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Abstract: Regulatory networks that govern embryonic development have been well defined. 
While a common hypothesis supports the notion that the embryonic regulatory cascades are 
reexpressed following injury and tissue regeneration, the mechanistic regulatory pathways 
that mediate the regenerative response in higher organisms remain undefined. Relative to 
mammals, lower vertebrates, including zebrafish and newts, have a tremendous regenerative 
capacity to repair and regenerate a number of organs including: appendages, retina, heart, 
jaw and nervous system. Elucidation of the pathways that govern regeneration in these 
lower organisms may provide cues that will enhance the capacity for the regeneration of 
mammalian organs. Signaling pathways, such as the hedgehog pathway, have been shown 
to play critical functions during development and during regeneration in lower organisms. 
These signaling pathways have been shown to modulate multiple processes including 
cellular origin, positional identity and cellular maturation. The present review will focus on 
the cellular and molecular regulation of the hedgehog (HH) signaling pathway and its 
interaction with other signaling factors during appendage development and regeneration. 
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1. Introduction 

Regenerative medicine holds tremendous promise for repair and restoration of damaged and/or 
diseased tissues. It is well recognized that there is considerable diversity regarding animal models and 
their capacity for regeneration (Table 1). Evolutionarily, the ability to regenerate appears to be 
inversely correlated with the complexity of an organism (Figure 1A) [1,2]. For example, mammalian 
models have a varied response to injury as some tissues have a tremendous capacity for regeneration 
(i.e., skin, blood, liver, skeletal muscle, etc.) and others are extremely limited (i.e., brain, spinal cord, 
heart, etc.) [3–6]. Those mammalian organ systems that have a more limited regenerative capacity 
typically respond to injury and/or chronic disease with a fibroproliferative response ultimately marked 
by avascular scar formation and/or fatty infiltration (Figure 1A) [1,6]. Molecular expressions profiling 
in lower organisms that have robust regenerative potential have identified factors that may govern this 
process [7,8]. Interestingly, loss of regenerative signals (FGF signaling) in regenerating organisms  
(i.e., zebrafish) results in scar formation and limited regeneration, suggesting a reciprocal relationship 
between regeneration and scar formation [9]. The varied regenerative responses between lower and 
higher organisms or between closely related mammalian tissues (i.e., skeletal muscle versus heart) 
support the notion of either an active or dormant or absent molecular regenerative pathway and these 
pathways continue to receive intense interest. 

Table 1. Differential regenerative potential in vertebrates. 

Tissue Species Extent of Regeneration Signaling Pathways 
Tail    

 

Mexican axolotl  
(Ambystoma mexicanum)  

Xenopus  
(Xenopus laevis)  

Larval Stage  
Newt  

(Notophathalmus viridescencs) 

  
Complete  

  
  

Complete  
  

Complete 

WNT, BMP, NOTCH, SHH 
[8,10–15] 

Limb    

 

Mexican axolotl  
(Ambystoma mexicanum)  

Xenopus  
(Xenopus laevis)  

Larval Stage  
Adult Stage  

Newt  
(Notophathalmus viridescencs) 

  
Complete  

  
  

Complete  
Spike (Incomplete)  

  
Complete 

FGF, WNT, NOTCH, SHH, 
RA, BMP  
[16–23] 

Fin    

 
Zebrafish  

(Danio rerio) 
Complete 

FGF, WNT, NOTCH, SHH, 
RA, BMP  
[17,24–29] 
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Table 1. Cont. 

Tissue Species Extent of Regeneration Signaling Pathways 
Heart    

 

Newt  
(Notophathalmus viridescencs)  

Zebrafish  
(Danio rerio)  

Mouse  
(Mus musculus)  
Neonatal Heart  

Adult Heart 

  
Complete  

  
Complete  

  
Complete  

Scar formation 

FGF, NOTCH, RA  
[6,9,13,30–32] 

 

 

Figure 1. Regeneration and scar formation. (A) Lower vertebrates (newt and zebrafish) 
have tremendous potential to regenerate with minimal scar formation. In contrast, higher 
vertebrates (mammals) have a restricted regenerative ability marked by increased fibrosis 
and scar formation; (B) In the regenerative systems, tissue regeneration occurs in multiple 
steps including wound healing, dedifferentiation, proliferation, growth and patterning. 
Following injury, the epithelial cells proliferate to cover the injured area and form a multiple 
layered apical cap. Signaling from the regenerating regions initiate dedifferentiation of mature 
cells followed by proliferation, growth and redifferentiation. Note the key is in the upper panel. 
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Recent studies support the notion that tissue injury and the regenerative response are associated with 
the activation of embryonic/fetal gene regulatory pathways during regeneration [33,34]. Regeneration is 
marked by distinct stages of architectural restoration including: wound healing, blastema formation, 
cellular proliferation and differentiation (Figure 1B) [11,19,35–38]. Each of these stages has a specific 
molecular signature. For example, during the wound healing stage, programs involved in immunomodulation, 
cellular migration and extracellular matrix composition are expressed early following injury during the 
initial stages of regeneration (Figure 1B) [11,35–37]. Similarly, blastema formation and cellular proliferation 
phases are marked by cellular dedifferentiation and the activation of cell cycle regulatory genes  
(Figure 1B) [19,26,38,39]. The ability to form progenitor (or stem-like) cells from mature differentiated 
cell types (dedifferentiation) is a hallmark feature in lower regenerative organisms [7,19,26,38,39]. 
Dedifferentiation involves the loss of mature markers, changes in the chromatin status and nuclear 
architecture ultimately producing a cell that reenters the cell cycle [7,26,39]. Studies suggest that 
regenerative organisms such as newts and zebrafish have an inherent ability to induce dedifferentiation 
of the mature cells, thereby contributing to tissue regeneration [19,26,38–40] and may represent a key 
process/step that is relatively absent in higher vertebrates. 

Although significant advancements have been made in this field, the factors which coordinate the 
growth, repair and regeneration of tissues are incompletely defined. Several signaling pathways 
including Hedgehog (HH), NOTCH, FGF and WNT pathways have been shown to regulate either one 
or multiple processes during regeneration (Table 1). Most of these pathways have been shown to regulate 
the proliferative, patterning and differentiation phases of the regenerative response [10,16–18,24].  
In mammalian systems, the activation of the proliferative signals and suppression of differentiation 
signals in the terminally differentiated cells are two major barriers that may limit the regenerative 
response. Therefore, an enhanced understanding of the signaling pathways that regulate cellular 
proliferation and differentiation is essential for the field. This review explores the signaling and genetic 
networks that govern appendage regeneration in lower vertebrates recognizing that these data may 
ultimately contribute to an enhanced understanding of the regenerative response(s) in mammals. 

