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ORIGINAL ARTICLE

Twenty-Four-Hour Pulsatile Hemodynamics 
Predict Brachial Blood Pressure Response to 
Renal Denervation in the SPYRAL HTN-OFF 
MED Trial
Thomas Weber , Siegfried Wassertheurer, Christopher C. Mayer, Bernhard  Hametner, Kathrin Danninger,  
Raymond R. Townsend, Felix  Mahfoud, Kazuomi  Kario, Martin  Fahy, Vanessa  DeBruin, Nicole  Peterson,  
Manuela  Negoita, Michael A. Weber, David E. Kandzari, Roland E. Schmieder, Konstantinos P. Tsioufis, Ronald K. Binder,  
Michael Böhm

BACKGROUND: Renal denervation (RDN) lowers blood pressure (BP), but BP response is variable in individual patients. We 
investigated whether measures of pulsatile hemodynamics, obtained during 24-hour ambulatory BP monitoring, predict BP 
drop following RDN.

METHODS: From the randomized, sham-controlled SPYRAL HTN-OFF MED Pivotal trial, we performed a post hoc analysis 
of BP waveforms from 111 RDN patients and 111 sham controls, obtained with a brachial cuff-based sphygmomanometer. 
Waveforms were acquired during ambulatory BP monitoring at diastolic BP level and processed with validated ARCSolver 
algorithms to derive hemodynamic parameters (augmentation index; augmentation pressure; backward and forward wave 
amplitude; estimated aortic pulse wave velocity). We investigated the relationship between averaged 24-hour values at 
baseline and the change in 24-hour BP at 3 months in RDN patients, corrected for observed trends in the sham group.

RESULTS: There was a consistent inverse relationship between baseline augmentation index/augmentation pressure/backward 
wave amplitude/forward wave amplitude/estimated aortic pulse wave velocity and BP response to RDN: the decrease in 
24-hour systolic BP/diastolic BP was 7.8/5.9 (augmentation index), 8.0/6.3 (augmentation pressure), 6.7/5.4 (backward 
wave amplitude), 5.7/4.7 (forward wave amplitude), and 7.8/5.2 (estimated aortic pulse wave velocity) mm Hg greater for 
patients below versus above the respective median value (P<0.001 for all comparisons, respectively). Taking augmentation 
index/augmentation pressure/backward wave amplitude/forward wave amplitude/estimated aortic pulse wave velocity into 
account, a favorable BP response following RDN, defined as a drop in 24-hour systolic blood pressure of ≥5 mm Hg, could 
be predicted with an area under the curve of 0.70/0.74/0.70/0.65/0.62 (P<0.001 for all, respectively).

CONCLUSIONS: These results suggest that pulsatile hemodynamics, obtained during 24-hour ambulatory BP monitoring, may 
predict BP response to RDN. (Hypertension. 2022;79:1518–1526. DOI: 10.1161/HYPERTENSIONAHA.121.18641.)  

• Supplemental Material
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A series of well-conducted, randomized, sham-con-
trolled clinical trials has established the blood pres-
sure (BP) lowering effect of catheter-based renal 

denervation (RDN).1–3 However, mirroring the situation 
with antihypertensive drugs,4 the magnitude of the indi-
vidual BP drop following RDN is highly variable.1–3 A 
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number of factors may influence the short- and long-
term treatment effect, for example, the variable contribu-
tion of the sympathetic nervous system to BP elevation, 
genetic background, comorbidities, or accompanying 
antihypertensive treatments. Therefore, a simple, non-
invasive predictor of BP response to RDN remains a 
major unmet need. Multiple indices of increased sym-
pathetic nervous system activity or reduced arterial stiff-
ness have been proposed, although the only consistent 
finding has been the association between a higher 
baseline BP and a larger BP drop following the inter-
vention, which is rather nonspecific for both device and 
pharmaceutical therapies.

