA damage response and repair proteins pathway shows an age deceleration of 6.69 months (p 318 

= 5.74E-06). These findings are largely aligned with the known effects of GHRKO and Snell 319 

dwarfism on aging. 320 

For iPSC reprogramming, the summarizing MetroAge is significantly decelerated in repro-321 

grammed lung fibroblasts (p = 0.032), and 316 Ageome clocks are significantly decelerated 322 

(Figure 5c). Interestingly, unlike other interventions tested where all significantly affected 323 

Ageome clocks show consistent deceleration, iPSC reprogramming also significantly accelerated 324 

the epigenetic age of 181 pathways (Figure 6a). The top decelerated pathway is the Circadian 325 

Clock pathway (37.41 months, p = 5.54E-06). Also, the pathways related to the regulation of 326 

gene expression and chromatin structure are highlighted by the RORA Activates Gene Expres-327 

sion pathway (40.25 months, p = 1.77E-05), Chromatin Modifying Enzymes pathway (9.41 328 

months, p = 4.70E-05), and the Transcriptional Regulation of Pluripotent Stem Cells pathway 329 

(34.34 months, p = 1.17E-04). For the accelerated pathways, the key pathways are related to cell 330 

signaling and gene regulation, such as Calcineurin Activates NFAT (8.66 months, p = 6.27E-05), 331 
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SMAD2/SMAD3/SMAD4 Heterotrimer Regulates Transcription (26.78 months, p = 8.27E-05), 332 

and Transport of Mature Transcript to Cytoplasm (21.34 months, p = 9.60E-05). Metabolic 333 

pathways, like Mitochondrial Fatty Acid Beta Oxidation of Saturated Fatty Acids (33.88 months, 334 

p = 1.03E-04), exhibit accelerated aging as well. Cell cycle-related pathways like TP53 Regu-335 

lates Transcription of Genes Involved in G2 Cell Cycle Arrest (23.59 months, p = 1.87E-04) and 336 

Aberrant Regulation of Mitotic Exit in Cancer due to RB1 Defects (Figure S4) also show accel-337 

eration. Similar results are also observed in reprogrammed kidney fibroblasts (Figure S4). These 338 

findings suggest that although iPSC reprogramming can rejuvenate overall epigenetic age, it may 339 

also accelerate the epigenetic age of some specific functional modules. 340 

Integrative analysis identifies key pathways shared by multiple interventions 341 

Finally, we investigated the commonalities and differences across the examined interventions. 342 

We first calculated the Spearman correlation of the epigenetic age deviation predicted by the sig-343 

nificantly affected Ageome clocks across interventions (Figure 6b). All interventions showed a 344 

generally positive correlation with each other, and three clusters emerged. The first cluster in-345 

cludes CR, and iPSC reprogramming for kidney and lung fibroblast; the second cluster includes 346 

GHRKO and Snell dwarfism; and the third cluster includes heterochronic parabiosis before and 347 

after detachment. Interestingly, in addition to the association with iPSCs, CR shows a relatively 348 

strong positive correlation with parabiosis before detachment and Snell dwarfism. This result 349 

suggests that CR may extend lifespan through some fundamental mechanisms shared across all 350 

examined interventions. 351 

To comprehensively investigate the commonalities and differences across various interventions, 352 

we examined pathways implicated in the response to these interventions (Figure 6c). The top 353 

shared Ageome metrics include Transport of Small Molecules, Circadian Clock, Ca2 Pathway, 354 

Basal Cell Carcinoma, Stimuli-sensing Channels, UV Response, Glycolysis, Potassium Chan-355 

nels, Neuronal System, and Post Translational Protein Modification. These pathways encapsulate 356 

a diverse array of biological processes, spanning metabolism, cellular signaling, and gene regula-357 

tion, indicating that they might play a significant role in the aging process and response to anti-358 

aging interventions. 359 

Conversely, several Ageome measures exhibit considerable variation across different interven-360 

tions, implying that these pathways could be specifically modulated by particular interventions. 361 
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The most variable pathways include Release of Apoptotic Factors from the Mitochondria, Acti-362 

vation of Arylsulfatases, HIV Infection, Sphingolipid Metabolism, Separation of Sister Chroma-363 

tids, Starch and Sucrose Metabolism, EGFR Interaction with Phospholipase C-gamma, Hemosta-364 

sis, Trans Golgi Network Vesicle Budding, and Adherens Junction. These findings suggest that 365 

while there are some common mechanisms that are influenced by various anti-aging interven-366 

tions, there are also unique pathways that are preferentially modulated by specific interventions. 367 