2. Hedgehog Signaling Pathways during Limb Development 

During embryogenesis, the limb bud develops from the proliferation of underlying mesenchymal 
cells that are in close approximation to the overlying ectodermal cells and is referred to as the apical 
ectodermal ridge (AER) [41–43]. Studies where the AER was removed from the developing limb bud 
of the chick resulted in the loss of limb bud outgrowth supporting the importance of the AER in limb 
growth [42–44]. Signaling molecules from the AER maintain the most distal cells in a proliferative 
state and promotes limb development [41–46]. 

Multiple signaling pathways are involved in regulating the limb bud development. For example, FGF, 
HH and WNT signaling coordinately function to maintain the developing limb bud [41,43–45,47,48]. 
The HH signaling cascade involves multiple molecular interactions operative in the transmission of the 
signal [41,49–52]. In vertebrates, three hedgehog (HH) proteins including Sonic hedgehog (SHH), 
Indian Hedgehog (IHH) and Desert Hedgehog (DHH) have been documented in mediating the HH 
signaling pathway [50,51]. The knockout of DHH has no phenotypic abnormalities [51–53]. In contrast, 
SHH- and IHH-null mice develop congenital abnormalities and lethality (Table 2) [54,55]. Each HH 
ligand is secreted and participates in a conserved HH signaling pathway [49–51]. The initiation of HH 
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signaling occurs at the primary cilia [50,56]. Multiple studies have indicated that upon activation of 
HH signaling, Supressor of Fused (SuFu) proteins together with Gli (SuFu-Gli) are recruited to the cilia, 
facilitating the dissociation of the SuFu-Gli complex [56]. This results in the release of Gli proteins 
and further activation of HH signaling [56]. Several studies have indicated that ciliary proteins 
including intraflagellar transport proteins (IFT) are critical for activation and transduction of the HH 
signaling [50,56,57]. Importantly, it has been shown that mutation of the ciliary protein recapitulates HH 
signaling defects, suggesting a critical requirement of ciliary proteins in HH signal transduction [56,57]. 
For example, mutant mice for Dync2H1 and IFT144 proteins have been shown to be defective in 
skeletal morphogenesis, craniofacial defects and appendicular defects [56–59]. 

In the absence of the HH morphogen, Patched 1 (Ptc1, a membrane protein) prevents the activation 
of HH pathway by inhibiting Smoothened (Smo) activity (Figure 2; inactive state) [49–52,60–62]. 
Upon binding of the HH morphogen, Ptc1 undergoes a conformational change, and is no longer able to 
suppress Smo activity. This results in an activation of the intracellular signal resulting in translocation 
of Gli proteins (Gli1, Gli2A and Gli3) into the nucleus (Figure 2, active state) [49–51]. Gli proteins are 
transcription factors which activate their downstream targets to modulate cell growth, proliferative and 
cell survival genes [51,60,61,63–66]. Elegant studies by Vokes et al. have demonstrated Blimp1 as a 
direct downstream target of Gli factors [63]. Recent studies have implicated Gli-independent activation 
of HH signaling and categorized as non-canonical HH signaling [50,51]. In non-canonical HH signaling 
(non-Smo and non-Gli), HH activation results in disruption of the Ptc1-cyclin B1 complex and promotes 
the Ptc1 affinity to GRK2 [51]. Similarly, Gli-independent HH signaling has been shown to be involved 
in the regulation of the actin cytoskeleton by modulation of RhoA and Rac1 GTPases [51,60,64]. Both 
canonical and non-canonical HH pathways have been described in angiogenesis, development and 
tumorogenic processes [49–51,60,61]. The importance of the HH signaling pathway is evident from 
the genetic knockout studies, as gene disruption strategies of HH signaling members resulted in 
multiple developmental defects and lethality (Table 2). 

Table 2. Genetic models and HH signaling during development. 

Genotype Lethality Phenotype 

Shh-/- 
Embryonic lethality  

(E11.5–E18.5) 

Midline structural defects  
Defective distal structure  

Dorsoventral patterning defects [41,54] 

Ihh-/- 
Partial embryonic  

Lethality 

Skeletal defects  
Mesenchymal loss  

Chondrocyte proliferation defects [41,55] 

Smo-/- 
Embryonic lethality  

(E9.5–E10.5) 

Midline structural defects  
Cardio-vascular defects  

L/R asymmetry defects [41,67,68] 

Shh-/-; Ihh-/- 
Embryonic lethality  

(E9.5–E10.5) 

Midline structural defects  
Cardio-vascular defects  

Abnormal forebrain  
Patterning defects [41,64,67,68] 
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Table 2. Cont. 

Genotype Lethality Phenotype 

Ptc1-/- 
Embryonic lethality  

(E9.5–E10.5) 
Open neural tube defects  

Cardiac morphogenesis defects [69] 
Gli1-/- Viable No obvious phenotype [66] 

Gli2-/- 
Embryonic lethality  

(E15.5–E18.5) 
Defective lung outgrowth [66] 

Gli1-/-; Gli2-/- 
Embryonic lethality  

(E15.5–E18.5) 

Defective growth and patterning of lung lobes  
Notochord regression defects  

Defective spinal cord ventral midline [66] 

Shh Morpholino  
(Zebrafish) 

 
Reduced myoseptum  

Defective somitic patterning  
Partial cylopia [70] 

Msx2-Cre;SmoL/L Lethality (birth) Patterning defects [60,71] 
Prx1-Cre;PtcL/L Viable Patterning defects [41,69] 

 

Figure 2. Schematic illustration of the HH signaling pathway. HH is a secreted morphogen 
which acts in an autocrine and paracrine fashion. In the absence of HH morphogen, 
Patched1 (Ptc1), a transmembrane protein, inhibits Smoothened (Smo) activity. Inhibition of 
Smo activity by Ptc1 has been hypothesized to involve a second messenger mediated 
mechanism. In the absence of Smo activity, protein kinase A (PKA) phosphorylates Gli 
proteins (a downstream target of HH signaling) leading to the generation of repressor Gli 
(Gli-rep), thereby resulting in inactive HH signaling. The binding of the HH morphogen 
results in loss of Ptc1 activity and subsequent activation of Smo activity. Activated Smo then 
transduces the signal, resulting in the activation of Gli2A (Gli-Act) and transcription of 
downstream targets. 
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The limb bud grows in a proximal-distal (PD) axis and patterning occurs from anterior-posterior 
(AP) axis (Figure 3A). Multiple reports demonstrated that FGF signaling between the AER and  
the underlying mesodermal cells function to coordinately generate the PD axis during limb 
development [41–44]. Genetic analysis revealed that Fgf8 from the AER and Fgf10 from the 
underlying mesenchymal cells are essential for limb growth [41,42]. In tetrapods, the development of 
forelimb and hindlimb position is specified by the T-box factors, Tbx5 and Tbx4. Both forelimb and 
hindlimb development are regulated by distinct signaling cascades [45–47]. For example, the regional 
expression of Fgf10 is regulated by Wnt2b in the forelimb and by Wnt8c in the hindlimb [48]. In 
contrast to the PD axis, the AP axis during limb development is modulated by SHH morphogens [41,65]. 
The expression of SHH is confined to the posterior region of the limb bud and has a graded expression 
pattern [72,73]. In the anterior region, SHH prevents the processing of Gli3 to form Gli3-rep, which 
functions as a repressor (Figure 3B) [41,49,64,66,73,74]. 