Nighttime systolic BP measured by 24-hour 
ambulatory BP monitoring (ABPM) and its variability 
have been shown to predict BP response following 
ultrasound-based RDN, albeit with low sensitivity.5 
Beyond BP measured at the brachial artery, other 

hemodynamic measures may play a role in identifying 
appropriate candidates for RDN. Often summarized as 
pulsatile hemodynamics, arterial stiffness (pulse wave 
velocity [PWV]), wave reflections, and central (aortic) 
hemodynamics can be quantified noninvasively, eas-
ily, and reproducibly.6,7 Arterial wave reflections pre-
dict cardiovascular events,8–11 independent of brachial 
BP, and may be more sensitive than brachial BP to 
detect antihypertensive drug-induced hemodynamic 
changes.12,13 Recently, assessment of pulsatile hemo-
dynamics with dedicated brachial cuffs, suitable for 
24-hour ABPM, became commercially available.14,15 
We hypothesized that hemodynamic measures, par-
ticularly wave reflections, obtained during regular 
24-hour ABPM in the workup before RDN, may pre-
dict BP response to RDN.

METHODS
Because of the sensitive nature of the data collected for this 
study, requests to access the data set from qualified research-
ers trained in human subject confidentiality protocols may be 
sent to Medtronic at sandeep.brar@medtronic.com.

Study Design and Randomization
SPYRAL HTN-OFF MED Pivotal16 was a multicenter, single-
blind, randomized, sham-controlled trial conducted at 44 sites 
in Australia, Austria, Canada, Germany, Greece, Ireland, Japan, 
the United Kingdom, and the United States. Adult patients (age 
20–80 years) with office systolic BP (SBP) ≥150 mm Hg and 
<180 mm Hg, office diastolic BP (DBP) ≥90 mm Hg, and an 
average 24-hour ambulatory SBP ≥140 mm Hg and <170 
mm Hg were enrolled in the trial. Twenty-four-hour ABPM was 
considered valid if at least 21 day-time readings and 12 night-
time readings had been recorded and was performed at base-
line and at 3 months. The trials complied with the Declaration 
of Helsinki, all local ethics committees approved the research 
protocols, and all patients provided written informed consent. T. 
Weber, B. Hametner, C.M. Mayer, and S. Wassertheurer had full 

Nonstandard Abbreviations and Acronyms

ABPM	 ambulatory blood pressure monitoring
AIx	 augmentation index
AIx75	 heart-rate corrected augmentation index
AP	 pressure augmentation
AUC	 area under the curve
BP	 blood pressure
DBP	 diastolic blood pressure
ePWV	 estimated aortic pulse wave velocity
HR	 heart rate
Pb	 backward wave amplitude
Pf	 forward wave amplitude
PWV	 pulse wave velocity
RDN	 renal denervation
SBP	 systolic blood pressure

NOVELTY AND RELEVANCE

What Is New?
Measures of pulsatile hemodynamics are associated with 
blood pressure response after RF-based renal denerva-
tion. Specifically, 24-hour systolic blood pressure drop at 
3 months following renal denervation was up to 8 mm Hg 
greater with baseline augmentation index/pressure 
augmentation/backward wave amplitude/forward wave 
amplitude/estimated aortic pulse wave velocity below the 
median, as compared with above the median.

What Is Relevant?
These measures can be derived from automated analysis 
of 24-hour blood pressure waveforms with commercially 

available 24-hour blood pressure monitors and predict a 
favourable blood pressure response to renal denervation 
with area under the curves in the range of 0.70 to 0.74 
(for measures of wave reflections).

Clinical/Pathophysiological Implications
Automated measurement of pulsatile hemodynamics, 
particularly wave reflections, obtained during the rou-
tine workup before renal denervation may help select-
ing patients with a favourable blood pressure response 
to renal denervation. Additional studies are needed to 
confirm the findings and to expand the results to patients 
treated with antihypertensive drugs.
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access to all the data in the study and take responsibility for its 
integrity and the data analysis.

