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Abstract

Background: With the development of third-generation sequencing (TGS) technologies, people are able to obtain
DNA sequences with lengths from 10s to 100s of kb. These long reads allow protein domain annotation without
assembly, thus can produce important insights into the biological functions of the underlying data. However, the high
error rate in TGS data raises a new challenge to established domain analysis pipelines. The state-of-the-art methods
are not optimized for noisy reads and have shown unsatisfactory accuracy of domain classification in TGS data. New
computational methods are still needed to improve the performance of domain prediction in long noisy reads.

Results: In this work, we introduce ProDOMA, a deep learning model that conducts domain classification for TGS
reads. It uses deep neural networks with 3-frame translation encoding to learn conserved features from partially correct
translations. In addition, we formulate our problem as an open-set problem and thus our model can reject reads not
containing the targeted domains. In the experiments on simulated long reads of protein coding sequences and real
TGS reads from the human genome, our model outperforms HMMER and DeepFam on protein domain classification.

Conclusions: In summary, ProDOMA is a useful end-to-end protein domain analysis tool for long noisy reads without
relying on error correction.

Introduction
Third-generation sequencing (TGS) technologies, such as
Pacific Biosciences single-molecule real-time sequencing
(PacBio) and Oxford Nanopore sequencing (Nanopore),
produce longer reads than next generation sequencing
(NGS) technologies. With increased read length, long
reads can contain complete genes or protein domains,
making gene-centric functional analysis for high through-
put sequencing data more applicable [1–3]. In gene-
centric analysis, often there are specific sets of genes
in pathways that are of special interest, for example G
protein-coupled receptor (GPCR) genes in intracellular
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signaling pathways for environmental sensing, while other
genes in the assemblies provide little insight to the specific
questions.
One basic step in gene-centric analysis is to assign

sequences into different functional categories, such as
families of protein domains (or domains for short), which
are independent folding and functional units in a major-
ity of annotated protein sequences. There are a number
of tools available for protein domain annotation. They
can be roughly divided into two groups depending on
how they utilize the available protein domain sequences.
One group of methods rely on alignments against the
references. HMMER is the state-of-the-art profile search
tool based on profile hidden Markov models (pHMM)
[4, 5]. But the speed of the pHMM homology search suf-
fers from the increase in the number of families. Extensive
research has been conducted to improve the efficiency of
the profile homology search [6].
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The other group of tools are alignment-free [7]. Recent
developments in deep learning have led to alignment-free
approaches with automatic feature extraction [8–11]. A
review of some available methods and their applications
can be found in [12]. Of the learning-based tools, the most
relevant one to protein domain annotation is DeepFam
[9], which used convolutional neural networks (CNN) to
classify protein sequences into protein/domain families.
The authors showed that it outperformed HMMER and
previous alignment-free methods on protein domain clas-
sification. Also, DeepFam is fast and the speed is not
affected much by the number of families. For example,
DeepFam is at least ten times faster than HMMER when
1,000 query sequences are searched against thousands of
protein families [9]. Thus deep learning-based methods
have advantages for applications that do not need detailed
alignments.
Despite the success of existing protein domain anno-

tation tools, they are not ideal choices for domain iden-
tification in error-prone reads. Although the sequencing
accuracy of TGS platforms has improved dramatically,
TGS data have lower per read accuracy than short-read
sequencing [13]. The newest circular consensus sequenc-
ing (CCS) reads by PacBio Sequel II can reach high accu-
racy [14]. However, these reads exhibit a bias for indels in
homopolymers [14]. In particular, there is still much room
to improve for reads produced via direct RNA sequencing
[13].
Insertion or deletion errors, which are not rare in TGS

data, can cause frameshifts during translation [15]. With-
out knowing the errors and their positions, the frameshifts
can lead to only short or non-significant alignments [16].
As the translation of each reading frame is partially cor-
rect, it also leads to poor classification performance for
existing learning-based models. Our experimental results
in “Experiments and results” section clearly showed this.

Domain classification with error correction
Because sequencing errors remain an issue for TGS data,
there are active developments of error correction tools
for long reads [15, 17]. An alternative pipeline is there-
fore to apply tools such as HMMER and DeepFam to
error-corrected sequences. Error correction tools can be
generally divided into hybrid and standalone depend-
ing on whether they need short reads for error correc-
tion. Recently, several groups conducted comprehensive
review and comparison of existing error correction tools
[15, 17]. None of these tools can achieve optimal perfor-
mance across all tested data sets.
Based on the recent reviews and also our own experi-

mental results, there are two major limitations of apply-
ing error correction before protein domain classification.
First, the performance of standalone tools is profoundly
affected by the coverage of the aligned sequences against

the chosen backbone sequences. When the coverage is
low (e.g. the depth of sequencing <50X for LoRMA [18]),
fewer regions of the reads can be corrected. Second,
we found that error correction tools have difficulty cor-
recting mixed reads from homologous genes within the
same family, such as those from GPCR. The similari-
ties between different genes/domain sequences can con-
fuse the error correction method. For example, when we
applied LoRMA to all the simulated GPCR reads, it failed
to output any corrected sequence. Thus, in our experi-
ments, we run the error correction tools for the sequences
of each family separately in order to maximize their error
correction performance, which is not practical in real
applications. Details of these experiments can be found in
“Can we rely on error correction?” section. In summary,
error correction tools have unsatisfactory performance for
data with low sequencing depth and data containing a
mixture of homologous genes.