 

Figure 3. HH signaling and limb development. (A) Schematic outlining the different 
axises of the developing limb. Limb bud formation is initiated at the defined region of the 
embryonic axis. The proximal-distal (PD) axis is defined by the direction of the limb 
outgrowth and the antero-posterior (AP) axis is defined by the sequence of the digits 1 
(thumb) to 5 (little finger); (B) In the developing limb bud, an apical ectodermal ridge 
(AER) is formed at the distal region of the bud. In the AER region, FGF signaling is 
initiated in a posterior-anterior fashion forming the AER-FGF zone. Retinoic acid (RA) 
signaling regulates the proximal development of the limb, whereas the distal region 
(progression zone) is controlled by multiple signaling factors. FGF signaling initiates the 
HH signaling in the posterior region of the limb bud and the expression of HH signaling is 
maintained by HOX genes, Tbx and Fgf8 expression. HH signaling inhibits the constitutive 
processing of Gli3 to its repressor form (Gli3-rep); (C) The posterior region contains high 
Gli3A and low Gli3-rep and reverse is observed in the anterior region. Following activation, 
Grem1 (BMP antagonism) functions are required to relay the HH signals to the AER to 
maintain FGF signaling, thus forming a HH-Grem1-FGF feedback loop in the developing 
limb bud. 



Genes 2015, 6 424 
 

The genetic loss of Shh results in the absence of posterior digits (digits 2–5) without affecting  
the anterior digit (digit 1) [54,68,73]. Similarly, loss of Ihh leads to failure of osteoblast development 
and defective limb development [55,67]. The development of digit 1 depends on the expression of 
HOX, and Tbx5 factors [41,75–77]. Expression of SHH is initiated by Hoxb8 expressed in cells 
collectively referred to as the zone of polarizing activity (ZPA) and maintained by Fgf4 and Fgf8 from 
the AER [41–43,74,76–79]. Although each of the limb developmental processes has been shown to be 
distinctly regulated by a set of signals, increasing evidence supports the notion that these signaling 
cascades are closely interlinked and modulate the collective activity (Figure 3C) [74,77,80]. For example, 
experiments using soaked FGF beads showed that FGF maintains SHH expression in the AER deficient 
limb bud [78–80]. Similarly, Gremlin1 (Grem1) was shown to be required to relay SHH signals to the 
AER to promote FGF expression thereby defining a SHH-Grem1-FGF feedback loop [79,80] (Figure 3). 
This signaling loop was further confirmed by the genetic inactivation studies of Grem1 which led to 
the disruption of limb bud development and specification [78–80]. The expansion phase of limb 
growth is controlled by involvement of multiple signaling centers including ZPA-SHH, AER-FGF and 
WNT signaling during limb organogenesis [41,48,50,51,79,80]. During the later phases of limb bud 
development, the digit identity is dependent upon BMP activity. BMP signaling acts downstream  
of SHH signaling and facilitates the process of digit patterning [80,81]. It should be noted that  
BMP dependent signaling aids in the removal of webbing between the digits rather than digit 
identification [81]. Importantly, deciphering the key factors that govern limb formation has defined 
new molecular cues and linkage between the signaling pathways and transcription factors. 

3. HH Signaling in Fin Regeneration 

Urodele amphibians and teleost fish have an extraordinary capacity to regenerate injured 
appendages including tail, limb and fin [11,20,82]. A number of studies have demonstrated common 
regulatory networks in appendage development and regeneration [20,25,83]. Genetic as well as 
pharmacological studies have shown involvement of SHH, WNT and FGF signaling in the regulation 
of the proliferative response during appendage development [12,18,83]. As observed developmentally, 
these signaling factors and others such as Bmp2/4, Gremlin1, RA and NOTCH have also been shown 
to regulate the regenerative processes [11,21,80,84]. 

Teleost fish have a tremendous capacity to regenerate a variety of tissues including heart, spinal 
cord and fin [27,28,85,86]. Upon amputation, fin regeneration occurs in three distinct stages including: 
wound healing, blastema formation and regeneration (regrowth) from the plane of amputation. 
Transcriptional profiling during fin regeneration revealed differential gene expression associated with 
these distinct stages in zebrafish [27,86]. These differential molecular programs included a number of 
developmental transcripts and signaling factors involved in regulating fin growth such as Fgf, Bmp2b, 
β-catenin, Shh, Hoxa11b and Hoxa13b [17,25,48,86]. In the wound epidermis, early expression of 
WNT signaling factors regulate the formation of the thickened epidermis termed the epidermal  
cap [17,25]. The proliferative response of the epidermal cells results in the formation of the thickened 
epidermal cap. Recently, Lee et al. described the existence of distinct types of cells beneath the 
epidermal layer which defines the regional expression domain for Shh signaling (Figure 4) [86]. FGF 
signaling in the adjacent layer helps localize and maintain Shh expression in the proximal region of the 
regenerating fin, whereas in the distal region, the expression of Shh is reduced by a Ras-Wnt5b 
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signaling mechanism [25,86]. These findings suggest a critical role for epidermal signals in the control 
of the signaling domain during the regenerative response (Figure 4). 