Discussion 368 

Our study introduces the Ageome framework, a comprehensive approach to understanding bio-369 

logical aging at the level of DNA methylation through the lens of functional modules. This high-370 

dimensional representation of aging offers valuable insights into the intricate mechanisms under-371 

lying this complex process, demonstrating robust performance in age prediction across human 372 

and mouse samples. 373 

A key finding of our study is the differential predictive power of various pathways in aging. Af-374 

ter adjusting for gene set size, we found that lipid metabolism pathways in humans and ion 375 

transport and neurological signaling pathways in mice were most predictive of aging. This aligns 376 

with previous research highlighting the central role of these processes in aging 33,34. The high 377 

predictability of these pathways suggests their potential as biomarkers for biological aging. Intri-378 

guingly, we observed strong cross-species conservation in aging prediction for certain pathways, 379 

particularly those related to voltage-gated potassium channels, hedgehog signaling, and early re-380 

sponse to estrogen. This conservation points to a shared biological basis for aging across mam-381 

mals 35. Conversely, pathways associated with DNA replication showed the least predictive pow-382 

er, suggesting that these fundamental cellular processes might be more stable or less predictably 383 

altered during aging. 384 

Our analysis of the pathway-specific scaling law across different species revealed a general trend 385 

of decreasing methylation rates with increasing lifespan, consistent with previous findings 23. 386 

However, the variation in this trend across different pathways suggests that evolutionary pres-387 

sures on longevity may have differential effects on various biological processes. This observa-388 

tion opens new avenues for investigating the evolutionary aspects of aging and longevity. 389 
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Application of Ageome to human cohorts yielded several significant insights into aging and dis-390 

ease. Our analysis of the Normative Aging Study cohort revealed that a large number of Ageome 391 

clocks (1,506 out of 1,863) were significantly associated with mortality risk. This underscores 392 

the broad impact of aging across multiple biological pathways and highlights the potential of 393 

Ageome as a comprehensive predictor of longevity. Interestingly, we found that the accuracy of 394 

Ageome clocks in predicting chronological age was only weakly correlated with their power to 395 

predict mortality risk. This suggests that the biological processes most indicative of chronologi-396 

cal age may not necessarily be the most critical for determining lifespan. The identification of 397 

distinct “hallmark agers” - individuals showing accelerated aging primarily in specific hallmarks 398 

- suggests that aging trajectories can vary significantly between individuals, adding to a growing 399 

body of evidence that indicates that some individuals may experience accelerated aging in spe-400 

cific biological processes while maintaining relative youth in others 24–26. Further understanding 401 

of heterogeneity in aging patterns will be key for leveraging aging biomarkers to guide personal-402 

ized medicine, potentially by tailoring interventions targeting the most affected hallmarks in each 403 

individual. 404 

The application of Ageome to the Mass General Brigham cohort demonstrated its superior pre-405 

dictive power for a wide range of age-related diseases (27 out of 43), particularly in cancer, 406 

compared to established aging clocks (GrimAgeV2, DunedinPACE, PhenoAge, and 407 

YingDamAge). This improved predictive capability could have substantial clinical implications, 408 

potentially enabling earlier and more accurate identification of individuals at high risk for specif-409 

ic cancers. The consistent performance of Ageome across various disease categories in the inde-410 

pendent ComputAgeBench framework further validates its robustness and versatility as a tool for 411 

studying aging and age-related diseases. Additionally, our bidirectional analysis, examining the 412 

relationship between disease onset and epigenetic age acceleration, provides a nuanced view of 413 

the aging-disease relationship, a key unresolved challenge in the aging field. The observation 414 

that some conditions, such as various cancers, showed stronger effects in the forward direction 415 