Overview of our work
In this work, we designed and implemented ProDOMA,
a deep learning based method to predict the protein
domains from third-generation sequencing reads. By
training a CNN-based model using 3-frame translation
encoding of error-containing reads, ProDOMA is able
to classify TGS reads into their correct domains with
significantly better accuracy than existing domain clas-
sification tools. The main reason behind the improved
performance for error-prone reads is that the deep learn-
ing model trained with a large number of simulated long
reads is able to learn short but error-free motifs from dif-
ferent reading frames. The sequence logos of the most
frequently activated filters from the three reading frames
show that they share short and well-conserved motifs. In
addition, we tested our model on remote homologues to
examine whether this model is memorizing rather than
learning the sequence patterns. The results showed that
ProDOMA is superior to other models for remote homol-
ogy search too.
Compared to previous works, ProDOMA has two mer-

its in its usage. First, it does not require error correction.
As a result, it has robust performance for low cover-
age data. Second, unlike previous deep learning works
that were designed for classification, ProDOMA can also
be used for detection by distinguishing targeted domain
homologues from irrelevant sequences. The detection
performance is better than HMMER after ProDOMA
adopts a modified loss function from targeted image
detection.
The classification accuracy of ProDOMA consistently

outperformed the state-of-the-art method like HMMER
and DeepFam across various error rates (from 1% to
15%) and its performance is not affected by the changed
error rates and also the sequencing coverage. We tested
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Fig. 1 The overview of ProDOMA. The input sequence was translated and encoded to a 3-channel tensor. ci is defined in Equation (1). In the
classification task, the model directly outputs the family with the largest score as the prediction. In the detection task, the maximum of softmax
score needs to be compared with a specified threshold to determine whether the input contains a trained domain family or should be rejected

it on real third-generation sequencing datasets, focusing
on its function on detecting targeted domains using Out-
lier Exposure [19]. ProDOMA achieved higher recall with
comparable precision to HMMER.

Methods
Figure 1 sketches the architecture of ProDOMA. We
chose the CNN because the convolutional filters can
represent motifs, which are important for sequence clas-
sification [9]. There are many hyperparameters we can
experiment in the network architecture. The empirical
results show that the training data and the encoding
methods can affect the performance significantly. Using
error-containing sequences and 3-frame encoding leads
to high classification accuracy for TGS reads. To exclude
the unrelated coding or non-coding DNA sequences, we
trained the CNN using a modified loss function so that
out-of-distribution samples tend to have uniform distri-
bution on softmax values.

Encoding
With frequent insertion and deletion errors, the correct
translation of a read is composed of fragments of dif-
ferent reading frames. In order to train the CNN to
learn the conserved motifs from erroneous translations,
we implemented and compared multiple encoding meth-
ods (see “Comparison of encoding methods and model
structures” section). The empirical results show that the
3-frame encoding scheme achieved the best performance.
In this scheme, each DNA sequence is translated into
3 protein sequences using 3 reading frames. To accom-
modate domain identification on the reverse strand, the

reverse complement of the sequence is also used as input.
Thus, ProDOMA considers 6 reading frames for each
read. All the residues in the translated sequence are
one-hot encoded using a 21-dimensional vector follow-
ing IUPAC amino acid code notation. Then we combine
three matrices into a single 3-channel tensor like an RGB
image.
Given a translated sequence of length n, the encoded

input is a tensor with size 3× n× 21. The pseudo-code of
3-frame encoding can be found in Algorithm 1.

Algorithm 1 3-frame encoding
Input: DNA sequence x with length L, peptide to index

dictionary idx, peptide alphabet size |�|, output
sequence length n.

Output: Input tensor for neural networks with size 3 ×
n × 21.

