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Over the past decades, our molecular understanding of acute myeloid leukemia (AML)
pathogenesis dramatically increased, thanks also to the advent of next-generation
sequencing (NGS) technologies. Many of these findings, however, have not yet
translated into new prognostic markers or rationales for treatments. We now know
that AML is a highly heterogeneous disease characterized by a very low mutational
burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators,
which shape and define leukemic cell identity. In the light of these discoveries
and given the increasing number of drugs targeting epigenetic regulators in clinical
development and testing, great interest is emerging for the use of small molecules
targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic
properties, such as proliferation and survival, epigenetic drugs may affect the way
leukemic cells communicate with the surrounding components of the tumor and
immune microenvironment. Here, we review current knowledge on alterations in the
AML epigenetic landscape and discuss the promises of epigenetic therapies for AML
treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic
rewiring in cancer cells may as well exert immune-modulatory functions, boost the
immune system, and potentially contribute to better patient outcomes.
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INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive blood cancer, characterized by the uncontrolled
proliferation of poorly differentiated hematopoietic stem and progenitor cells. Even if disease
prognosis has improved over the last decades, mainly thanks to decreased treatment-
related mortality and wider use of allogeneic hematopoietic cell transplantation (allo-HCT)
as consolidation therapy, prognostic classification of AML patients remains inaccurate and
therapeutic options for high-risk patient are largely unsatisfactory (Dohner et al., 2015).
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Moreover, even if AML is often initially sensitive to
chemotherapy, relapse events remain frequent either due to
the emergence of chemotherapy-resistant clones (Lokody, 2014)
or post-transplantation immune-escape mechanisms enacted
by leukemic cells to evade donor immune system control (Vago
et al., 2009; Toffalori et al., 2012; Christopher et al., 2018;
Toffalori et al., 2019; Zeiser and Vago, 2019). Therefore, more
effective combinatorial or alternative therapies are needed
for AML patients.

In spite of being one of the tumors with the lowest mutational
load, AML is a highly heterogeneous disease in terms of
genetic background and clinical manifestation. Interestingly,
although very few, mutations frequently hit genes encoding for
proteins that regulate DNA methylation (such as DNMT3A,
TET2, IDH1, and IDH2), affect post-translational modifications
on histone tails (such as EZH2, ASXL1, and others), and
drive three-dimensional chromatin conformation of cancer
cells (such as CTCF and cohesin complex). In addition to
mutations in epigenetic regulators, some of the fusion proteins
that are known to drive abnormal transcriptional programs in
AML act through aberrant expression or redirected specificity
of epigenetic regulators. More broadly, global alterations in
DNA methylation patterns and enhancer deregulation were
recently linked to AML clonal expansion, further supporting
the notion that epigenetic heterogeneity better explains leukemia
identity compared to the genetic background (Corces et al.,
2016; Li S. et al., 2016). The AML epigenome has therefore
emerged as a new exciting target for drug discovery. Epigenetic
modifications regulate chromatin states and gene expression
changes without altering DNA sequences through distinct
mechanisms including, among others, DNA methylation and
post-translational modifications on histone tails. Our genome
encodes for several enzymes that are able to deposit or remove
chemical marks within specialized domains (writers and erasers,
respectively) and to bind and recognize them (readers). The
coordinated action of epigenetic writers, erasers, and readers
are important for tight regulation of gene expression through
downstream molecular effectors, thus contributing to both
cancer development and progression. Unlike genetic alterations,
epigenetic changes are dynamic and reversible, and the past
decades have seen a dramatic increase of discoveries and
clinical applications of small molecules targeting epigenetic
modifiers with the final goal to restore normal epigenetic
patterns in cancer cells. Compared to other targeted approaches,
epigenetic therapies may potentially reduce the emergence of
molecular resistance and clinical recurrence by simultaneously
impacting on distinct cellular pathways. In addition, besides
the aforementioned cell autonomous mechanisms of action,
epigenetic therapies may have immunomodulatory properties
and further enhance the sensitivity of cancer cells to immune
therapies. In this Review, we provide an overview of epigenomic
changes involved in AML pathogenesis and describe the
mechanisms of action of epigenetic drugs currently in use or
under investigation for AML treatment. Table 1 summarizes
the status of epigenetic therapies for AML from preclinical
testing to clinical approval. Finally, we discuss emerging
concepts and promising new therapeutic approaches based

on the interplay between epigenetic therapies and immune
system modulation.