Full details of the randomization strategy have been 
described previously.16 Briefly, patients were randomized 1:1 to 
RDN or sham procedure. Before randomization, patients were 
required to be off all antihypertensive medications. Tandem high 
performance liquid chromatography and mass spectroscopy 
of urine and plasma by an independent laboratory were used 
to evaluate and confirm absence of antihypertensive medica-
tions.17 Office BP measurements were obtained via automatic 
BP monitor (Omron, Omron Healthcare, Inc, Lake Forest, IL).

Procedures
Ablation treatment with the Symplicity Spyral multielectrode 
catheter (Medtronic, Galway, Ireland) and the Symplicity G3 
(Medtronic, Minneapolis, MN) generator was performed using 
a standardized approach of targeting all accessible renal arte-
rial vessels, including branch vessels and accessory arteries 
with a diameter >3 mm to <8 mm.1,16 The sham procedure 
consisted of a renal angiogram only. Patients remained off 
antihypertensive medications until the primary end point at 3 
months, unless there were safety concerns related to uncon-
trolled hypertension.

Measurement of Pulsatile Hemodynamics
Twenty-four-hour ABPM, providing brachial SBP and DBP, as 
well as heart rate (HR), was performed in all study participants 
with an identical automated brachial cuff-based oscillometric 
device (Mobil-O-Graph PWA, IEM, Stolberg, Germany), follow-
ing published recommendations.18 The device has been vali-
dated in adults for 24-hour HR,19 for brachial BP measurement 
according to recommendations of the British Hypertension 
Society20 and the European Society of Hypertension,21 for 
24-hour brachial ABPM22 against a widely used device, and has 
received clearance from the US Food and Drug Administration 
and bears the Conformité Européenne mark.

The ARCSolver algorithm for assessment of aortic SBP with 
the device has been published and validated invasively against 
high-fidelity pressure measurements15 and fluid-filled catheter-
based measurements.23 Briefly, immediately after the conven-
tional brachial oscillometric BP measurement, pulse waves are 
recorded, using the brachial cuff, at DBP level for ≈10 seconds, 
using a high-fidelity pressure sensor (MPX5050, Freescale 
Inc., Tempe, AZ). The sensor is connected to a 12-bit A/D con-
verter by means of an active analogue band bass filter. After 
digitalization, a 3-step quality-control algorithm is applied.15 The 
recorded brachial pulse wave is calibrated with measured bra-
chial BP. Thereafter, an aortic pulse waveform is generated by 
means of a generalized transfer function. Modulus and phase 
characteristics of the transfer function have been published.24 
Parameters associated with wave reflection, derived by math-
ematical analysis directly from pressure curves (pulse wave-
form analysis), are augmented pressure (the increase in BP 
following the inflection point of the BP curve) and augmen-
tation index (AIx; the ratio pressure augmentation [AP]/cPP). 
As AIx is inversely related to HR, a normalization for HR 75/
min can be used (AIx75). A complimentary method to quantify 
wave reflections is Wave Separation Analysis,25 a method using 
simultaneous calculation of pressure and flow waves, yielding 

estimates of the amplitudes of antegrade and reflected (for-
ward: Pf; backward: Pb) waves—Figure 1. Finally, an estimate of 
aortic PWV (ePWV), based on age, SBP and waveform charac-
teristics, is determined.26 A more detailed description is given in 
the Supplemental Material. Both sets of parameters, measured 
with the Mobil-O-Graph PWA device, have been validated 
against accepted gold standards.10,24 The reproducibility and 
the feasibility of ambulatory hemodynamic measurements with 
the device have also been confirmed.27 To allow a standard-
ized procedure, all analyses were performed centralized using 
ARCSolver version DLL 1.7.2.

Statistical Analysis
All valid ambulatory BP measurements were included in the 
analysis based on the snapshot dated January 2020. Only 
study participants with available full pressure waveform data 
from 24-hour ABPM could be included.