The zebrafish genome harbors five hedgehog genes namely Sonic hedgehog (Shh), Indian hedgehog 
(Ihh), Tiggywinkle hedgehog (Twhh), Echidna hedgehog (Ehh) and Desert hedgehog (Dhh). However, 
only Shh, Ihh and Twhh have been shown to participate in fin development and regeneration [87]. 
During fin regeneration, both Shh and Ihh are activated in the blastemal tissue and regulate blastemal 
proliferation, maintenance and tissue growth [25]. Laser-mediated ablation of Shh expressing cells 
during fin regeneration resulted in aberrant osteoblast differentiation and defective branching 
morphogenesis underscoring the importance of Shh signaling in fin regeneration [88]. Expression of 
Shh morphogens is induced in the lateral basal epidermal layer and they regulate expression of  
Bmp2b. Inhibition of either Shh signals or Bmp signaling resulted in loss of scleroblast differentiation 
and bone formation [25,29,86]. Interaction with other signaling pathways including Fgf and Wnt 
signaling with the Shh signaling pathway during fin regeneration has been shown to amplify the 
regenerative response [25,86,89]. Furthermore, studies have demonstrated expression of canonical Wnt 
signaling members such as Wnt5, Lef1 and beta-catenin in the wound epidermis during the 
regenerative process. It is noted that both Shh and Lef1 are expressed in a similar region of the 
regenerating fin tissue and inhibition of RA signaling or Fgf signaling results in loss of both Lef1 and 
Shh expression [25,86,88,89]. These studies indicated a common regulatory mechanism for both Shh 
and Wnt signaling centers. 

Additional reports have indicated that WNT signaling acts downstream of SHH signaling as the 
activation of β-catenin could rescue SHH inhibition phenotypes [18]. These findings demonstrated that 
SHH and WNT pathways converge at a common node to regulate the regenerative process. Similar to 
SHH and WNT signaling, BMP signaling has also been shown to be involved in the development of 
osteoblasts and the maturation process [29]. Interestingly, ectopic induction of Bmp2b resulted in 
increased expression of osteoblast transcription factors required for differentiation [29]. Similar results 
were obtained following ectopic expression of SHH or BMP2b in the fin rays. These results supported 
the hypothesis that SHH activity was mediated via BMP signaling. The ectopic formation of bony 
tissue was due presumably to changes in the molecular signature of the responding cells or alternatively 
to a perturbation of the differentiation program that remains undefined [25,29]. A recent study by 
Knopf et al. has indicated that dedifferentiation of the osteoblast cells was a prerequisite for cellular 
proliferation [26]. These dedifferentiated cells proliferated in a FGF-dependent signaling mechanism. 
Multiple studies have established that SHH acts downstream of FGF signaling and regulates cell 
division and growth [21,25,82,86,89]. Whether tissue regeneration is governed solely by dedifferentiating 
cell types or whether precursors are mobilized from other tissues (transdifferentiation) is an area of 
intense research. Definition of the signaling factors that regulate the dedifferentiation process has yet 
to be defined, however it would be interesting to examine whether a combination of signaling factors 
could induce dedifferentiation in mature cell populations. 
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Figure 4. Sequence of regenerative events and HH signaling. Longitudinal section of an 
unamputated and regenerating fin ray showing the basal layer (blue) and outer epidermis 
(yellow). Epidermal cells cover the wound and mesenchymal cells from the stump 
proliferate and migrate distally to form the blastema. HH signaling is induced in the lateral 
basal epidermal layer and a signaling center (green) in the apical region (yellow) that 
includes: FGF, WNT and BMP signaling leads to the induction of cellular proliferation 
(blue) and regeneration. Note the key is in the upper panel. 

4. HH Signaling in Limb and Tail Regeneration 

Urodele amphibians have a robust capacity to regenerate appendages in response to injury [13,16,40]. 
Similar to zebrafish fin regeneration, appendage (i.e., limb or tail) regeneration occurs in several steps 
including wound healing, dedifferentiation, proliferation, growth and patterning (Figure 1B) [18,24,40]. 
Animal models including the newt, axolotl and salamander can completely regenerate the amputated 
limb and heart over a 60 day period [13,14,18]. During limb and tail regeneration, the critical stages 
include the formation of the apical epidermal cap (AEC) and the formation of blastemal tissue [90]. 
Lineage tracing experiments have revealed dedifferentiation of the mature muscle fibers that contribute 
to the blastema during tail regeneration [91,92]. The importance of these structures is evident by the 
loss of regeneration with the removal of the AEC or blastemal tissue, thereby suggesting that these are 
critical structures required for regeneration [14]. Formation of the blastemal structure involves tissue 
histolysis and down regulation of differentiation markers. Interestingly, the extent of dedifferentiation 
differs considerably within the species during regeneration. For example, two salamander species 
(newt and axolotl) had marked differences in the dedifferentiation process; dedifferentiated cells 
contributed principally to the regenerating limb in the newt, whereas the resident Pax7+ cells were the 
main source of the regenerating tissue in the axolotl [18,93,94]. These studies support the hypothesis 
that the mechanism(s) as well as the cellular processes may be an inherent property of a given species. 
The dedifferentiated cells begin to proliferate at approximately 10–14 dpa and form a blastema, which 
then re-differentiates to restore the cellular architecture within a 6–9 week period [18,93,94] The cross-talk 
between signaling factors from neighboring tissues and their contribution to the regenerating blastema 
pose outstanding questions. Moreover, it is unclear which cells contribute to the regenerating limb 
tissue as it involves a continuous growth of multiple tissues including muscle, blood vessels, bone and 
connective tissue. A recent study by Kragl et al. (2009) demonstrated that progenitor cells during limb 
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regeneration were derivatives from the respective tissues with restricted potential to contribute only 
toward the regeneration of specific lineages [95]. Other appendages such as the tail could regenerate 
completely in 14–21 days and involves similar stages of regeneration as that of fin and limb 
regeneration [15]. These results suggest that although the timing for regeneration of different tissues 
vary, the central pathways and processes are commonly shared. Therefore, the identification of factors 
or signals from these regenerating tissues may provide new insights regarding regenerative therapies. 

Genome wide expression analysis during appendage regeneration has indicated enrichment of early 
and late genes [92]. Early enriched transcripts include genes expressed in wound epidermis, peripheral 
nerves and mesenchymal tissue, whereas late genes have included transcripts regulating cellular proliferation 
and growth [8]. Importantly, the signaling pathways seem to be common in both early and late gene 
expression analysis. Multiple studies focused on appendage development and regeneration support the 
notion that common signaling pathways including: FGF, HH, WNT and BMP are activated both during 
development and are reactivated during lineage regeneration [18,22,41,96]. Specifically, FGF, WNT 
and HH signaling have been well documented and their hierarchical relationships have been defined in 
detail in the regenerating appendages (Figure 5) [18,41,96]. An elegant study by Lin and Slack have 
demonstrated that WNT signaling acts downstream of FGF signaling during tail regeneration [12]. 
Similarly, Tgf-beta signaling has been documented in regulating wound epidermis and proliferation 
during tail regeneration. Studies suggest that FGF signaling modulates expression of HH signals which 
play a critical role in proliferation, growth and patterning [18,20,25,82,89]. As observed during limb 
bud development, HH factors are expressed early in the posterior region of the blastemal tissue, that 
serves as a signaling center for anterior-posterior (AP) patterning [18,83]. We and others have demonstrated 
that the HH signal is essential for limb regeneration and required in a spatial and temporal fashion 
during regeneration [18]. Early inhibition of HH signaling resulted in patterning defects whereas later 
inhibition led to reduced growth without patterning defects [18]. Similarly, the activation of HH 
signaling in the xenopus froglet resulted in induction of patterning events, which is otherwise absent in 
the froglets and results in spike formation [22]. In addition to the patterning, HH signaling modulated 
the Pax7+ (muscle progenitors) cell population and the regenerating fibers of the growing limb tissue [18]. 
These progenitor cell populations serve as a stable source of reserve cells for multiple rounds of limb 
regeneration [18,93,94]. These findings further indicated that HH signaling modulates different targets 
at multiple stages during regeneration. Several lines of evidence suggest that inhibition of HH signaling 
has a profound effect on the proliferative capacity of tissues, thereby indicating that it has a central role 
in activating proliferative signals during regeneration [15,18]. 