EPIGENOME DEREGULATION AND
EPIGENETIC THERAPIES FOR AML
TREATMENT

Epigenome Writers
The enzymes able to catalyze modifications on DNA or
histone proteins are named “epigenetic writers” and can be
classified into enzymes impacting on DNA methylation, histone
methyltransferases (HMTs), and histone acetyltransferases
(HATs). The first category includes all the proteins that
directly contribute to the regulation of DNA methylation
(DNA methyltransferases; DNMTs). The HMT category
comprises lysine methyltransferases (KMTs) and arginine
methyltransferases (PRMTs). Methylation of histone tails
promotes both gene activation and repression depending
on the modified histone residue. In detail, methylation of
H3K4, H3K36, H3K79, and H4R3 is generally associated to
transcriptional activation, while methylation of H3K9, H3K27,
and H4K20 induces transcriptional repression. Finally, HATs are
epigenetic writers responsible for acetylation of lysine residues
on nucleosomes, which is associated to open chromatin and
activation of gene expression.

DNA Methylation
DNMTs
DNA methylation is a heritable epigenetic mark mainly
contributing to gene repression. Specifically, DNA methylation
levels are under the control of enzymes able to modulate
the addition (by DNA methyl transferases; DNMTs) or the
removal (by the indirect action of TET and IDH1/2 proteins)
of methyl groups to cytosine or adenine residues. Besides the
essential physiological functions, alterations in DNA methylation
pattern have been extensively described in different cancer
types including AML. Importantly, it has been reported that
genetic alleles and epialleles (as assessed by genome-wide DNA
methylation profile) can evolve independently from each other
during AML progression and that the DNA methylation patterns
can be used to stratify patients and predict clinical outcome (Li S.
et al., 2016; Figueroa et al., 2010b). Interestingly, these changes
are mostly determined by DNA methylation of non-promoter
regulatory regions rather than at the level of gene promoters.
Indeed, different methylation patterns of enhancer elements can
also precisely distinguish normal blood cell from leukemic cells
in different disease stages (Figueroa et al., 2010b; Qu et al., 2017).
Moreover, in AML cells, aberrantly methylated sites, mainly
residing in gene bodies and enhancer elements, often display
features associated with aged blood cells including, among the
others, chromatin changes in immune and cell-adhesion genes
(Glass et al., 2017; Adelman et al., 2019). One possible driver
of the epigenetic reprograming of AML blasts can be the
presence of somatic mutations affecting DNMTs. DNMT3A, a de
novo methyltransferase, is mutated in 20–25% of AML patients
(Thol et al., 2011a; Cancer Genome Atlas Research et al., 2013;
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TABLE 1 | Epigenetic therapies in AML.

Epigenetic
regulator

Function Frequency in
AML

Compound Target Pre
Clinical
Studies

Clinical
Trials

Approved

DNMT DNA methylation 20–25% Azacitidine (5-azacytidine) RNA (60-80%) and DNA (20%)

Decitabine (5-aza-2’-deoxycitydine) DNA

Guadecitabine (SGI-110) DNA

TET Regulation od DNA 8–10% Vitamine C TET2 mut

methylation 2-hydroxyglutarate TET2 mut

IDH1/2 Regulation od DNA 6–13% AGI-5197 IDH1 mut

methylation HMS-101 IDH1 mut

Ivosidenib (AG-120) IDH1 mut

AGI-6780 IDH2 mut

Enasidenib (AG-221) IDH2 mut

MLL Histone lysine 5–10% MM-401 MLL-WDR5

methyltransferase MIV-6R MLL-Menin

MI-463 MLL-Menin

MI-503 MLL-Menin

EPZ-04777 DOT1L

SGC-0946 DOT1L

Pinometostat (EPZ-5676) DOT1L

SETD2 Histone lysine >20% of MLL- EPZ-040414 SETD2

methyltransferase Rearranded Pinometostat (EPZ-5676) DOT1L

leukemias JIB-04 KDM4A

PcG Histone lysine Rare (2%) Tazemetostat (EPZ-6438) EZH2

Proteins methyltransferase GSK126 EZH2

UNC1999 EZH1/2

MAK683 EED

G9a Histone lysine None UNC0638 G9a

methyltransferase UNC0642 G9a

A366 G9a

PRMT Histone arginine None AMI-408 PRMT1

methyltransferase EPZ015655 PRMT5

HAT Histone Rare C646 p300

acetyltransferase L002 p300

(Continued)
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TABLE 1 | Continued