1: Initialize an array arr with dimensions 3×n×|�|with
all 0

2: for j = 1 to 3 do
3: xj ← x[ j :]
4: yj ← translation of xj � translate xj into yj
5: for residue a at position k in yj do
6: if k ≤ n then
7: arr[ j, k, idx[ a] ] ← 1 � one-hot encoding

for each frame
8: end if
9: end for

10: end for
11: arr is the input tensor for neural networks
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Convolutional neural networks
ProDOMA consists of two convolutional layers, one max-
over-time pooling layer, one hidden linear layer, and one
linear output layer with the softmax function. For a multi-
channel input that we have from 3-frame encoding, we
transform the output arr from Algorithm 1 into a feature
value using the following equation.

ci = f

⎛
⎝

3∑
j=1

wj · arr[ j] [ i : i + h − 1] [ 1 : |�|]+b

⎞
⎠

(1)

b is the bias term and h is the filter size. f is the activation
function ReLU [20]. The filter consists of three 2D matri-
ces wj for j = 1, 2, and 3, corresponding to three reading
frames. arr[ j] [ i : i+ h− 1] [ 1 : |�|] defines a 2D window
of size h × |�| for the one-hot matrix with reading frame
j. We applied filters repeatedly to each possible window
of the input one-hot matrix to produce the feature map.
Then the max-over-time pooling is applied to the feature
map to capture the maximum value max(ci) as the feature
from this particular filter. The max-over-time pooling is
flexible with different input length.
Equation 1 described how a single filter in the convo-

lutional layer works. In our application, we used multiple
filters with various sizes to extract features of different
lengths.
ProDOMA has two convolutional layers. The first con-

volutional layer uses consistent filter size to extract low-
level motif-like patterns directly from the 3-frame encod-
ing input. Then the second convolutional layer extracts
high-level, intricate patterns with varying distance from
the output of the first convolutional layer. By repeatedly
applying the operations, we can finally generate a fea-
ture map. Then the max-over-time pooling was applied
to keep the most important features. Dropout [21] is also
used after pooling to prevent overfitting and to learn
robust features. A two-layer classifier with softmax func-
tion transfers the features to a vector of probabilities over
each label. For classification, we select the label with the
maximum probability as the prediction from ProDOMA.

Comparison of encodingmethods andmodel structures
We also tested other encoding methods with similar
model structure to ProDOMA: (1) DNA one-hot encod-
ing, which directly transfers DNA sequence to a one hot
encoding matrix of size L × 4. For a fair comparison, we
used filter sizes that are 3 times as long as we used for
3-frame encoding; (2) 3-branch model, where we con-
structed a network architecture with three branches pro-
cessing each of the 3-frame translated protein sequence
separately. Each of the branches consists of identical con-
volution layers, and all the parameters are shared between

the same layer of 3 branches. In other words, Eq. (1)
becomes ci(j) = f (wj · arr[ j] [ i : i + h − 1] [ 1 : |�|]+b)
for j = 1 to 3. In the 3-branch model, each branch mod-
els the translated protein sequences separately before the
merging layer right before the two-layer classifier. In con-
trast, in our 3-frame encoding, all three translated protein
sequences were processed and combined by the 3-channel
convolution filter in the first convolutional layer.
Our experimental results show that 3-frame encoding is

a better encoding scheme, possibly because it can effec-
tively encode the original DNA sequence information
and also helps convolutional filters extract useful fea-
tures for prediction of the protein domains (See results in
“Performance with different architectures” section). In
addition, our experiments show that changing the order of
the input reading frames does not affect the classification
accuracy.

Detecting out-of-distribution inputs
We have described how ProDOMA predicts the domain
labels for given DNA reads using CNN and softmax. How-
ever, with the close-set property of softmax, the classifier
will always assign a label for the input sample, even if
the input is not related to any label in the model (we call
such inputs out-of-distribution samples, compared to in-
distribution samples). For example, in RNA-Seq data, not
every read encodes targeted domain families in the model.
In real applications, this close-set property will lead to an
undesired high false-positive rate. To address the prob-
lem, we adopt Outlier Exposure (OE) [19] with a threshold
on softmax prediction probability [19] to distinguish the
out-of-distribution inputs from in-distribution ones.

The threshold baseline
Usually, the samples from the out-of-distribution dataset
tend to have small softmax values because their normal-
ized probabilities are more uniformly distributed than the
samples from the in-distribution dataset.
Following [19], we extracted the maximum value of the

softmax probability vector from the output of ProDOMA
for each input sample. We separated the in-distribution
samples from the out-of-distribution samples by speci-
fying a threshold on the maximum softmax probability.
A holdout dataset with both in-distribution and out-of-
distribution samples was used to empirically determine
the best threshold that can produce the largest F1 score:
F1 = 2· precision·recall

recall+precision . Then this learned softmax threshold
is used to reject any sample with smaller softmax val-
ues. The performance of this baseline model is shown in
Fig. 2a.