Enrollment in the SPYRAL trial was not stratified per 
baseline pulsatile hemodynamics. Baseline continuous vari-
ables were summarized as mean±SD and compared using 
t tests or Welch test, as appropriate. Categorical variables 
were summarized as counts and percentages and compared 
between groups using χ2 or Fisher exact tests for categori-
cal variables. For all parameters, 24-hour averages per patient 
were calculated. Average 24-hour BP changes from baseline 
to 3 months in each RDN and sham patient were compared, 
using paired t tests (within the group) and unpaired t tests 
(RDN versus sham).

The aim of this post hoc analysis of the SPYRAL HTN-OFF 
MED Pivotal trial was to investigate, whether pulsatile hemody-
namics, in particular measures of wave reflections (AIx, AIx75, 
AP, Pb), can predict changes in 24-hour BP from baseline to 3 
months after RDN. Due to the sham-controlled design of the 
studies, the BP changes due to the sham effect could be taken 
into account, which gave us the opportunity to investigate true 
effects of the intervention.

Linear regression was used to investigate the relationship 
between a baseline parameter and BP changes at 3 months 
in the sham group. When the baseline parameter values are 
replaced by the residuals from the regression line and the 
mean value of the parameter is added, the trends in the sham 
group can be removed (Figure S1). To account for this effect 
obtained from the sham group and the RDN group, the same 
procedure, that is, with the beta coefficient obtained from the 
Sham group, was applied to the data from the RDN group. 
By this, the linear trends between BP change and baseline 
parameters, as obtained in the sham group, were removed 
from the RDN group. This correction was performed for each 
parameter of interest separately. This approach was taken to 
allow the following analysis of prediction for corrected param-
eter values for multivariable models (combination of param-
eters as predictors, eg, AIx and HR).

Receiver-operating characteristics curve analysis was 
performed to assess the predictive value of the parameters 
of interest for a clinically relevant BP response at 3 months, 
defined by a reduction of average 24-hour SBP of at least 
5 mm Hg.28 To investigate the additive/independent value of 
measures of pulsatile hemodynamics for BP responder status, 
logistic regression models (enter method) were constructed, 
including age, SBP, body height, and HR (with the exception 
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of the model including AIx75) and one pulsatile hemodynam-
ics parameter.

Statistical significance was assumed at a 5% level. 
Statistical analyses were performed using Matlab R2019b (The 
MathWorks, Inc, Natick, MA) and MedCalc Statistical Software 
19.2 (MedCalc Software Ltd, Ostend, Belgium).

RESULTS
The final study sample consisted of 222 SPYRAL HTN-
OFF MED pivotal patients (111 RDN, 111 sham), out 
of 166 RDN and 165 sham patients in the original pub-
lication.16 There were a few slight differences in base-
line characteristics between patients included and not 
included (as full data were not available) in the current 
analysis, but importantly no differences between base-
line SBP and DBP (Table S1).

Baseline characteristics were well balanced between 
RDN and sham patients (Table  1), as in the original 
publication.16 Average 24-hour SBP/DBP at baseline 
was 151 (SD 7.9)/98 (SD) mm Hg in RDN patients 
and 151 (SD 7.8)/99 (SD) mm Hg in sham controls, 
exactly matching these values in the original publica-
tion.16 Likewise, changes in average 24-hour SBP/
DBP at 3 months were – 4.5 (SD 10.6)/−3.6 (SD 6.6) 
mm Hg (RDN patients) and −0.6 (SD 9.0)/−0.7 (SD 
5.4) mm Hg (sham controls) in our sample, and −4.7 (SD 
10.4)/−3.7 (SD 6.6) mm Hg (RDN patients) and −0.6 
(SD 8.6)/−0.8 (SD 5.3) mm Hg (sham controls) in the 
original publication.16

Average 24-hour measures of pulsatile hemody-
namics (AIx, AIx75, AP, Pb, Pf, ePWV) at baseline were 
not different between RDN and sham controls groups 

(Table  2). AIx75 decreased significantly from baseline 
to 3 months in both groups. There were no significant 
differences in changes of measures of antegrade and 
reflected waves from baseline to 3 months between 
RDN and sham controls, only ePWV decreased slightly 
more in RDN patients (Table 2).