(epigenetic aging preceding disease onset) while others, like chronic bronchitis and type 2 diabe-416 

tes, displayed stronger effects in the reverse direction (disease onset accelerating epigenetic ag-417 

ing) highlights the complex interplay between aging and disease. This bidirectional relationship 418 

underscores the importance of considering both preventive strategies to slow aging and interven-419 

tions to mitigate the aging-accelerating effects of certain diseases. 420 
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The application of Ageome to various longevity interventions provided granular insights into 421 

their effects on different functional modules. Notably, our analysis of iPSC reprogramming re-422 

vealed an unexpected picture of its impact on cellular aging. While iPSC reprogramming is gen-423 

erally considered to reset epigenetic age 36–38, our results show that this reset is not uniform 424 

across all functional modules. In fact, we observed accelerated aging of pathways following re-425 

programming. This finding challenges the notion of uniform rejuvenation through iPSC repro-426 

gramming and suggests a more complex process where global rejuvenation is accompanied by 427 

aging in subsets of functions. 428 

We propose two possible explanations for this observation. First, iPSC reprogramming may 429 

promote functional modules that show protective adaptations during aging, leading to an appar-430 

ent acceleration in Ageome clocks similar to the AdaptAge clock 11. Alternatively, the repro-431 

gramming process itself may induce cellular stress and damage, accelerating aging in certain 432 

modules. This aligns with the stochastic nature of iPSC reprogramming 39 and its known poten-433 

tial to induce cellular senescence and death 40. Further research is needed to elucidate whether 434 

reprogramming results in complete rejuvenation or if it comes with the side effect of accelerating 435 

some aspects of aging. 436 

It is important to acknowledge that the relationship between DNA methylation changes and gene 437 

expression or function is complex and not always direct. While some age-related DNA methyla-438 

tion changes affect gene expression, other changes are not directly reflected in corresponding 439 

gene expression alterations 41. However, even in cases where methylation changes do not imme-440 

diately affect gene expression, they may reflect upstream regulatory events, the breakdown of 441 

regulatory mechanisms, cellular responses to aging-related stressors, or alterations in the activity 442 

of transcription factors and other regulatory elements. Thus, the Ageome could provide a nu-443 

anced view of age-related changes in cellular regulation and pathway functionality, capturing 444 

both active alterations and potential regulatory deficits that may precede or accompany more 445 

overt functional changes. This perspective allows us to interpret the Ageome not just as a direct 446 

measure of pathway activity but as a sensitive barometer of age-related regulatory breakdowns 447 

across different functional modules. Future research integrating Ageome data with 448 

transcriptomic, proteomic, and functional studies will be crucial to fully elucidate the biological 449 

significance of these pathway-specific epigenetic age signatures. 450 
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Together, the Ageome framework offers a comprehensive and interpretable approach to as-451 

sessing biological aging across functional modules. By expanding the traditional single numeri-452 

cal output of established epigenetic clocks into a rich collection of over a thousand biologically 453 

interpretable data points, Ageome demonstrates the utility of pathway-specific biological age 454 

predictions and reveals shared aging mechanisms between humans and mice. This study provides 455 

novel insights into the dynamic changes of pathway-specific epigenetic age across diverse aging 456 

interventions, including calorie restriction, iPSC reprogramming, growth hormone receptor 457 

knockout, Snell dwarfism, and heterochronic parabiosis. By highlighting both shared and unique 458 

aging mechanisms underlying these interventions. Future integration with large-scaled database 459 

(e.g., ClockBase) could potentially facilitate the development of new anti-aging strategies 42. Fu-460 

ture research should focus on validating these findings in larger cohorts and across different tis-461 

sues, as well as exploring the potential of Ageome-guided personalized interventions to mitigate 462 

the effects of aging. 463 

Methods 464 

Training data 465 

The DNA methylation data for mice were obtained from the whole blood of 141 mice (C57Bl/6, 466 

3- to 35-month-old, 16 age groups) through Reduced representation bisulfite sequencing (RRBS) 467 

16. The human DNA methylation data were obtained from the whole blood of 2,664 individuals 468 

through Illumina 450K array 17,18. Methylation data were quality-controlled and normalized us-469 

ing the minfi package 43. 470 

Ageome clock model 471 

The CpG sites were annotated to genes using the rules described in GREAT 19. In brief, each 472 

gene is assigned a regulatory domain. This domain is composed of a basal domain that expands 5 473 

kb upstream and 1 kb downstream from the gene’s transcription start site. Additionally, this do-474 

main extends up to the basal regulatory domain of the closest upstream and downstream genes 475 

within a 1 Mb range. All the CpG sites that occur within the domain are assigned to the gene. 476 

The CpG sites that are not assigned to any gene are excluded from the analysis. 477 