Outlier exposure
To further improve the performance of the out-of-
distribution sample detection, we adopt the Outlier
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Fig. 2 The histograms of maximum softmax values for in-distribution and out-of-distribution samples from base model (a) and model with Outlier
Exposure (b). “In correct”: in-distribution samples with correct classification. “In Incorrect”: in-distribution samples with incorrect classification

Exposure (OE) method introduced by [19]. As we dis-
cussed previously, we expect the out-of-distribution sam-
ples to have uniformly distributed softmax probabilities
for all classes. However, as such inputs were never pro-
cessed in training, sometimes the model will yield unex-
pected high confidence prediction for out-of-distribution
inputs (Fig. 2a). To address the problem, we expose the
model to out-of-distribution samples in the training pro-
cess to let the model effectively learn the heuristics for
detecting out-of-distribution inputs. Compared with the
threshold baseline, we need to introduce a new dataset
with out-of-distribution samples in the training process.
Given a model g and the learning objective L, the objec-

tive of OE is to minimize the original loss function with
an auxiliary loss term to regularize the out-of-distribution
examples. OE can be formulated as minimizing the fol-
lowing objective [19]:

E(x,y)∼Din

[
L(g(x), y) + λEx′∼Dout

[
LOE(g(x′), g(x), y)

]]

(2)

LOE = −
∑
i
P(i) ln

Q(i)
P(i)

(3)

Din is the original in-distribution dataset, Dout is the
out-of-distribution dataset for OE. In the original clas-
sification task, we use the cross-entropy loss function
L. In order to force the out-of-distribution samples to
have uniform distribution on all labels, we minimize the
KL-divergence between out-of-distribution and the uni-
form distribution as shown in Eq. (3). Q(i) is the pre-
dicted distribution of out-of-distribution samples from
the model and P(i) is a normalized uniform distribu-
tion. In the experiment, we use λ = 0.5 for the coef-
ficient of the auxiliary loss. More detailed and compre-
hensive description of OE can be found in the original
publication [19].

Figure 2 presents the distribution of the maximum
softmax score for each input sequence with and with-
out OE for the threshold calibration dataset we used in
“Human genome dataset” section. Without OE, there are
still a lot of out-of-distribution samples with large softmax
scores (0.5 to 1). With OE, most of the out-of-distribution
samples accumulate with small softmax scores (0 to 0.4).
With OE, the overlapping area between the two distribu-
tions (red vs combined green and blue) is decreased from
26.06% to 21.99%. In addition, for the in-distribution sam-
ples with small softmax values, their classification results
tend to be wrong (blue in Fig. 2). Thus, using OE can pro-
vide better classification accuracy at a cost of rejecting
some in-distribution samples.

Experiments and results
To evaluate ProDOMA, we applied ProDOMA on both
simulated and real datasets: a simulated PacBio G protein-
coupled receptor (GPCR) coding sequences (CDS) dataset
[7], and two real third-generation sequencing datasets of
the human genome [22, 23]. GPCR is a large protein family
that is involved in many critical physiological processes,
such as visual sense, gustatory sense, sense of smell, reg-
ulation of immune system activity, and so on [24]. In
addition, GPCR is a very diverse set of protein sequences
and thus can pose challenges for classification. It consists
of 8,222 protein sequences belonging to 5 families, 38 sub-
families, and 86 sub-subfamilies. Following DeepFam, all
the experiments are conducted on the sub-subfamilies.
We compared the performance of ProDOMA with

HMMER and DeepFam, which are representatives of
alignment-based and alignment-free domain classification
tools. In both experiments, ProDOMA was trained with
simulated PacBio reads from the GPCR CDS downloaded
from NCBI. The simulation was conducted using a pop-
ular simulation tool PBSIM [25] with default setup and
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error rates from 1% to 15%. Following their instructions
and design principle, HMMER andDeepFamwere trained
using the correct protein sequences in the GPCR dataset.
In our first experiment, we tested ProDOMA and its

alternative implementations on simulated PacBio reads.
In the second experiment, we tested ProDOMA on real
PacBio and Nanopore reads from human data. All specific
commands, parameters, and output of our experiments
can be found along with the source code of ProDOMA.

Experiments on simulated PacBio GPCR CDS dataset
The reference coding sequences of each sub-subfamily
are divided into 80% training samples and 20% test sam-
ples. The number of reference sequences in each class
is shown in Table S1 in Supplementary File 1. Then we
used PBSIM to generate simulated PacBio reads with 80X
coverage on the plus strand for training and test samples
with specified error rates. As a result, the training set has
939,888 simulated reads, and the test dataset has 228,388
simulated reads for 86 sub-subfamilies, respectively. Our
strategy of conducting simulation after splitting the cod-
ing sequences can guarantee that there is no overlap
of the GPCR CDS sequences between the training and
test datasets, which is important for meaningful evalua-
tions. In our experiments, we used 5-fold cross validation.
Thus, the above training and testing dataset construction
process was repeated five times.