Predictors of BP Response
Without adjustments, average 24-hour SBP at baseline 
was directly related to BP changes at 3 months (Figure 
S2) in the RDN and sham group, illustrating the law 
of the initial value in RDN patients and regression to 
the mean in sham controls. Of note, contrasting effects 
were seen for baseline HR and AIx in the RDN and 
sham group: higher baseline HR was associated with 
a greater BP response at 3 months in the RDN group, 
but not in the sham group (Figure S2). In addition, a 
lower AIx was associated with a greater change in aver-
age 24-hour SBP at 3 months in the RDN group, with 
an opposite trend in the sham group. Results for the 
remainder measures of wave reflections and antegrade 
wave as well as ePWV (AIx75, AP, Pb, Pf, ePWV) were 
consistent (Figure S2).

After corrections for the sham group (illustrated in 
Figure S1), baseline average 24-hour SBP in the RDN 
group was no longer associated with BP changes at 3 
months (Figure S3). In contrast, sham group corrected 
average 24-hour HR at baseline was directly associ-
ated with BP changes following RDN, with SBP/DBP 
drop following RDN being 6.5/5.0 mm Hg greater in 
the group with baseline HR above as compared with 
below the median, respectively. All measures of wave 
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Figure 1. Quantification of wave 
reflections from brachial cuff-based 
waveforms.
Upper: Example of high-quality pressure 
waveforms, obtained with a brachial cuff. 
Lower: Using pulse waveform analysis, an 
inflection point is identified, and pressure 
augmentation (AP) is determined; 
augmentation index (AIx) is calculated as 
AP/central pulse pressure (PP). Using 
combined analysis of pressure and flow 
signals (derived from validated flow 
models), wave separation is performed, 
yielding amplitudes of forward (Pf) and 
backward (Pb) waves.
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reflections showed a similar association with RDN-
related BP changes at 3 months: after correction for the 
BP changes in the sham group, average 24-hour SBP/
DBP reduction in RDN patients was 7.8/5.9, 4.2/2.3, 
8.0/6.3, and 6.7/5.4 mm Hg greater for the respective 
baseline values of AIx, AIx75, AP, and Pb below the 
median, as compared with above the median (Figure 2A 
through 2D, Table S2). Likewise, after correction for the 
BP changes in the sham group, average 24-hour SBP/
DBP reduction at 3 months in RDN patients was 5.7/4.7 

and 7.8/5.2 mm Hg greater for the respective baseline 
values of Pf (a measure of forward wave) and ePWV 
below the median, as compared with above the median 
(Figure 2E and 2F, Table S2).

Analysis stratified by age and sex showed similar 
trends in men and women, and young (<54 years) and 
older (≥54 years) participants (Figures S4 and S5).

Additional analysis, excluding the small number of 
patients in whom antihypertensive medications were 
detected at baseline (n=10 for RDN; n=9 for Sham), 
were consistent with the main findings (data not shown).

In receiver-operating characteristics analysis, sham- 
group corrected baseline average 24-hour HR, AIx, AIx75, 
AP, Pb, Pf, and ePWV were all significant predictors of a 
clinically relevant BP change following RDN (Table  3). 
The largest area under the curve (AUC) was obtained 
for AP (0.74 [CI, 0.64–0.84], P<0.0001), with AUCs in 
the same range for AIx75, AP and Pb, but also Pf and 
ePWV, respectively. In contrast, AUC for HR was 0.62 
(CI, 0.52–0.71; P=0.02). The difference between AUCs 
for SBP and HR were statistically not different, whereas 
the AUCs for all wave reflection parameters were sta-
tistically different (larger) than the AUCs for HR (Table 
S3). The combination of HR with one of the parameters 
related to wave reflection led to minor improvements of 
AUCs (Table S4).

In logistic regression models, including HR, age, 
body height, and baseline SBP, all measures of pulsatile 
hemodynamics were inversely and independently associ-
ated with BP responder status at 3 months (Table S5).