Epigenetic
regulator

Function Frequency in
AML

Compound Target Pre
Clinical
Studies

Clinical
Trials

Approved

KDM1 Histone lysine Rare Tranylcypromine (TCP) KDM1

(LSD1) demethylase NCD25 KDM1

NCD28 KDM1

SP2509 KDM1

GSK2879552 KDM1

IMG-7289 KDM1

HDAC Histone Rare Varinostat HDAC class I/II

deacethylase Panobinostat (LBH589) HDAC class I/II

Valproic acid (VPA) HDAC class I

Romidepsine/depsipeptide HDAC class I

Mocetinostat HDAC class I

Entinostat HDAC class I

BET Reader of acethyl None JQ1 BET proteins

groups on lysine I-BET151 BET proteins

residues OTX015 BET proteins

TEN-010 BET proteins

CPI-0610 BET proteins

GSK525762 BET proteins

EP11313 BET proteins

EP11336 BET proteins

BI-894999 BET proteins
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Papaemmanuil et al., 2016) and linked by several studies to
decreased overall survival (Thol et al., 2011a; Ribeiro et al., 2012).
Notably, the majority of somatic DNMT3A mutations occurs
at arginine (R) 882 and lead to decreased catalytic activity and
DNA binding affinity. However, the molecular mechanisms by
which DNMT3A mutations favor leukemia occurrence are still
unclear. It has been originally reported that mutant DNMT3A
alters the expression of genes involved in key cellular pathways
including apoptosis and hematopoietic stem cell (HSC) self-
renewal (Tadokoro et al., 2007; Thol et al., 2011a,b). Deletion of
DNMT3A in mice was shown to impair HSC differentiation and
to increase the number of phenotypically defined HSCs although
no signs of overt malignancy were observed upon transplantation
of DNMT3A-deleted HSCs, suggesting that additional alterations
may be required for leukemia development (Challen et al., 2011).

Given the pivotal role of DNA methylation in remodeling
AML epigenome at both promoters and distal regulatory
elements, DNMTs emerged as attractive therapeutic targets to
restore normal DNA methylation patterns in leukemic blasts.
Two nucleosidic epigenetic compounds inhibiting DNMT
activity, azacytidine (5-azacytidine) and decitabine (5-aza-2′-
deoxycytidine) (DNMTi), are currently in clinical use for myeloid
malignancies. Azacytidine, upon conversion to decitabine,
incorporates into newly synthetized DNA, thwarting the binding
of DNMTs. Of notice, azacytidine is predominantly incorporated
into RNA with a more evident effect on gene translation (Navada
et al., 2014). Chemical DNMT inhibition significantly alters DNA
methylation patterns with consequent induction of cell cycle
arrest, DNA damage accumulation, apoptosis, differentiation,
and immune cell activation (Wouters and Delwel, 2016). Both
azacytidine and decitabine initially entered standard clinical
practice for the treatment of myelodysplastic syndrome (MDS)
and AML patients with low blast count. In a subsequent phase
II clinical trial, decitabine showed acceptable tolerability and
efficacy also in AML patients older than 60 with >30% of blasts
and not eligible for intensive chemotherapy (Cashen et al.,
2010). Moreover, a phase III trial in older or unfit AML patients
reported higher response rate and survival advantage in patients
treated with decitabine compared with current standard of
care (low-dose cytarabine or supportive care) (Kantarjian et al.,
2012). More recently, next-generation DNMT inhibitors with
improved stability such as guadecitabine (SGI-110) have been
developed and tested in clinical trials with promising results
(Issa et al., 2015; Stein and Tallman, 2016; Garcia-Manero
et al., 2019). However, to date, the efficacy of DNMTi as single
agents for AML treatment is limited, possibly due to the fact
that targeting a single layer of epigenetic deregulation (e.g.,
DNA methylation) cannot be sufficient to reach a complete
rescue of the epigenetic landscape of leukemic blasts. On this
purpose, several studies reported promising preliminary results
from combinatorial treatments of DNMTi with other epigenetic
drugs including HDAC inhibitors (HDACi; discussed below),
or with agents commonly in use for AML patients such as FLT3
inhibitors, lenalidomide, and antibody–drug conjugates (Gardin
and Dombret, 2017). To date, the most promising combination
for AML treatment is the one with azacytidine or decitabine
and venetoclax (ABT-199), an inhibitor of the anti-apoptotic