Canonical HH signaling activation occurs through Smo-Gli mediated pathways and Cyclind2, 
Cyclinb and Cycline1 have been shown to be authentic downstream targets (Figure 5) [96]. This would 
suggest that HH signaling activates proliferation by modulating these factors. Alternatively, another 
downstream effector of HH signaling during regeneration is Bmp2; however, BMP signaling could 
modulate regeneration in a dependent and/or independent HH signaling mechanism [25]. Regulation of 
Shh expression is modulated by the methylation status and epigenetic modification of its enhancer 
region but not at the promoter region [23]. It has been shown that in the regenerating state, 
hypomethylation of the Shh enhancer resulted in its expression in the regenerating limb bud [23]. In 
contrast, in the non-regenerating state, the enhancer region remains highly methylated (hypermethylation) 
which results in regeneration failure and patterning defects. 
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Figure 5. Hierarchical signaling pathway expression regulates regeneration. Tissue injury 
results in the activation of the inflammatory response at the site of damage. Following 
inflammation, lower vertebrate regeneration requires cellular dedifferentiation and cellular 
proliferation. FGF signaling is initiated at the early stages of regeneration, which further 
activates HH signaling. Both FGF as well as HH signaling pathways directly and indirectly 
activate WNT signaling. These factors activate the genes required for cell cycle and growth 
during regeneration. 

5. Concluding Remarks 

Signaling factors have an essential role in regenerative biology. It is important to decipher the 
common regulatory networks and their interactions to define the overall regenerative blueprint or 
regenerative map that will serve as a platform for regenerative therapies. Recent studies have indicated 
that activation of HH signaling is critical for liver regeneration in mammals, as inhibition of HH signaling 
resulted in inhibition of hepatocyte proliferation, progenitor response and matrix remodelling [97]. 
These findings support the notion that distinct signaling pathways that govern regeneration in lower 
organisms may also promote regeneration in mammals. The role of HH signaling in tissue growth and 
patterning during development is well documented, however, its role in tissue regeneration is less 
clear. Also, emerging areas of investigation include the definition of the upstream regulators of the HH 
signaling pathway during development and regeneration; the definition of all the downstream targets of 
the HH signaling pathway (i.e., Gli downstream targets); and whether the regulation of HH signaling is 
common in various tissues or strains or species. In this review, we have highlighted the current 
understanding of the HH signaling pathway and its interactions with other factors and signals. Future 
studies will be needed to further fine-tune its function and precisely demonstrate the mechanistic role 
of HH signaling in the regenerative process. These studies could provide new insights regarding 
previously unknown function of HH signaling which may prove beneficial to promote regeneration. 



Genes 2015, 6 429 
 
Acknowledgment 

We acknowledge the support of Cynthia Dekay who provided assistance with the figure illustrations. 
Funding support was obtained from the National Institutes of Health (Grants: U01 HL100407 and 
1R01 HL122576). 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Slack, J.M. Regeneration research today. Dev. Dyn. 2003, 226, 162–166. 
2. Bely, A.E. Evolutionary loss of animal regeneration: Pattern and process. Integr. Comp. Biol. 

2010, 50, 515–527. 
3. Hata, S.; Namae, M.; Nishina, H. Liver development and regeneration: From laboratory study to 

clinical therapy. Dev. Growth Differ. 2007, 49, 163–170. 
4. Shi, X.; Garry, D.J. Muscle stem cells in development, regeneration, and disease. Genes Dev. 

2006, 20, 1692–1708. 
5. Sancho-Bru, P.; Najimi, M.; Caruso, M.; Pauwelyn, K.; Cantz, T.; Forbes, S.; Roskams, T.;  

Ott, M.; Gehling, U.; Sokal, E.; et al. Stem and progenitor cells for liver repopulation: Can we 
standardise the process from bench to bedside? Gut 2009, 58, 594–603. 

6. Xin, M.; Olson, E.N.; Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for 
adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 2013, 14, 529–541. 

7. Maki, N.; Martinson, J.; Nishimura, O.; Tarui, H.; Meller, J.; Tsonis, P.A.; Agata, K. Expression 
profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. 
Mol. Vis. 2010, 16, 72–78. 

8. Love, N.R.; Chen, Y.; Bonev, B.; Gilchrist, M.J.; Fairclough, L.; Lea, R.; Mohun, T.J.; Paredes, R.; 
Zeef, L.A.; Amaya, E. Genome-wide analysis of gene expression during Xenopus tropicalis 
tadpole tail regeneration. BMC Dev. Biol. 2011, 11, 70. 

9. Poss, K.D.; Wilson, L.G.; Keating, M.T. Heart regeneration in zebrafish. Science 2002, 298, 
2188–2190. 

10. Caubit, X.; Nicolas, S.; le Parco, Y. Possible roles for Wnt genes in growth and axial patterning 
during regeneration of the tail in urodele amphibians. Dev. Dyn. 1997, 210, 1–10. 

11. Brockes, J.P.; Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian 
regeneration. Nat. Rev. Mol. Cell Biol. 2002, 3, 566–574. 

12. Lin, G.; Slack, J.M. Requirement for Wnt and FGF signaling in Xenopus tadpole tail 
regeneration. Dev. Biol. 2008, 316, 323–335. 

13. Singh, B.N.; Koyano-Nakagawa, N.; Garry, J.P.; Weaver, C.V. Heart of newt: A recipe for 
regeneration. J. Cardiovasc. Transl. Res. 2010, 3, 397–409. 

14. Globus, M.; Vethamany-Globus, S.; Lee, Y.C. Effect of apical epidermal cap on mitotic cycle and 
cartilage differentiation in regeneration blastemata in the newt, Notophthalmus viridescens.  
Dev. Biol. 1980, 75, 358–372. 