DISCUSSION
Accurate noninvasive, reproducible, easy-to-obtain pre-
dictors of future BP reduction following RDN have not 
yet been identified. Against the background of a ran-
domized, single-blinded, sham controlled clinical trial, 

Table 1.  Baseline Data of the Study Population

Characteristic

RDN (N=111)
Sham control 
(N=111)Mean±SD or No. (%)

Age, y 53.0±11.0 51.6±11.0

Male 72.1% (80/111) 69.4% (77/111)

BMI, kg/m2 31.3±6.3 30.6±5.5

Race

  White 31.5% (35/111) 31.5% (35/111)

  Black 18.0% (20/111) 14.4% (16/111)

  Asian 4.5% (5/111) 3.6% (4/111)

  Other 0.9% (1/111) 0.9% (1/111)

  Not reportable per local laws 45.0% (50/111) 49.5% (55/111)

Diabetes (all type 2) 1.8% (2/111) 3.6% (4/111)

Current smoker 18.0% (20/111) 17.1% (19/111)

Obstructive sleep apnea 9.0% (10/111) 7.2% (8/111)

Peripheral artery disease 0.0% (0/111) 0.0% (0/111)

Coronary artery disease* 0.0% (0/111) 4.5% (5/111)

Average 24-hour SBP baseline, 
mm Hg

151.0±7.9 151.1±7.8

Average 24-hour DBP baseline, 
mm Hg

97.8±7.4 99.1±7.4

Average 24-hour heart rate, bpm 73.8±10.3 74.4±10.3

BMI indicates body mass index; DBP, diastolic blood pressure; RDN, renal 
denervation; and SBP, systolic blood pressure.

*Coronary events occurred >3 mo before randomization.

Table 2.  Average 24-Hour Measures of Wave Reflection at Baseline and Change at 3 mo Follow Up, Stratified by Treatment 
Group

Measurement

Baseline Change from baseline to 3 mo

RDN (N=111)
Sham control 
(N=111)

P value*: RDN vs 
sham control RDN Sham Control

P value†: RDN vs 
sham control

Aix 26.1 (SD 7.3) 26.1 (SD 7.4) 1.00 −0.7 (SD 4.2) −1.3 (SD 5.3)‡ 0.30

AIx75 24.8 (SD 7.6) 25.2 (SD 7.2) 0.63 −0.9 (SD 3.8)‡ −1.0 (SD 4.4)‡ 0.93

AP mm Hg 11.2 (SD 3.9) 11.2 (SD 4.6) 1.00 −0.3 (SD 2.5) −0.5 (SD 3.5) 0.69

Pb mm Hg 16.4 (SD 2.5) 16.3 (SD 3.0) 0.68 −0.1 (SD 1.9) 0.1 (SD 2.3) 0.49

Pf mm Hg 25.5 (SD 3.3) 25.2 (SD 3.6) 0.49 −0.3 (SD 2.6) 0.03 (SD 2.8) 0.36

ePWV m/s 8.5 (SD 1.3) 8.4 (SD 1.3) 0.37 −0.12 (SD 0.3) −0.01 (SD 0.3) 0.009

HR bpm 73.8 (SD 10.3) 74.4 (SD 10.3) 0.64 −0.5 (SD 6.1) 0.7 (SD 5.6) 0.14

SBP mm Hg 151.0 (SD 7.9) 151.1 (SD 7.8) 0.92 −4.5 (SD 10.6)‡ −0.6 (SD 9.0) 0.003

AIx indicates augmentation index; AIx75, augmentation index normalized for heart rate 75/min; AP, pressure augmentation; ePWV, estimated aortic pulse wave veloc-
ity; HR, heart rate; Pb, backward wave amplitude; Pf, forward wave amplitude; RDN, renal denervation; and SBP, systolic blood pressure.