protein BCL-2. Mechanistically, venetoclax in combination
with hypomethylating agents leads to a metabolic rewiring
that suppresses oxidative phosphorylation and selectively
triggers apoptosis in leukemic stem cells (Pollyea et al., 2018).
From a clinical standpoint, the combinatorial treatment of
venetoclax plus DNMTi was effective and well tolerated in
elderly AML patients not eligible for intensive chemotherapy
(DiNardo et al., 2019).

TET
Another layer of epigenetic regulation of DNA is the oxidation
of 5mC (5hmC), which indirectly prevents the addition of
methyl groups on cytosine by DNMTs. This modification is
catalyzed by the Ten-Eleven-Translocation (TET) enzymes
and depends on the action of isocitrate dehydrogenase 1/2
(IDH1/2) proteins, which in turn produce α-ketoglutarate
(α-KG) to stimulate TET activity. Somatic mutations in both
these classes of enzymes cause aberrant DNA hypermethylation
mainly occurring at gene promoters. Specifically, TET2
mutations affect 8–10% of patients with de novo AML (Thol
et al., 2011a; Cancer Genome Atlas Research et al., 2013;
Papaemmanuil et al., 2016) and are associated to a global
reduction of 5hmC. This deregulation leads to alterations
in several biological processes including differentiation and
proliferation (Figueroa et al., 2010a; Moran-Crusio et al., 2011;
Quivoron et al., 2011). As previously reported for DNMTs,
TET2 activity is not only limited to promoter regions. In
fact, genome-wide mapping of TET2 binding sites revealed
the presence of this protein also in regulatory regions such
as enhancers where it is fundamental for the recruitment
of hematopoietic transcription factors including IRF, CEBP,
GATA, and HOX proteins (Rasmussen et al., 2015). Also, TET2
loss-of-function mutations have been very recently reported
to be important for immune cell activation and for leukemic
blast differentiation. Thus, drugs acting on TET2 function
(including vitamin C and 2-hydroxyglutarate) can both halt
leukemia progression and induce antitumor immune cell-
mediated response (Tyrakis et al., 2016; Cimmino et al., 2017;
Fraietta et al., 2018).

IDH1/2
Present in around 6 to 13% of AML patients (Ward et al., 2010),
IDH1/2 mutations lead to the production of 2-hydroxyglutarate
(2-HG), are mutually exclusive with TET2 alterations and trigger
a hypermethylation signature almost completely overlapping
to the one characteristic of TET2 mutant cells. Given the
relatively high frequency of IDH mutations in AML, over recent
years, several small molecules targeting mutated IDH1/2 have
been developed, and, upon successful testing in clinical trials,
some of them have already been approved by the Food and
Drug Administration.

AGI-5198 was the first potent inhibitor of mutant IDH1,
initially described in the context of glioma cells. Blockade
of IDH1/IDH2 mutant forms reduces 2-HG production and
H3K9me3 levels, thus inducing cancer cell differentiation (Rohle
et al., 2013). Another IDH1 inhibitor, ivosidenib (AG-120),
showed similar ability to promote differentiation of mutated
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leukemia cells and received FDA approval last year thanks to
the very high response rate in relapse/refractory AML patients
(DiNardo et al., 2018). Furthermore, a computational drug
screening identified another selective inhibitor of mutant IDH1
(HMS-101), which was also effective in inhibiting leukemia
growth in vitro (Chaturvedi et al., 2013).