Performance with different architectures
We conducted a series of experiments by varying the key
components in our base models: the training data, the
number of convolutional layers, the number of convolu-
tion filters, the size of convolution filters, and different
encoding strategies. Totally, we compared 14 different
combinations of hyperparameters or architectures and
two different types of training data in the experiments.
Except for the error-free model, all these experiments
were trained and tested on reads with an error rate of 10%.
The error-free model was trained on error-free reads and
tested on reads with an error rate of 10%.We listed all vari-
ations and their accuracy on the testing set in Fig. 3. The
highest accuracy is 86.74%, which is achieved by using 3-
frame encoding with two convolution layers. Based on the
comparison, the key factors affecting the performance are
the encoding strategies, the size of filters, and the type of
training data.

Comparisons of the types of training data Using error-
containing reads as training data led to higher accuracy
than the error-free model. Using reads with errors in
training data has the same function as the data aug-
mentation, which is widely adopted in computer vision
[26]. Because the TGS data usually contain sequencing

Fig. 3 The mean and standard deviation of classification accuracy of
different network architectures. Different colors represent different
group of comparison: green bars for encoding and dataset; blue
bars for number of filters; purple bars for different filter sizes; orange
bars for different convolutional layers. Error-freemodel: the training
data only contain the error-free reads; Basemodel: the training data
contain both error-free reads and reads with error rate of 10%;
3-frame encoding: the encoding strategy in the base model;
3-branch: 3 branches structure for translated reads; DNA encoding:
use one-hot encoding of DNA reads as input; 512 filters: use 512
filters in total in the 2nd convolutional layer; 1024 filters: use 1024
filters in total in the 2nd convolutional layer; 2048 filters: use 2048
filters in total in the 2nd convolutional layer; 4096 filters: use 4096
filters in total in the 2nd convolutional layer; filters6: filter sizes of 2nd
convolutional layer=[ 6, 9, 12, 15, 18, 21, 24, 27]; filters8: filter sizes of
2nd convolutional layer=[ 8, 12, 16, 20, 24, 28, 32, 36]; filters10: filter
sizes of 2nd convolutional layer=[ 10, 15, 20, 25, 30, 35, 40, 45];
filters12: filter sizes of 2nd convolutional
layer=[ 12, 18, 24, 30, 36, 42, 48, 54]; filters14: filter sizes of 2nd
convolutional layer=[ 12, 18, 24, 30, 36, 42, 48, 54, 60]; 1 layer: only
keep the last convolutional layer; 2 layer: use two convolutional
layers; 3 layer: add an extra convolutional layer with 64 filters of size 3

errors, the data augmentation method will help the model
prevent over-fitting and be more robust to the error.

Comparisons of filter configurations Using 2 layers
achieved higher accuracy than 1 layer. The extra layer
helps the neural network extract more complex patterns
such as interactions of the lower level features. However,
the “deeper” model with more layers is more difficult to
optimize. That is the possible reason why the average
accuracy of the 3-layer model is lower than the basemodel
(with 2 layers), but the highest accuracy achieved is higher
than our base model.We found that the additional con-
volutional filters increased the performance for protein
domain prediction. The improvement is saturated when
we have more than 2,048 filters.Increasing the size of fil-
ters can also help improve the performance of the models.
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With larger filter sizes, the neural network can capture
long-range features at a cost of training time. The result
suggests the importance of choosing the right filter size,
which is not explored in previous works [9, 27].

The input order of the Reading frames does not change the
classification accuracy
Reads starting from different positions in the same tran-
script can have different reading frames corresponding to
the same translation. In our model training process, the
three channels always take translations of reading frame
0, 1, and 2 of a read as input. It is thus fair to ask whether
this specific order affects the classification performance.
We investigate this question by inputting different orders
of reading frames of test sequences to our trained model.
Thus, we generated 6 inputs from each reads with differ-
ent frame orders. As a result, 1,370,328 validation samples
are tested in the experiment. Figure 4 shows the classifi-
cation accuracy of 5-fold cross validation using different
reading frame orders as input.
The classification accuracy using different reading

frames is generally consistent. Figure 5 shows that with the
increase of training set coverage (from 10x to 80x), the dif-
ference of the highest and lowest accuracy between the 6
orders decreases. the lowest difference of accuracy is 0.001
(80x training set).