*P values comparing RDN and sham controls at baseline (unpaired t test).
†P values comparing changes from baseline to 3 mo between RDN and sham controls (unpaired t test).
‡P<0.05 comparing baseline and 3 mo values for RDN and Sham, respectively (paired t test).
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we observed that measures of pulsatile hemodynamics, 
mainly pressure wave reflections, obtained during reg-
ular 24-hour ABPM, were associated with greater BP 
response 3 months after RDN in patients with uncon-
trolled hypertension in the absence of antihypertensive 
drug therapy.29

Wave reflections are thought to arise at sites of 
impedance change or mismatch along the arterial tree, 
such as points of branching, change in lumen diameter 
(taper) and structural properties.6 Multiple small reflec-
tions, originating from distributed reflection sites, are 
transmitted back toward the heart and merge and sum-
mate into a single net reflected wave.6 Wave reflections 
cannot be detected from conventional (auscultatory or 
oscillometric) BP measurement, but may be quantified 
from pressure waveforms alone, yielding AIx, AIx75 and 
AP, or through combined analysis with flow waveforms, 
yielding Pb. As a more sensitive measure of BP, wave 

reflections provide closer insights into hypertension-
associated organ damage,10 cardiac function30 and the 
risk of cardiovascular events,8–10 as compared with bra-
chial BP. Compared with brachial BP, measures of wave 
reflections are more sensitive to monitor antihyperten-
sive drug-induced hemodynamic changes,31 as well as 
changes of hypertension-mediated organ damage.12,13 
RDN has previously been shown to attenuate wave 
reflections in patients with resistant hypertension.32,33 
Changes in AIx75 following RDN, however, were not 
related to changes in muscle sympathetic nerve activity.32

Analyses of increased RDN response have focused 
primarily on indices of increased sympathetic nervous 
system activity (or in association with an increased activ-
ity of the renin-angiotensin-system34) or lower arterial 
stiffness at baseline. The hypothesis that patients with 
a stiffer arterial system might not respond as well to 
RDN was initially based on observational trials showing 

Figure 2. Changes in 24-hour systolic blood pressure (SBP) and diastolic blood pressure (DBP) at 3 mo in renal denervation 
(RDN) patients, corrected for changes in the sham group.
Changes of average 24-hour SBP and DBP from baseline to 3 mo, stratified by baseline average 24-hour values (below and equal the 
respective median value—blue columns—vs above the respective median value—orange columns) in RDN patients, corrected for changes in the 
sham group. P values below the bars are from a pairwise comparison between baseline and 3 mo; P values above the bars comparing changes 
from baseline to 3 mo for ≤ median vs > median of corrected baseline value (unpaired t test); data in parentheses are 95% CIs. Upper: 
Augmentation Index (Aix; A), heart-rate 75 adjusted AIx (AIx75; B), pressure augmentation (AP; C). Lower: Backward wave amplitude (Pb; D), 
forward wave amplitude (Pf; E), estimated pulse wave velocity (ePWV; F).
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apparently worse treatment response in patients with iso-
lated systolic hypertension (defined as office DBP<90 
mm Hg), a condition characterized by increased arterial 
stiffness.35 These findings were supported by observa-
tional results, suggesting that increased arterial stiffness, 
measured invasively as aortic PWV, may be associated 
with less BP lowering following RDN.36 Thus, patients 
with office DBP <90 mm Hg were excluded from the 
SPYRAL HTN-OFF MED Pilot1 and Pivotal16 trials. Wave 
reflections, in particular, when quantified with pulse wave-
form analysis, are related to arterial stiffness through the 
timing of the arrival of the reflected wave. Our results 
therefore confirm and extend these previous findings.

However, pulse waveform analysis-derived measures 
of wave reflections also depend on age, sex, body height, 
HR and left ventricular function.6,37–40 A previous analy-
sis of the association between HR and BP response to 
RDN in the SPYRAL HTN OFF MED pilot trial41 demon-
strated that RDN reduces 24-hour ambulatory HR (plus 
HR in numerous time windows) and that higher baseline 
24-hour HR, likely a sign of higher sympathetic nervous 
system activity, predicted greater BP reductions follow-
ing RDN.42 Taking the inverse relationship between HR 
and measures of wave reflections43 into consideration, 
our results are again consistent. Furthermore, receiver-
operating characteristics analysis showed that the pre-
dictive value for RDN-induced BP response provided by 
measures of wave reflections outperformed HR alone, 
and is indeed additive when the less HR-dependent 
WSA-based measure Pb is used. The other determinants 
of a lower AIx/AP, that is, younger age and male sex, 
appear to play only a minor role, as evidenced by our 
stratified analysis. Also, severely impaired systolic func-
tion, another determinant of a low AIx/AP,37,38 was not 
present in the patients studied.