Regarding inhibitors of IDH2, AGI-6780 and enasidenib
(AG-221) showed high selectivity for the mutant form of IDH2
sparing the wild-type isoform and have been shown to induce
differentiation in AML cells both in vitro and in xenograft models
of AML (Wang et al., 2013; Yen et al., 2017). The efficacy of
enasidenib was also confirmed in relapse/refractory AML patients
carrying IDH2 mutation, leading to its recent clinical approval
(Stein et al., 2017, 2019).

Histone Methylation
MLL
Part of the Drosophila Trithorax family of proteins, the
lysine methyltransferase MLL (or KMT2A) is involved in the
methylation of H3K4 residue (H3K4me1/2/3), a transcriptional
activation mark. MLL translocations with multiple factors as well
as MLL partial tandem duplications (MLL-PTD) are observed
with frequencies ranging from 5 to 10% in AML patients, and are
associated with poor prognosis (Schichman et al., 1994; Caligiuri
et al., 1998; Dohner et al., 2002; Milne et al., 2002). To date,
more than 80 different MLL fusion partners have been identified.
MLL translocations result in fusion oncoproteins, which lack
the C-terminal SET domain of MLL (responsible for the H3K4
methylation activity) and gain domains from the different fusion
partners. Several small molecules inhibiting MLL complexes
and cofactors have been developed, and some of them are
currently in clinical trials for the treatment of MLL-rearranged
leukemias. MM-401 blocks the MLL-WDR5 fusion gene, leading
to proliferation arrest and myeloid differentiation of leukemia
cells while sparing normal hematopoietic stem/progenitor cells
(Cao et al., 2014). Through high-throughput screening and
structure-based chemical development, other small molecules
targeting the MLL-cofactor interactions were discovered and
optimized to target MLL-Menin oncoprotein. Specifically, MIV-
6R, MI-463 and MI-503 efficiently and selectively suppressed
MLL-rearranged leukemia growth both in vitro and in vivo
(Grembecka et al., 2012; He et al., 2014; Borkin et al., 2015).
In the last years, some studies also revealed that in order
to drive tumorigenesis, MLL fusion proteins require DOT1L,
a unique HMT that specifically catalyzes H3K79 methylation
(Okada et al., 2005; Bernt et al., 2011; Jo et al., 2011;
Nguyen et al., 2011). Upon DOT1L blockade, levels of H3K79
methylation drop, and this in turn blocks the expression
of MLL fusion proteins target genes including HOXA9 and
MEIS2 and trigger selective death in MLL-rearranged cell lines
harboring DOT1L-recruiting fusion partners (Daigle et al., 2011,
2013; Chen et al., 2013). Based on these findings, the DOTL1
inhibitor EPZ-5676 is currently being tested in several early
phase clinical trials for MLL-rearranged leukemias. Published
results from a phase I trial revealed an acceptable safety
profile and an interesting overall response rate in patients
with advanced hematological cancers with MLL rearrangements

(Stein et al., 2018). Moreover, the potential therapeutic effect
of DOT1L inhibitors has been described in other genetically
defined AML subgroups such as the ones bearing partial tandem
duplications within the MLL gene (MLL-PTD). Indeed, the
MLL-PTD leukemias share critical biological features with MLL-
rearranged leukemia, including the requirement of DOT1L
for their oncogenic activity and high expression levels of
HOXA-cluster genes. Given these similarities, MLL-PTD positive
leukemias showed high sensitivity to EPZ-5676 in both in vitro
and in vivo models (Kuhn et al., 2015) and were therefore
also included in the phase I clinical trial mentioned above
(Stein et al., 2018).