Comparisonwith HMMER and DeepFam
There are many other existing tools like Selective top-
down [28], RPS-BLAST[29] and UProC [30] for protein
domain classification. For alignment-free tools, we choose
DeepFam [9] because of its superior performance. And
as shown in [9, 28], DeepFam achieves the best perfor-
mance in alignment-free models. Also, HMMER [4, 5] is
one of the most widely used alignment-based methods

for protein domain classification and has been proven to
be reliable on different datasets. The experiment results
shown in [30] also shows that it achieves better perfor-
mance on longer reads. Both HMMER and DeepFam are
also well maintained and can be easily applied to con-
duct experiments using different types of reads. Thus, we
choose HMMER and DeepFam as the benchmark tools.
Following the design principles and the instructions

of HMMER and DeepFam, the training of HMMER and
DeepFamwas conducted using correct protein sequences,
rather than DNA sequences. The test sequences are sim-
ulated long reads from reference CDs. Their three-frame
translations are used as input to HMMER and DeepFam.
As long as one of the three translated sequences is clas-
sified to the correct sub-subfamily, we call this a correct
prediction.
The classification accuracy of ProDOMA and Deep-

Fam was measured using 5-fold cross-validation. As it is
tedious to perform 5-fold cross validation for HMMER,
we used all 5-fold correctly translated protein sequences
to train the pHMM model, which will favor HMMER as
the trained model has seen the test sequences. MAFFT
[31] was used to generate themultiple sequence alignment
for each sub-subfamily. Then we used hmmbuild in the
HMMER package to build pHMM models for each sub-
subfamily. For each test DNA sequence, 3-frame transla-
tions were applied to get three peptide sequences. All the
translated sequences were tested using hmmscan against
all 86 pHMMmodels we built.
Figure 6 compares the classification performance of all

methods on the simulated PacBio reads. For this data
set, our method achieved better performance for datasets
with different error rates. The high error rates heavily
impacted the performance of HMMER and DeepFam. It is
expected because the profile HMM search is much more

Fig. 4 The mean, min, and max value of classification accuracy using different orders of reading frames as input. X-axis: order of reading frames as
input. Y-axis: classification accuracy
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Fig. 5 The accuracy range of different reading frame orders vs. the coverage of the training set. X-axis: coverage of the training set. Y-axis: Delta
accuracy (the difference of the highest and lowest accuracy between different reading frame orders)

sensitive to frameshifts caused by gaps, and DeepFam
is designed for classifying relatively complete error-free
protein sequences.

Canwe rely on error correction?
As there are error correction tools for long reads [17],
existing domain classification tools such as HMMER can
be applied on error-corrected reads. We conducted an
experiment to test whether family classification using
corrected reads can achieve comparable performance to
classification of error-free sequences.

Hybrid error correction tools tend to perform better
than self-correction tools. However, not every sequence
project has budget and manpower to generate both short
read and long read libraries and data. Based on these
recent reviews [15, 17], we chose LoRMA [18], a more
recently published self-error correction tool, with the low-
est error rate after correction [17]. Note that LoRMA
failed to generate outputs if we use all the simulated reads
as input, probably because of the similarity between the
homologous GPCR sequences or the large graph pro-
duced by the reads. Thus, we run LoRMA for each set

Fig. 6 The mean, min, and max value of classification results of ProDOMA, HMMER, and DeepFam on classifying four sets of simulated long reads
with different error rates. Each test set contains roughly 228K simulated reads from 86 sub-subfamilies. X-axis: different error rates. Y-axis:
classification accuracy
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of reads simulated from the same reference sequence of
GPCR in order to achieve the best error correction per-
formance. Similar to other groups’ observations, LoRMA
discarded a large number of reads during error correction
when the coverage is not high, which will jeopardize abun-
dance estimation. As shown in Table 1, although the num-
ber of reads remained after error correction increased
along with the increase of the coverage, it still discarded
a large number of reads (e.g. 75.9% reads are discarded
when the coverage is 30x). Also, the error correction
tools became significantly slower with the increase of the
coverage.
We recorded the domain classification results for cor-

rected reads in Table 2. HMMER achieved the best accu-
racy for corrected reads. ProDOMA achieved comparable
accuracy on corrected reads. With or without error cor-
rection, ProDOMA’s performance is consistent with the
change of the coverage. Without relying on error correc-
tion, ProDOMA can conduct domain classification for all
reads and thus lead to a more accurate estimation of the
domain/family abundance. As DeepFamwill assign a fam-
ily to each translation, it is unknown which one should
be chosen in practical applications. We regard a read as
a correct classification as long as one of the translation is
correctly classified.

Performance of remote homology search
As GPCR is a large protein family, some of their cod-
ing sequences can show high diversity, posing a challenge
for both alignment-based and alignment-free homology
search. We plot the change of F1 score of each protein
family with the change of the intra-class identity in Fig. 7.
As DeepFam’s performance is inferior to others, we did
not include DeepFam in this experiment. The intra-class
identities were calculated using the alistat tool pro-
vided in the HMMER package. The sub-subfamilies with
low identities are more likely to have remote homologues.
F1 score is the harmonic mean of recall and precision. For
one protein family A, let its true member sequences be set
A+ and the predicted sequence set be Apred. The recall is
thus |A+∩Apred|

|A+| . Precision is |A+∩Apred|
|Apred| .