Genes 2015, 6 430 
 
15. Schnapp, E.; Kragl, M.; Rubin, L.; Tanaka, E.M. Hedgehog signaling controls dorsoventral 

patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. 
Development 2005, 132, 3243–3253. 

16. Endo, T.; Yokoyama, H.; Tamura, K.; Ide, H. Shh expression in developing and regenerating limb 
buds of Xenopus laevis. Dev. Dyn. 1997, 209, 227–232. 

17. Kawakami, Y.; Rodriguez Esteban, C.; Raya, M.; Kawakami, H.; Marti, M.; Dubova, I.; Izpisua 
Belmonte, J.C. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 
2006, 20, 3232–3237. 

18. Singh, B.N.; Doyle, M.J.; Weaver, C.V.; Koyano-Nakagawa, N.; Garry, D.J. Hedgehog and Wnt 
coordinate signaling in myogenic progenitors and regulate limb regeneration. Dev. Biol. 2012, 
371, 23–34. 

19. Rose, S.M. Epidermal dedifferentiation during blastema formation in regenerating limbs of 
Triturus viridescens. J. Exp. Zool. 1948, 108, 337–361. 

20. Gardiner, D.M.; Endo, T.; Bryant, S.V. The molecular basis of amphibian limb regeneration: 
integrating the old with the new. Semin. Cell Dev. Biol. 2002, 13, 345–352. 

21. Stoick-Cooper, C.L.; Moon, R.T.; Weidinger, G. Advances in signaling in vertebrate regeneration 
as a prelude to regenerative medicine. Genes Dev. 2007, 21, 1292–1315. 

22. Yakushiji, N.; Suzuki, M.; Satoh, A.; Ide, H.; Tamura, K. Effects of activation of hedgehog 
signaling on patterning, growth, and differentiation in Xenopus froglet limb regeneration.  
Dev. Dyn. 2009, 238, 1887–1896. 

23. Yakushiji, N.; Suzuki, M.; Satoh, A.; Sagai, T.; Shiroishi, T.; Kobayashi, H.; Sasaki, H.; Ide, H.; 
Tamura, K. Correlation between Shh expression and DNA methylation status of the limb-specific 
Shh enhancer region during limb regeneration in amphibians. Dev. Biol. 2007, 312, 171–182. 

24. Chablais, F.; Jazwinska, A. IGF signaling between blastema and wound epidermis is required for 
fin regeneration. Development 2010, 137, 871–879. 

25. Iovine, M.K. Conserved mechanisms regulate outgrowth in zebrafish fins. Nat. Chem. Biol. 2007, 
3, 613–618. 

26. Knopf, F.; Hammond, C.; Chekuru, A.; Kurth, T.; Hans, S.; Weber, C.W.; Mahatma, G.; Fisher, S.; 
Brand, M.; Schulte-Merker, S.; et al. Bone regenerates via dedifferentiation of osteoblasts in the 
zebrafish fin. Dev. Cell 2011, 20, 713–724. 

27. Padhi, B.K.; Joly, L.; Tellis, P.; Smith, A.; Nanjappa, P.; Chevrette, M.; Ekker, M.; Akimenko, M.A. 
Screen for genes differentially expressed during regeneration of the zebrafish caudal fin. Dev. Dyn. 
2004, 231, 527–541. 

28. Poss, K.D.; Keating, M.T.; Nechiporuk, A. Tales of regeneration in zebrafish. Dev. Dyn. 2003, 
226, 202–210. 

29. Smith, A.; Avaron, F.; Guay, D.; Padhi, B.K.; Akimenko, M.A. Inhibition of BMP signaling 
during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function. 
Dev. Biol. 2006, 299, 438–454. 

30. Haubner, B.J.; Adamowicz-Brice, M.; Khadayate, S.; Tiefenthaler, V.; Metzler, B.; Aitman, T.; 
Penninger, J.M. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 
2012, 4, 966–977. 



Genes 2015, 6 431 
 
31. Kikuchi, K.; Holdway, J.E.; Major, R.J.; Blum, N.; Dahn, R.D.; Begemann, G.; Poss, K.D. 

Retinoic acid production by endocardium and epicardium is an injury response essential for 
zebrafish heart regeneration. Dev. Cell 2011, 20, 397–404. 

32. Zhao, L.; Borikova, A.L.; Ben-Yair, R.; Guner-Ataman, B.; MacRae, C.A.; Lee, R.T.; Burns, 
C.G.; Burns, C.E. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart 
regeneration. Proc. Natl. Acad. Sci. USA 2014, 111, 1403–1408. 

33. Aguirre, A.; Montserrat, N.; Zacchigna, S.; Nivet, E.; Hishida, T.; Krause, M.N.; Kurian, L.; 
Ocampo, A.; Vazquez-Ferrer, E.; Rodriguez-Esteban, C.; et al. In vivo activation of a conserved 
microRNA program induces mammalian heart regeneration. Cell Stem Cell 2014, 15, 589–604. 

34. Zgheib, C.; Allukian, M.W.; Xu, J.; Morris, M.W., Jr.; Caskey, R.C.; Herdrich, B.J.; Hu, J.; 
Gorman, J.H., 3rd; Gorman, R.C.; Liechty, K.W. Mammalian fetal cardiac regeneration after 
myocardial infarction is associated with differential gene expression compared with the adult. 
Ann. Thorac. Surg. 2014, 97, 1643–1650. 

35. Muneoka, K.; Holler-Dinsmore, G.; Bryant, S.V. Intrinsic control of regenerative loss in Xenopus 
laevis limbs. J. Exp. Zool. 1986, 240, 47–54. 

36. Brockes, J.P. Amphibian limb regeneration: rebuilding a complex structure. Science 1997, 276, 
81–87. 

37. Brockes, J.P.; Kumar, A. Appendage regeneration in adult vertebrates and implications for 
regenerative medicine. Science 2005, 310, 1919–1923. 

38. Hay, E.D.; Fischman, D.A. Origin of the blastema in regenerating limbs of the newt Triturus 
viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and 
migration. Dev. Biol. 1961, 3, 26–59. 

39. Jopling, C.; Sleep, E.; Raya, M.; Marti, M.; Raya, A.; Izpisua Belmonte, J.C. Zebrafish heart 
regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464,  
606–609. 

40. Casimir, C.M.; Gates, P.B.; Patient, R.K.; Brockes, J.P. Evidence for dedifferentiation and 
metaplasia in amphibian limb regeneration from inheritance of DNA methylation. Development 
1988, 104, 657–668. 

41. Zeller, R.; Lopez-Rios, J.; Zuniga, A. Vertebrate limb bud development: Moving towards 
integrative analysis of organogenesis. Nat. Rev. Genet. 2009, 10, 845–858. 