SETD2
SETD2 is a lysine methyltransferase responsible for tri-
methylation of the transcriptional elongation mark H3K36
that has been found to be mutated in different tumor types,
including hematological malignancies (Mar et al., 2014; Zhu
et al., 2014; Moffitt et al., 2017; Lin et al., 2018). Mutations
in SETD2 result in global reduction of H3K36me3 in tumor
cells, which in turn exhibit impaired DNA damage signaling
and fail to activate the tumor suppressor p53 (Carvalho et al.,
2014). Interestingly, SETD2 loss-of-function mutations have
been identified in more than 20% of leukemia patients with
MLL gene rearrangement (Bu et al., 2018), contributing to
both initiation and leukemia progression by enhancing the
self-renewal potential of leukemic stem cells. According to
some studies, SETD2 appears to be required for sustaining the
functionality and the correct differentiation of HSCs (Zhang
et al., 2018; Zhou et al., 2018). Initially considered as a tumor
suppressor, recent data suggest that SETD2 may as well act
as an oncogene. In fact, if partial SETD2 loss accelerates
leukemogenesis and induces drug resistance, complete SETD2
loss delays leukemia progression. This opposite behavior of
SETD2 may rely on independent H3K36me3 functions that need
to be further investigated (Skucha et al., 2019). Interestingly,
the DOT1L inhibitor EPZ-5676 induced differentiation and cell
death in a MLL-rearranged leukemia model bearing SETD2
mutation (Bu et al., 2018). Interestingly, a recent study showed
that the treatment with JIB-04, an inhibitor of the lysine
demethylase KDM4A, was able to restore H3K36 methylation
levels and chemotherapy sensitivity to SETD2-mutant leukemias
(Mar et al., 2017).

Polycomb Proteins
First discovered in Drosophila, Polycomb group (PcG) proteins
are constituents of two chromatin-remodeling complexes (PRC1
and PRC2) that act as transcriptional repressors, regulating key
biological processes including cell proliferation, differentiation,
and stem cell plasticity (Margueron and Reinberg, 2011; Morey
et al., 2015). PRC1 composition is variable, with two core
components, RING1A and RING1B (Margueron and Reinberg,
2011), and several accessory components. The PRC1 complex
acts through mono-ubiquitination of histone H2A lysine 119.
One of the accessory PRC1 components, BMI1, has been
shown to have a role in controlling the self-renewal of normal
and leukemic stem cells in AML (Lessard and Sauvageau, 2003).
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Based on the role of BMI1 in HSC homeostasis, overexpression
of this protein is frequently found in patients with hematologic
disorders (Mihara et al., 2006; Chowdhury et al., 2007;
Rizo et al., 2009).

PRC2 is a multi-subunit complex consisting in four core
constituents: drosophila enhancer of zeste homolog 2 (EZH2),
embryonic ectoderm development (EED), suppressor of zeste
12 homolog (SUZ12), and human retinoblastoma binding
protein 4 (RBBP4). Furthermore, accessory molecules favoring
PRC2 recruitment and stabilization include JARID2 and YY1.
EZH2 is the catalytic subunit of the PRC2 complex and
is involved in mono, di, and tri-methylation of H3 lysine
27 (H3K27me1/2/3), leading to chromatin compaction and
transcriptional repression of target genes. Acting both as
oncogene and tumor suppressor, EZH2 plays contrasting
roles in AML pathogenesis (Basheer et al., 2019). Frequently
overexpressed in solid tumors, lymphomas (Morin et al., 2010)
and in myeloid malignancies, EZH2 has a dual role: in fact,
it can potentially act as a tumor suppressor, as suggested by
a number of identified loss-of-function mutations (Nikoloski
et al., 2010), or promote tumorigenesis and be linked to inferior
patient outcome when overexpressed (Grubach et al., 2008;
Nikoloski et al., 2010; Xu et al., 2011). Consistent with the
oncogenic role of EZH2, inhibition of EZH2 in a mouse model
of leukemia resulted in reduced number of leukemic stem cells
and impaired leukemia growth (Fujita et al., 2018). Accordingly,
the differentiation and growth inhibitory effects of the EZH2
silencing on AML cells further corroborate the oncogenic
function of EZH2 in AML (Tanaka et al., 2012). Besides EZH2,
deregulation of other members of PRC2 components including
ASXL1, JARID2, EED, and SUZ12 has been implicated in the
development and propagation of hematological malignancies,
including AML (Boultwood et al., 2010; Chou et al., 2010;
Metzeler et al., 2011; Beekman et al., 2012; Puda et al., 2012;
Schnittger et al., 2013; Micol et al., 2014; Paschka et al., 2015;
Qi et al., 2017).