Figure 7 shows that both HMMER and ProDOMA suf-
fer from low intra-class identity but the performance
of ProDOMA deceases slower with the decrease of the

Table 1 The number of reads before and after error correction
and the running time of LoRMA

Coverage Before After Percentage Time (h:m:s)

10x 88124 7897 8.9% 14:28:07

20x 161504 30884 19.1% 26:24:10

30x 235083 56677 24.1% 39:12:02

It becomes very slow with the increase of the coverage

identity. One possible reason is that deep learning can
learn more degenerate features that are hard to model by
HMMs.

Comparison of the running time
With a large amount of data generated by third-generation
sequencing platforms, we require both high accuracy and
efficiency for the algorithms. We run ProDOMA, Deep-
Fam, and HMMER using Intel® Xeon® Gold 6148 CPU
with 20 cores at the High-Performance Computing Center
at Michigan State University. We also tested ProDOMA
and DeepFam with NVIDIA® Tesla® V100 GPU with Apex
acceleration library (HMMER doesn’t support GPU). For
each method, We measured its execution time by aver-
aging 5 independent trials with randomly selected 10,000
sequences.
As shown in Table 3, in CPU, HMMER with the default

setup runs much faster than ProDOMA. One reason
is that with high sequencing error rates, the alignment
against many candidate sub-subfamilies cannot pass the
filter stage of HMMER, skipping the expensive pHMM
alignment. By turning off all filters, the sensitivity of
HMMER increases, but at a large cost in speed. With
-max (turning off all filters), HMMER is much slower
than deep learning-based methods. With GPU accelera-
tion, the running time of ProDOMA is much shorter than
the running time of HMMER with the default setup.

Human genome dataset
To evaluate ProDOMA’s performance on real third-
generation sequencing dataset, we tested ProDOMA on
the H. sapiens 10x Coverage data from PacBio [23]
and Oxford Nanopore Human Reference Datasets Rel6
[32]. In this experiment, as the real genome sequencing
data contains non-GPCR coding sequences, we will also
test the performance of ProDOMA on detecting out-of-
distribution samples.

Training dataset The training dataset is the same as the
previous experiments: long reads simulated using PBSIM.
To apply Outlier Exposure, we constructed a dataset that
mixed the previous 5-fold training dataset with an out-
lier dataset. In order to generate the outlier dataset with
similar distributions to the real out-of-distribution sam-
ples, we simulated a PacBio human genome dataset from
GRCh37/hg19 human reference genome [33]. Then we
kept the simulated reads that cannot be aligned to any
GPCR CDS by BLASR in the outlier dataset [34]. As a
result, the outlier dataset has 800,000 simulated reads.
Then we retrained ProDOMA with OE as discussed in
Methods.

Test dataset We used two test datasets: a PacBio
RS II test dataset from PacBio SMRT Sequencing for
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Table 2 The classification accuracy comparison between ProDOMA, HMMER and DeepFam on corrected reads

All simulated reads Corrected reads

ProDOMA HMMER DeepFam ProDOM HMMER DeepFam

10x 87.12% 62.12% 25.06% 95.05% 97.42% 69.06%

20x 86.47% 63.25% 25.01% 94.94% 97.59% 77.36%

30x 86.69% 62.56% 25.18% 94.79% 98.16% 80.76%

The first column is the coverage

CHM1TERT human cell line; and a Nanopore test
dataset from Oxford Nanopore MinION on CEPH1463
(NA12878/GM12878, Ceph/Utah pedigree).
We determine the ground truth of these test reads using

sequence similarity, which favors alignment-based tools.
We first aligned all reads against GPCR CDS dataset using
BLASR. We extracted the reads with alignment length
longer than 60% of aligned CDS sequence as our in-
distribution test samples. For each sample, the ground
truth is given by the label of aligned CDS.
We also randomly selected reads that were not aligned

to any GPCR CDS as our out-of-distribution samples. To
test different portions of non-GPCR reads, we generated
datasets consisting of 1%, 5%, 10%, and 50% GPCR reads.
For reads longer than 3,000 bps in the test dataset, we
cropped each read into fragments that are at most 3,000
bps to be consistent with training dataset.