42. Fernandez-Teran, M.; Ros, M.A. The Apical Ectodermal Ridge: Morphological aspects and 
signaling pathways. Int. J. Dev. Biol. 2008, 52, 857–871. 

43. Lewandoski, M.; Sun, X.; Martin, G.R. Fgf8 signalling from the AER is essential for normal limb 
development. Nat. Genet. 2000, 26, 460–463. 

44. Mariani, F.V.; Ahn, C.P.; Martin, G.R. Genetic evidence that FGFs have an instructive role in 
limb proximal-distal patterning. Nature 2008, 453, 401–405. 

45. Agarwal, P.; Wylie, J.N.; Galceran, J.; Arkhitko, O.; Li, C.; Deng, C.; Grosschedl, R.; Bruneau, B.G. 
Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse 
embryo. Development 2003, 130, 623–633. 

46. Koshiba-Takeuchi, K.; Takeuchi, J.K.; Arruda, E.P.; Kathiriya, I.S.; Mo, R.; Hui, C.C.; 
Srivastava, D.; Bruneau, B.G. Cooperative and antagonistic interactions between Sall4 and Tbx5 
pattern the mouse limb and heart. Nat. Genet. 2006, 38, 175–183. 



Genes 2015, 6 432 
 
47. Rallis, C.; del Buono, J.; Logan, M.P. Tbx3 can alter limb position along the rostrocaudal axis of 

the developing embryo. Development 2005, 132, 1961–1970. 
48. Kawakami, Y.; Capdevila, J.; Buscher, D.; Itoh, T.; Rodriguez Esteban, C.; Izpisua Belmonte, J.C. 

WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 
2001, 104, 891–900. 

49. Cohen, M.M., Jr. The hedgehog signaling network. Am. J. Med. Genet. A. 2003, 123A, 5–28. 
50. Pan, A.; Chang, L.; Nguyen, A.; James, A.W. A review of hedgehog signaling in cranial bone 

development. Front. Physiol. 2013, 4, 61. 
51. Robbins, D.J.; Fei, D.L.; Riobo, N.A. The Hedgehog signal transduction network. Sci. Signal. 

2012, 5, 1–13. 
52. Jenkins, D. Hedgehog signalling: Emerging evidence for non-canonical pathways. Cell Signal. 

2009, 21, 1023–1034. 
53. Parmantier, E.; Lynn, B.; Lawson, D.; Turmaine, M.; Namini, S.S.; Chakrabarti, L.; McMahon, A.P.; 

Jessen, K.R.; Mirsky, R. Schwann cell-derived Desert hedgehog controls the development of 
peripheral nerve sheaths. Neuron 1999, 23, 713–724. 

54. Chiang, C.; Litingtung, Y.; Lee, E.; Young, K.E.; Corden, J.L.; Westphal, H.; Beachy, P.A. 
Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 
1996, 383, 407–413. 

55. St-Jacques, B.; Hammerschmidt, M.; McMahon, A.P. Indian hedgehog signaling regulates 
proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 
1999, 13, 2072–2086. 

56. Tukachinsky, H.; Lopez, L.V.; Salic, A. A mechanism for vertebrate Hedgehog signaling: 
recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell Biol. 2010, 191,  
415–428. 

57. Keady, B.T.; Samtani, R.; Tobita, K.; Tsuchya, M.; San Agustin, J.T.; Follit, J.A.; Jonassen, J.A.; 
Subramanian, R.; Lo, C.W.; Pazour, G.J. IFT25 links the signal-dependent movement of 
Hedgehog components to intraflagellar transport. Dev. Cell 2012, 22, 940–951. 

58. Ashe, A.; Butterfield, N.C.; Town, L.; Courtney, A.D.; Cooper, A.N.; Ferguson, C.; Barry, R.; 
Olsson, F.; Liem, K.F., Jr.; Parton, R.G.; et al. Mutations in mouse Ift144 model the craniofacial, 
limb and rib defects in skeletal ciliopathies. Hum. Mol. Genet. 2012, 21, 1808–1823. 

59. Dagoneau, N.; Goulet, M.; Genevieve, D.; Sznajer, Y.; Martinovic, J.; Smithson, S.; Huber, C.; 
Baujat, G.; Flori, E.; Tecco, L.; et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy 
and short rib-polydactyly syndrome, type III. Am. J. Hum. Genet. 2009, 84, 706–711. 

60. Ingham, P.W.; Nakano, Y.; Seger, C. Mechanisms and functions of Hedgehog signalling across 
the metazoa. Nat. Rev. Genet. 2011, 12, 393–406. 

61. Butterfield, N.C.; Metzis, V.; McGlinn, E.; Bruce, S.J.; Wainwright, B.J.; Wicking, C. Patched 1 
is a crucial determinant of asymmetry and digit number in the vertebrate limb. Development 2009, 
136, 3515–3524. 

62. Goodrich, L.V.; Milenkovic, L.; Higgins, K.M.; Scott, M.P. Altered neural cell fates and 
medulloblastoma in mouse patched mutants. Science 1997, 277, 1109–1113. 



Genes 2015, 6 433 
 
63. Vokes, S.A.; Ji, H.; Wong, W.H.; McMahon, A.P. A genome-scale analysis of the cis-regulatory 

circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev. 
2008, 22, 2651–2663. 

64. Wilson, C.W.; Chuang, P.T. Mechanism and evolution of cytosolic Hedgehog signal transduction. 
Development 2010, 137, 2079–2094. 

65. Laufer, E.; Nelson, C.E.; Johnson, R.L.; Morgan, B.A.; Tabin, C. Sonic hedgehog and Fgf-4 act 
through a signaling cascade and feedback loop to integrate growth and patterning of the 
developing limb bud. Cell 1994, 79, 993–1003. 

66. Park, H.L.; Bai, C.; Platt, K.A.; Matise, M.P.; Beeghly, A.; Hui, C.C.; Nakashima, M.; Joyner, A.L. 
Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 
mutation. Development 2000, 127, 1593–1605. 

67. Zhang, X.M.; Ramalho-Santos, M.; McMahon, A.P. Smoothened mutants reveal redundant roles 
for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001, 
105, 781–792. 

68. Chiang, C.; Litingtung, Y.; Harris, M.P.; Simandl, B.K.; Li, Y.; Beachy, P.A.; Fallon, J.F. 
Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog 
function. Dev. Biol. 2001, 236, 421–435. 

69. Bruce, S.J.; Butterfield, N.C.; Metzis, V.; Town, L.; McGlinn, E.; Wicking, C., Inactivation of 
Patched1 in the mouse limb has novel inhibitory effects on the chondrogenic program. J. Biol. Chem. 
2010, 285, 27967–27981. 