We would like to stress one methodological aspect of 
our study: previously, potential predictors of BP response 
to RDN have been addressed often in treatment 
cohorts36,44 only, that is, without a control group. Even if 
such analysis provides important insights, including the 
much-needed real-world evidence from large registries,45 
interpretation of the results can be challenging. Statis-
tical phenomena such as regression to the mean can 
occur, nicely depicted in the sham group of our study 
(Figure S1). The only consistent predictor of a greater 
BP response following RDN so far was a higher base-
line BP.46 This finding is evident in the RDN group of 
our study as well. However, due to the study design, we 
were able to correct our results for BP changes in the 
sham group. This led to complete disappearance of the 
law of the initial value in RDN patients. In other words, 
sham-corrected baseline BP was no longer predictive of 
BP changes following RDN. In contrast, the predictive 
value of measures of wave reflections and, to a lesser 
degree, measures/estimates of forward wave and aortic 
stiffness, was strengthened, suggesting that the latter is 
a true biological mechanism.

Study Limitations
The current study is a post hoc analysis from a prospec-
tive, randomized sham-controlled clinical trial, including 
the majority, but not all of the original study participants. 
Next, as patient inclusion in the trial was not stratified 
by measures of pulsatile hemodynamics, causality can-
not be inferred. However, assessment of wave reflec-
tions, forward wave and arterial stiffness was blinded, 
and independent from the treatment assigned. Moreover, 
taking advantage of the study design, the results in RDN 
patients could be compared with and adjusted for the 
sham-group results. Next, no adjustment for multiple 
statistical testing was performed due to the explorative 
design of the study. Finally, the predictive value of pul-
satile hemodynamics for RDN-induced BP reduction 
in patients treated with antihypertensive drugs and in 
patients with ISH needs to be tested in the future.

Perspectives
Measures of pulsatile hemodynamics (wave reflections—
AIx, AIx75, AP, Pb; forward wave—Pf; aortic stiffness—
ePWV) obtained from routine 24-hour ABPM were 
associated with BP response to radiofrequency RDN at 
3 months. More accurate identification of patients most 
likely to respond to RDN therapy may require a combina-
tion of 2 or more measurements, for instance pulsatile 
hemodynamics and neurohormonal indices.34
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Table 3.  Receiver-Operating Curve Analysis Investigating 
the Predictive Value for Waveform Parameters and Heart 
Rate to Predict a Clinically Meaningful Blood Pressure 
Response to Renal Denervation, Defined as a Reduction in 
Average 24-Hour Systolic Blood Pressure From Baseline to 3 
mo of at Least 5 mm Hg

Measurement AUC 95% CI P value

AIx 0.70 0.61–0.79 <0.0001

AIx75 0.62 0.52–0.71 0.02

AP 0.74 0.64–0.82 <0.0001

Pb 0.70 0.61–0.79 <0.0001

Pf 0.65 0.55–0.74 0.004

ePWV 0.62 0.53–0.71 0.03

HR 0.62 0.52–0.71 0.02

SBP 0.54 0.44–0.63 0.48

Blood pressure response was adjusted for changes in the sham group. AIx 
indicates augmentation index, AIx75, augmentation index normalized for heart 
rate 75/min; AP, augmentation pressure; AUC, area under the curve; ePWV, esti-
mated aortic pulse wave velocity; HR, heart rate; Pb, backward wave amplitude; 
Pf, forward wave amplitude; and SBP, systolic blood pressure.
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