Out-of-distribution test using PacBio and Nanopore reads
As the purpose of this experiment is to evaluate the
performance of GPCR CDS detection, we computed the

Fig. 7 Scatter plot and their logistic regression curves for all
sub-subfamilies. The error bar (regions surrounding the curves) is the
95% confidence interval of the fitting. Y-axis: F1 score of the test
sequences. X-axis: intra-class identity

recall, precision, and F1 score of each tool on labeling
reads from the 86 classes. Recall is the ratio of correctly
predicted reads to the total number of reads from the 86
classes. Precision is the ratio of the reads from the 86
classes to the total number of reads predicted with the
86 class labels. F1 score is the harmonic mean of recall
and precision and we reported micro-F1 score for our
multi-classification model.
We benchmarked the OE model with HMMER, which

is highly accurate in distinguishing protein domains from
other sequences. As shown in Table 4, both methods
have low recall but high specificity because many reads
are rejected and not classified into any of the 86 classes.
Table 4 also shows that although there is some slight dif-
ference in the performance when the proportion of GPCR
changes, the overall performance is consistent. This is
because our model is robust in removing OOD reads in
general.
Still, ProDOMA with OE achieved significant improve-

ment on recall while the precision is comparable with
HMMER (Table 4). In general, both methods have better
performance on the Nanopore dataset. Note that in the
whole pipeline, we only used simulated PacBio reads for
training. This result suggests that our strategy is robust
with different types of long reads.

Discussion
In this work, we showed that ProDOMA can render better
accuracy for domain classification in long noisy reads. The
major differences between the architecture of ProDOMA
and other CNN-based sequence classification models are
the coding strategy designed for erroneous reads and
the modified loss function to reject out-of-distribution
samples. In order to interpret why this 3-frame encod-
ing works, we further investigate the feature extracted by
convolutional filters.

Table 3 The average elapsed time to predict sub-subfamily
labels of 10,000 simulated PacBio reads for each method

Setup ProDOMA DeepFam HMMER HMMER−max

CPU 1168.78s 276.74s 312.13s 3470.04s

GPU 25.71s 20.37s unavailable unavailable
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Table 4 The performance of protein domain prediction with out-of-distribution examples using ProDOMA with Outlier Exposure (OE),
and HMMER on the real PacBio and Nanopore dataset

Proportion Method
PacBio Nanopore

Recall Precision F1-score Recall Precision F1-score

1% GPCR HMMER 0.1403 0.9574 0.2446 0.3902 0.9876 0.5593

ProDOMA 0.4581 0.9872 0.6258 0.4727 0.9796 0.6376

5% GPCR HMMER 0.1537 0.9411 0.2642 0.4015 0.9754 0.5513

ProDOMA 0.4712 0.9921 0.6389 0.4615 0.9872 0.6289

10% GPCR HMMER 0.1491 0.9513 0.2577 0.3988 0.9917 0.5688

ProDOMA 0.4473 0.9842 0.6150 0.4886 0.9843 0.6529

50% GPCR HMMER 0.1494 0.9507 0.2583 0.3984 0.9825 0.5670

ProDOMA 0.4479 0.9837 0.6154 0.4836 0.9731 0.6458

Following the methods adopted by the previous
research [9, 35], we visualized the convolution units acti-
vated for each family. We used the model that was
trained in previous experiments and fed it with the test
sequences belonging to this family. Then we collected all
the sequence fragments that activated the convolution
units. We extracted the results from the most frequently
activated convolution units and usedWeblogo [36] to gen-
erate the logos from these sequences. Since we translated

the original input DNA sequences using three reading
frames, we have 3 logos associated with the 3 frames.
We showed the three logos of one class named Lat-

rophilin in Fig. 8. They don’t share high global similarity
because they are translated using different reading frames.
But they have sub-motifs with high similarities with the
real motif from the original member sequences of Lat-
rophilin. These sub-motifs are aligned to the real motif
in Fig. 9. These figures indicate that the filters from

Fig. 8 Logos derived from most frequently activated convolutional filters from the three reading frames for Latrophilin
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Fig. 9Motif analysis for Latrophilin. Real motif: the motif derived from the error-free homologous sequences in Latrophilin. FrameX-SX: sub-motifs
derived from most frequently activated convolutional filters in different frames (their logos are shown in Fig. 8. These sub-motifs are aligned to the
real motif based on the motif similarities returned by MEME

different channels learned short but conserved motifs
from the underlying families. More examples of the full-
length filters can be found in Figure S2 to Figure S4 in
Supplementary File 1.
As the model is trained using sequences with 3,000

nt, padding is applied to all inputs shorter than 3,000.
Sequences longer than 3,000 will be cut into substrings of
length 3,000, which will then be fed into the model. Thus
our CNN model cannot accurately detect the start and
end positions of domains. Instead, a model that can accu-
rately assign weights for each base is needed for detecting
the entering and existing positions of each domain. We
plan to explore deep learning-based annotation our future
work.
In summary, ProDOMA provides a complementary tool

to current third-generation sequence analysis pipelines
on gene-centric function analysis. It can directly identify
protein domains in long noisy reads without relying on
error correction and its performance is robust to low cov-
erage data and can tolerate higher error rates than other
domain classification tools.
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