70. Nasevicius, A.; Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 2000, 
26, 216–220. 

71. Bouldin, C.M.; Gritli-Linde, A.; Ahn, S.; Harfe, B.D. Shh pathway activation is present and 
required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning. 
Proc. Natl. Acad. Sci. USA 2010, 107, 5489–5494. 

72. Li, Y.; Zhang, H.; Litingtung, Y.; Chiang, C. Cholesterol modification restricts the spread of Shh 
gradient in the limb bud. Proc. Natl. Acad. Sci. USA 2006, 103, 6548–6553. 

73. Harfe, B.D.; Scherz, P.J.; Nissim, S.; Tian, H.; McMahon, A.P.; Tabin, C.J. Evidence for an 
expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 2004, 118, 
517–528. 

74. te Welscher, P.; Zuniga, A.; Kuijper, S.; Drenth, T.; Goedemans, H.J.; Meijlink, F.; Zeller, R. 
Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. 
Science 2002, 298, 827–830. 

75. Kraus, P.; Fraidenraich, D.; Loomis, C.A. Some distal limb structures develop in mice lacking 
Sonic hedgehog signaling. Mech. Dev. 2001, 100, 45–58. 

76. Montavon, T.; Le Garrec, J.F.; Kerszberg, M.; Duboule, D. Modeling Hox gene regulation in 
digits: reverse collinearity and the molecular origin of thumbness. Genes Dev. 2008, 22, 346–359. 

77. Niswander, L.; Jeffrey, S.; Martin, G.R.; Tickle, C. A positive feedback loop coordinates growth 
and patterning in the vertebrate limb. Nature 1994, 371, 609–612. 

78. Verheyden, J.M.; Sun, X. An Fgf/Gremlin inhibitory feedback loop triggers termination of limb 
bud outgrowth. Nature 2008, 454, 638–641. 



Genes 2015, 6 434 
 
79. Scherz, P.J.; Harfe, B.D.; McMahon, A.P.; Tabin, C.J. The limb bud Shh-Fgf feedback loop is 

terminated by expansion of former ZPA cells. Science 2004, 305, 396–399. 
80. Selever, J.; Liu, W.; Lu, M.F.; Behringer, R.R.; Martin, J.F. Bmp4 in limb bud mesoderm 

regulates digit pattern by controlling AER development. Dev. Biol. 2004, 276, 268–279. 
81. Dahn, R.D.; Fallon, J.F. Interdigital regulation of digit identity and homeotic transformation by 

modulated BMP signaling. Science 2000, 289, 438–441. 
82. Akimenko, M.A.; Mari-Beffa, M.; Becerra, J.; Geraudie, J. Old questions, new tools, and some 

answers to the mystery of fin regeneration. Dev. Dyn. 2003, 226, 190–201. 
83. Imokawa, Y.; Yoshizato, K. Expression of Sonic hedgehog gene in regenerating newt limb 

blastemas recapitulates that in developing limb buds. Proc. Natl. Acad. Sci. USA 1997, 94,  
9159–9164. 

84. Scadding, S.R.; Maden, M. Retinoic acid gradients during limb regeneration. Dev. Biol. 1994, 
162, 608–617. 

85. Quint, E.; Smith, A.; Avaron, F.; Laforest, L.; Miles, J.; Gaffield, W.; Akimenko, M.A.  
Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic 
hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl. Acad. Sci. USA 2002, 99,  
8713–8718. 

86. Lee, Y.; Grill, S.; Sanchez, A.; Murphy-Ryan, M.; Poss, K.D. Fgf signaling instructs  
position-dependent growth rate during zebrafish fin regeneration. Development 2005, 132,  
5173–5183. 

87. Avaron, F.; Hoffman, L.; Guay, D.; Akimenko, M.A. Characterization of two new zebrafish 
members of the hedgehog family: atypical expression of a zebrafish indian hedgehog gene in 
skeletal elements of both endochondral and dermal origins. Dev. Dyn. 2006, 235, 478–489. 

88. Zhang, J.; Jeradi, S.; Strahle, U.; Akimenko, M.A. Laser ablation of the sonic hedgehog-a-expressing 
cells during fin regeneration affects ray branching morphogenesis. Dev. Biol. 2012, 365, 424–433. 

89. Lee, Y.; Hami, D.; de Val, S.; Kagermeier-Schenk, B.; Wills, A.A.; Black, B.L.; Weidinger, G.; 
Poss, K.D. Maintenance of blastemal proliferation by functionally diverse epidermis in 
regenerating zebrafish fins. Dev. Biol. 2009, 331, 270–280. 

90. Campbell, L.J.; Crews, C.M. Wound epidermis formation and function in urodele amphibian limb 
regeneration. Cell Mol. Life Sci. 2008, 65, 73–79. 

91. Lentz, T.L. Cytological studies of muscle dedifferentiation and differentiation during limb 
regeneration of the newt Triturus. Am. J. Anat. 1969, 124, 447–479. 

92. Echeverri, K.; Clarke, J.D.; Tanaka, E.M. In vivo imaging indicates muscle fiber dedifferentiation 
is a major contributor to the regenerating tail blastema. Dev. Biol. 2001, 236, 151–64. 

93. Morrison, J.I.; Loof, S.; He, P.; Simon, A. Salamander limb regeneration involves the activation 
of a multipotent skeletal muscle satellite cell population. J. Cell. Biol. 2006, 172, 433–440. 

94. Sandoval-Guzman, T.; Wang, H.; Khattak, S.; Schuez, M.; Roensch, K.; Nacu, E.; Tazaki, A.; 
Joven, A.; Tanaka, E.M.; Simon, A. Fundamental differences in dedifferentiation and stem cell 
recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 2014, 
14, 174–187. 

95. Kragl, M.; Knapp, D.; Nacu, E.; Khattak, S.; Maden, M.; Epperlein, H.H.; Tanaka, E.M. Cells 
keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009, 460, 60–65. 



Genes 2015, 6 435 
 
96. Goodrich, L.V.; Johnson, R.L.; Milenkovic, L.; McMahon, J.A.; Scott, M.P. Conservation of the 

hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by 
Hedgehog. Genes Dev. 1996, 10, 301–312. 

97. Ochoa, B.; Syn, W.K.; Delgado, I.; Karaca, G.F.; Jung, Y.; Wang, J.; Zubiaga, A.M.; Fresnedo, O.; 
Omenetti, A.; Zdanowicz, M.; et al. Hedgehog signaling is critical for normal liver regeneration 
after partial hepatectomy in mice. Hepatology 2010, 51, 1712–1723. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 