We then further assigned the CpG sites to functional modules using various pathway databases, 478 

including KEGG, Reactome, and Hallmark 20–22. Hallmarks of aging pathways were collected 479 
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from Open Genes 44. The CpG sites are included if they are annotated to the genes that are in-480 

cluded in the pathway. All the included CpG sites are then used to train the Ageome clock model 481 

using the elastic net regression 45: 482 

min��,� ����� � 	� ��
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Here, α = 1 corresponds to the Lasso penalty and α = 0 corresponds to the Ridge penalty. The 483 

term within the outer square brackets represents the elastic net penalty. In the context of this 484 

study, the predictor variables x_{ij} would correspond to the methylation level of the j-th CpG 485 

site, y_i would correspond to the age of the i-th individual, and the β_j’s are the coefficients that 486 

represent the contribution of each CpG site to the predicted age. The alpha is set to 0.5, and the 487 

5-fold cross-validation was used to determine the optimal lambda. The model was trained using 488 

the training data, and the model performance was evaluated using the test data. The model per-489 

formance was evaluated using the mean absolute error (MAE) and the root mean squared error 490 

(RMSE). 491 

To obtain a single summary measure of biological age based on all Ageome clock predictors, we 492 

used the reversed-RMSE-weighted average of the Ageome clock predictions to calculate the 493 

MetroAge score: 494 
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Each pathway’s age prediction is weighted by the inverse of its RMSE, giving more weight to 495 

the pathways that have lower errors (thus more accurate predictions). The sum of these weighted 496 

age predictions is then divided by the sum of the weights (the inverses of the RMSEs) to calcu-497 

late the MetroAge score. The MetroAge score, therefore, is a measure of biological age that con-498 

siders the accuracy of each pathway’s age prediction. Note that the RMSE here is calculated 499 

from cross-validation inside of the training data, therefore there is no data leakage. 500 
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Pathway-specific Scaling Law Analysis 501 

To investigate the evolutionary conservation of age-related epigenetic changes across species 502 

and functional pathways, we performed a scaling law analysis of pathway-specific methylation 503 

rates in mammals with varying maximum lifespans, extending the methodology described by 504 

Crofts et al., 2023 46. We utilized DNA methylation data from 42 mammalian species, focusing 505 

on CpG sites that could be mapped across species. 506 

For each pathway, we first filtered to include only those with at least 250 CpG sites to ensure 507 

robust analysis. We then applied the cumulative pairwise algorithm detailed in Crofts et 508 

al. (2023) to compare methylation slopes across species, using the mammal with the shortest ob-509 

served lifespan (rat) as a reference. The methylation rate for the rat was set to 1, and rates for 510 

other species were calculated relative to this baseline. We computed scaling laws for each path-511 

way using linear regression on a log-log scale, where the x-axis represented the maximum 512 

lifespan of different mammalian species and the y-axis displayed the relative methylation rate. 513 

The slope of this regression line represents the scaling law for each pathway. 514 

To assess the probability of observing a scaling law under the null hypothesis that there are no 515 

pathway-specific effects, we created 100 random CpG pathways for each fixed size of pathway 516 

lengths (n=500, 2000, 1000, 500, and 250). We then computed the scaling law for each pathway 517 

using the exact same methodology (Extended Data Figure 1a). We fitted a normal distribution to 518 

the bootstrapped scaling laws for each fixed size (n) and observed that while the mean of the in-519 

ferred scaling laws was constant, the spread or standard deviation of scaling law values (SD) cor-520 

related negatively with the size of the pathways (in the log-log scale, r2=-0.98, p=0.003,  Ex-521 

tended Data Figure 1b). We use the predicted dynamics for mean and standard deviation, $
sites 
 522 

and *
sites 
 as a function of the number of sites in a pathway, +sites . We then computed the two-523 

tailed probability of observing a given scaling law x under the null hypothesis, or p-value, as 524 

,-�.
sites 
�$
sites 

� / �
 � $
sites 
�0, 

where,  .
sites 
2 3-$
sites 

, *
sites 
0. We finally corrected the resulting p-value by the number of 525 

tested scaling laws to compute the FDR. 526 
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Mortality analysis 527 

Mortality analysis was performed in the Normative Aging Study (NAS) cohort (N = 1,488, 528 

38.8% deceased), with DNA methylation data generated using the 450K array. The Biolearn 529 

framework was used to perform survival analysis using each Ageome clock model as the predic-530 

tor 28. The hazard ratios (HR) and 95% confidence intervals (CI) were calculated for each 531 

Ageome clock. Cox proportional-hazards model 47 was used to test the association between each 532 

Ageome clock and the survival time. Chronological age is used as the covariate. The clock pre-533 

dictions were standardized before input into the model. The P-values were corrected for multiple 534 

testing using the Bonferroni correction. 535 

Disease association analysis 536 

The MGB cohort consists of 4,246 subjects from the Mass General Brigham Biobank 48, with 537 

DNA methylation data generated using the EPICv1 array. Additionally, these subjects were 538 

linked to the Research Patient Data Repository to curate Electronic Medical Records (EMR) da-539 

ta. Consequently, 40 diseases were identified from the longitudinal diagnosis records using ICD 540 

codes (refer to the “Disease Codebook” Excel sheet, Extended table 1). Prevalent and incident 541 

cases were determined based on the chronological order of the first diagnosis record for a specif-542 

ic disease and the date of biosample collection. The time span was calculated accordingly, with 543 

negative values indicating diseases developed before biosample collection, used in the reverse 544 

test as occurrences of events, and positive values indicating the onset of new diseases after 545 

biosample collection, used in the forward test as events. Specifically, prevalent cases were ex-546 

cluded from the forward test. The Cox proportional-hazards model was applied to both forward 547 

and reverse tests, adjusting for age and sex in every model. To efficiently compute these numer-548 

ous models, the R package RegParallel was utilized for parallel computation 49. All analyses 549 

were conducted using R 4.3.0. 550 
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Tables 557 

Table 1. Many Ageome clocks outperform established clocks in predicting age-related diseases.  558 

Disease Best Ageome Clock P HR 
Best Reference 

Clock 
P HR 

Alcoholic Liver Disease Transport of Nucleotide Sugars 2.93e-04 2.63 YingDamAge 2.06e-02 1.72 

Allergic Rhinitis 
SLBP Dependent Processing of Replication 

Dependent Histone Pre mRNAs 
2.17e-02 1.35 DunedinPACE 5.54e-01 1.03 

Aortic Aneurysm/Dissection Polo Like Kinase Mediated Events 4.00e-03 1.26 DunedinPACE 3.29e-01 1.10 

Arterial Embolism/Thrombosis Interleukin 1 Signaling 5.96e-04 2.24 PhenoAge 3.15e-03 1.87 

Asthma Abacavir Metabolism 5.82e-06 1.91 DunedinPACE 1.52e-04 1.32 

Bladder Cancer Transport of Mature Transcript to Cytoplasm 9.61e-07 2.86 PhenoAge 9.04e-03 1.92 

Breast Cancer Regulation of PTEN Gene Transcription 7.65e-04 2.00 PhenoAge 2.17e-01 1.36 

Bronchiectasis 
TRAF6 Mediated IRF7 Activation in TLR7 

8 or 9 Signaling 
8.34e-05 1.41 GrimAgeV2 1.34e-02 1.29 

Cancer Apoptosis 4.90e-07 1.82 PhenoAge 7.11e-05 1.53 

Cardiomyopathy 
Role of Second Messengers in Netrin 1 

Signaling 
2.42e-05 1.42 GrimAgeV2 9.52e-05 1.47 

Chronic Bronchitis Condensation of Prophase Chromosomes 1.14e-04 1.29 DunedinPACE 2.91e-02 1.17 

Chronic Liver Disease MASTL Facilitates Mitotic Progression 1.46e-06 1.54 DunedinPACE 7.98e-12 1.48 

Chronic Viral Hepatitis O Glycan Biosynthesis 1.60e-03 2.05 PhenoAge 1.04e-01 1.69 

Cirrhosis Mitotic G1 Phase and G1 S Transition 7.47e-05 1.79 DunedinPACE 4.93e-07 1.63 

Coin Lesion Lung Disease 
SEMA4D Mediated Inhibition of Cell At-

tachment and Migration 
7.24e-10 1.46 DunedinPACE 8.63e-12 1.38 

Colon and Rectum Cancer Cells Accumulation 3.53e-03 1.88 GrimAgeV2 3.22e-01 1.25 

Congestive Heart Failure TRAF6 Mediated IRF7 Activation 8.48e-08 1.62 DunedinPACE 1.44e-12 1.53 

Emphysema 
ERCC6 CSB and EHMT2 G9A Positively 

Regulate rRNA Expression 
1.90e-10 1.90 DunedinPACE 2.59e-10 1.73 

Hypertensive Heart Disease 
Antigen Presentation Folding Assembly and 

Peptide Loading of Class I MHC 
7.61e-10 2.04 DunedinPACE 1.07e-14 1.54 

Interstitial Lung Disease SMAC XIAP Regulated Apoptotic Response 7.64e-04 1.65 GrimAgeV2 2.42e-04 1.38 

Leukemia Mitotic G2 G2 M Phases 8.35e-14 4.61 PhenoAge 3.39e-05 2.44 

Lung Cancer Diseases of DNA Repair 8.80e-05 2.37 GrimAgeV2 1.43e-04 1.56 

Melanoma FGFR2 Alternative Splicing 1.77e-02 1.80 PhenoAge 4.03e-01 1.28 

Non-Hodgkin Lymphoma Cytosolic DNA Sensing Pathway 1.06e-16 3.52 PhenoAge 1.21e-06 2.83 

Other Chronic Hepatitis Degradation of Cysteine and Homocysteine 1.65e-02 5.00 PhenoAge 5.64e-02 2.16 

Ovarian Cancer 
Cargo Trafficking to the Periciliary Mem-

brane 
4.78e-02 2.19 PhenoAge 5.74e-01 1.35 

Pancreatic Cancer HDACs Deacetylate Histones 2.83e-04 3.65 DunedinPACE 6.32e-03 1.80 

Peripheral Vascular Disease 
Disassembly of the Destruction Complex 

and Recruitment of AXIN to the Membrane 
6.65e-08 1.49 GrimAgeV2 2.48e-06 1.41 

Prostate Cancer Interferon Signaling 1.38e-03 2.25 PhenoAge 6.82e-01 1.12 

Stomach Cancer Assembly of the HIV Virion 5.85e-02 1.60 YingDamAge 7.37e-01 1.12 

Stroke MASTL Facilitates Mitotic Progression 1.21e-05 1.53 DunedinPACE 6.02e-09 1.47 

Type 1 Diabetes The NLRP3 Inflammasome 1.78e-07 1.79 DunedinPACE 1.06e-05 1.81 

Uterine Corpus Cancer Serine Biosynthesis 3.91e-03 2.21 DunedinPACE 9.66e-03 1.99 

Cardiovascular Disease (Exclud-
ing Stroke) 

CD28 Dependent PI3K AKT Signaling 1.93e-04 1.32 DunedinPACE 1.44e-13 1.45 

Chronic Kidney Disease IRAK1 Recruits IKK Complex 5.80e-08 1.36 DunedinPACE 1.52e-11 1.41 

Chronic Obstructive Pulmonary 
Disease (COPD) 

LRR FLII Interacting Protein 1 LRRFIP1 
Activates Type I IFN Production 

4.28e-07 1.44 GrimAgeV2 6.46e-08 1.50 

Chronic Pulmonary Heart Dis-
ease 

Translesion Synthesis by POLK 1.60e-06 1.40 GrimAgeV2 3.09e-10 1.57 
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Coronary Artery Disease RIPK1 Mediated Regulated Necrosis 6.62e-04 1.33 DunedinPACE 1.42e-14 1.45 

Depression 
Caspase Activation via Death Receptors in 

the Presence of Ligand 
1.61e-04 1.34 DunedinPACE 1.76e-08 1.36 

Liver Cancer 
Degradation of Beta Catenin by the Destruc-

tion Complex 
3.03e-04 2.19 DunedinPACE 9.80e-07 2.62 

Myocardial Infarction IRAK1 Recruits IKK Complex 3.00e-03 1.33 DunedinPACE 1.00e-07 1.57 

Non-Alcoholic Fatty Liver Dis-
ease (NAFLD) 

Regulation by C FLIP 1.59e-05 1.39 DunedinPACE 8.83e-09 1.41 

Type 2 Diabetes STAT5 Activation 7.94e-06 1.42 DunedinPACE 5.56e-27 1.89 

The table shows the top Ageome clock and the top established clock for predicting various age-559 

related diseases. The P-value and hazard ratio (HR) are shown for both clocks. Ranking of the 560 

clocks are based on -log10(P-value) * log(HR). 561 
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Figures 563 

 564 

Figure 1. Ageome clock offers epigenetic age estimates for functional modules. 565 

(a) Schematic plot showing the workflow of the Ageome clock. 566 

(b) Density plots showing the distribution of Pearson’s R and mean absolute error (MAE) for 567 

each Ageome clock (Hallmark, KEGG, Reactome) in the test set. The results show that Ageome 568 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613599doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613599
http://creativecommons.org/licenses/by-nc/4.0/


 24

clocks for most pathways accurately predict the chronological age of healthy samples in both 569 

humans (left) and mice (right). 570 

(c) Ageome clocks are summarized and weighted by inverse root mean squared error (RMSE) in 571 

cross-validation to provide a single accurate estimate of overall biological age predicted based on 572 

all Ageome clock models in mice (MetroAge, Y-axis). The chronological age is shown on the X-573 

axis in the unit of the month. The accuracy metrics in the test set are shown in the text. 574 

(d) Scatter plot showing the correlation between Ageome clock accuracy (MAE) and gene set 575 

size (at log-scale) for both human and mouse. Pearson’s R and P-values are shown in the plots. 576 

Density plots for each variable are shown in marginal plots. 577 

  578 
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 579 

Figure 2. Different pathways vary in their associations with aging. 580 
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(a, b) The most accurate and inaccurate Ageome clock pathways after adjusting for the size of 581 

gene sets for human (a) and mouse (b). The circle color shows adjusted mean absolute error 582 

(MAE), and the size shows Pearson’s R in the test set. Pathways with overlapped genes are clus-583 

tered together with connected bonds. 584 

(c) Scatter plot showing the correlation between adjusted Ageome clock accuracy (MAE) in hu-585 

mans and mice. Pearson’s R and P-values are shown in the plot. The top accurate (left bottom) 586 

and inaccurate (right top) Ageome clocks are annotated. 587 

(d) Scaling law analysis of pathway-specific methylation rates across mammalian species with 588 

different maximum lifespans. Each line represents a specific pathway, color represents the -log10 589 

P-value based on the simulation, with red lines indicating pathways that maintain relatively sta-590 

ble methylation rates across species lifespans, and blue lines showing pathways with more rapid 591 

declines in methylation rates as lifespan increases. The dashed black line represents the genome-592 

wide average methylation rate scaling. The x-axis shows the maximum lifespan of different 593 

mammalian species (representative species are annotated with gray dashed line and silhouettes), 594 

while the y-axis displays the methylation rate (*ratio compared to baseline species) on a loga-595 

rithmic scale. Pathways with nominal P-value < 0.05 are annotated. 596 
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 598 

Figure 3. Ageome clock predicts mortality risk and reveals hallmark agers. 599 

(a) Mortality risk analysis of 1,863 Ageome clocks in the NAS cohort (N = 1,488, 38.8% de-600 

ceased). Volcano plot showing the relationship between log(HR) and -log10(Adjusted-P) for dif-601 

ferent pathways. Top 5 pathways with high significance and hazard ratios, and with R-square > 602 
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0.5 in age prediction are labeled in black. The top 5 pathways with a negative association with 603 

mortality are labeled in gray. The red dashed line shows the FDR threshold of 0.05. 604 

(b) Density plot showing the relationship between Z-scores for mortality risk prediction and 605 

Ageome clock accuracy. Notable pathways are labeled. Pearson's correlation coefficient is anno-606 

tated at the left top corner of the plot in text. 607 

(c) Schematic representation of the 12 Hallmarks of Aging Ageome clocks analyzed. 608 

(d) Bar plot showing the correlation of different hallmarks of aging Ageome clocks with chrono-609 

logical age. 610 

(e) Forest plot displaying mortality risk (hazard ratios with 95% CI) for Hallmarks of Aging 611 

Ageome clocks. P-values are shown for each hallmark. 612 

(f) Heatmap showing the correlation between age deviation terms of different hallmarks of aging 613 

Ageome clocks, colored by Pearson’s R. The significant correlations after correcting for multiple 614 

testing using Bonferroni correction are annotated with black dots. 615 

(g) UMAP plot visualizing specific hallmark agers (29.50% of the cohort). Each point represents 616 

an individual, colored by their dominant hallmark of aging. To cluster, we identified individuals 617 

with any hallmark age deviation Z-score > 1.5, and converted all Z-score smaller than this 618 

threshold to 0. Individuals with more than 2 hallmark age deviations larger than 1.5 are annotat-619 

ed as multi-hallmark agers. Bar chart showing the frequency of different hallmark agers in the 620 

population. 621 
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 623 

Figure 4. Ageome predicts disease risk and reveals bidirectional aging-disease relation-624 

ships. 625 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613599doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613599
http://creativecommons.org/licenses/by-nc/4.0/


 30

(a) Schematic of the Ageome clock framework applied to the Mass General Brigham (MGB) co-626 

hort (N = 4,245) for disease risk prediction. 627 

(b-d) Volcano plots showing the relationship between log(HR) and -log10(P) for Ageome clock 628 

predictions of (b) cardiovascular diseases, (c) cancers, and (d) respiratory diseases. Top two 629 

pathways for disease with FDR < 0.05 are labeled. Reference models are indicated by distinct 630 

markers with black borders: GrimAgeV2 (star), DunedinPACE (square), PhenoAge (triangle), 631 

and YingDamAge (circle). FDR threshold is set to 0.05, indicated by the dashed red line. The 632 

diseases that have Ageome measurements that outperform (either by significance or hazard ratio) 633 

reference models are bolded and indicated by an asterisk (*), as well as the outperforming path-634 

ways. Only the top 2 Ageome pathways (ranked by -log10(P) * log(HR)) with FDR < 0.05 are 635 

shown for each disease. 636 

(e) Benchmarking analysis comparing Ageome clocks to GrimAgeV2 and PhenoAge across var-637 

ious disease categories using the ComputAgeBench framework. ISD: immune system diseases; 638 

MSD: musculoskeletal diseases; NDD: neurodegenerative diseases; PGS: progeroid syndromes; 639 

RSD: respiratory diseases. Panels for cardiovascular diseases and metabolic diseases are not 640 

shown as none of the clocks provide predictions for these conditions. 641 

(f) Bidirectional analysis of aging-disease relationships. Schematic plot showing the logistics of 642 

forward (βForward) and reverse (βReverse) analysis. Scatter plot and 2D density plot (left) 643 

shows forward (X-axis) and reverse (Y-axis) effects for different cancers. Error bar shows the 644 

standard deviation of the forward and reverse effects across Ageome clock measurements. Delta 645 

age (Δβ) represents the difference between forward and reverse effects. The density plots show 646 

the distribution of Ageome clock Δβ for each disease, with the white dashed line annotating the 647 

median value. The black dashed line shows the line where Δβ = 0. 648 
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 650 

Figure 5. Different longevity interventions show distinct patterns in Ageome. 651 

(a-c) Application of Ageome clocks to heterochronic parabiosis model after detachment (a), ca-652 

loric restriction (b), and iPSC reprogramming of lung fibroblasts (c). MetroAge and the distribu-653 

tion of Ageome clock prediction show the overall effect of interventions (left). P-values are 654 
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shown in text. Network plot shows connections across affected Ageome clocks (right). Only top 655 

pathways with adjusted P < 0.05 are shown. Pathways with black circles are significant after be-656 

ing adjusted for multiple testing. The color of the dots shows the estimated biological age differ-657 

ence compared to controls, and the size shows -log10(P-value). Pathways with overlapped genes 658 

are clustered together with connected bonds. iPath plots provide an overview of the affected 659 

functional modules for each treatment. The color of the lines shows the estimated biological age 660 

difference compared to controls, and stroke shows -log10(P-value). 661 
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 663 

Figure 6. Ageome provides insights into shared and unique mechanisms of longevity inter-664 

ventions. 665 

(a) The number of Ageome clocks showing significant acceleration (red) or deceleration (blue) 666 

after adjusting for multiple testing (FDR < 0.05). 667 

(b) Correlation of Ageome clocks across interventions, revealing interventions with similar or 668 

different mechanisms. Spearman’s Rhos are shown in the plot. 669 
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(c) Heatmap displaying the top 10 shared varying Ageome clocks (black), and the top 10 unique 670 

varying Ageome clocks (red) across interventions. The color indicates the signed -log10(P-value) 671 

of the Ageome clock for given interventions. The color bar is capped at 4. 672 
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