Given this evidence, several small molecules inhibiting PRC2
complex and its components have been developed and tested
in preclinical and clinical settings. Both GSK126 and EPZ-
6438 (tazemetostat) are currently in early stage clinical trials for
a variety of hematological malignancies including lymphoma.
Recent studies show that PRC2 acts in parallel with MLL
rearrangements to sustain leukemia growth (Neff et al., 2012;
Shi et al., 2013). Based on this, UNC1999, an EZH1/EZH2
dual inhibitor, showed its efficacy in suppressing AML growth
in both in vitro and in vivo experiments in MLL-rearranged
AML models reverting the repressed PRC2 target gene signatures
to an active status (Xu et al., 2015). In addition to inhibitors
of the PRC2 enzymatic domain, small molecules targeting
other components of the complex have been developed. By
directly binding H3K27, EED is essential for the HMT activity
of PRC2. The small molecule MAK683 disrupts EED-EZH2
protein–protein interaction, preventing H3K27 trimethylation.
This has been associated with decreased tumor cell proliferation
in diffuse large B-cell lymphoma (DLBCL) cell lines and to
tumor regression in a mouse lymphoma xenograft model (Qi
et al., 2017). While a clinical trial is testing MAK683 in

lymphoma patients (NCT02900651), the clinical potential of
PRC inhibitors in AML patients remains to be determined.
Recently, the emergence of resistance to EZH2 inhibition has
been reported in preclinical models of lymphoma. Interestingly,
the majority of the pathways involved in the establishment of
resistance mechanisms to epigenetic therapies are in common
between different drugs and tumor types. This is the case of
inhibitors of EZH2 and BET proteins (discussed below). Indeed,
in response to each treatment, inhibitor-resistant cells showed the
constitutive activation of the phosphoinositide-3-kinase (PI3K)
pathway (Kurimchak et al., 2016; Bisserier and Wajapeyee, 2018).
Other works described that the acquisition of genetic mutations
in EZH2 gene confers resistance to EZH2 inhibition in the
same diffuse large B-cell lymphoma cell lines (Baker et al., 2015;
Gibaja et al., 2016).

G9a
G9a is a lysine methyltransferase belonging to the Su(var)3-9
family, which catalyzes the reaction of mono/di-methylation at
H3K9 (H3K9me1/2) triggering gene repression (Shankar et al.,
2013). Even if there are no mutations in AML targeting the G9a
gene, recent studies reported that loss of this protein suppressed
leukemogenesis in a mouse model of leukemia induced by
HOXA9, an oncoprotein overexpressed in 50–70% of AML
patients and for which there are no currently available inhibitors
(Lehnertz et al., 2014). Two G9a inhibitors, UNC0638 and
UNC0642, the latter displaying an improved pharmacokinetics,
showed remarkable cytotoxicity against AML cell lines (Vedadi
et al., 2011; Liu et al., 2013). A-366, a recently developed peptide-
competitive inhibitor of G9a, displayed a reduced toxicity profile
compared to UNC0638 and UNC0642 in human prostate cancer
cell lines (Sweis et al., 2014). The role of G9a inhibitors in AML
patients remains to be tested.

PRMT
Arginine residues within histone tails (H3 and H4) can
be regulated through methylation by protein arginine
methyltransferases (PRMTs). Protein arginine methylation
is an abundant post-translational modification, which regulates
a plethora of pathways including signal transduction, gene
transcription, DNA repair, and mRNA splicing. Crosstalk
occurring between PRMT and KMT is necessary to establish
appropriate patterns of histone methylation (Hyllus et al.,
2007; Iberg et al., 2008). Among PRMT targets, there are also
non-histone substrates, including AML1 and ASH2L, suggesting
that alterations in the activity of PRMTs may have widespread
effects. Even if no mutations have been found in PRMT genes,
overexpression of these proteins is often present in various
cancer types including leukemia rendering these enzymes
particularly intriguing as therapeutic targets. Within the PRMT
family, PRMT1 catalyzes asymmetric di-methylation of arginine
3 of H4 (H4R3me2) that results in transcriptional activation,
by promoting p300-mediated acetylation of K8 and K12 on H4
(Wang et al., 2001; An et al., 2004). In normal hematopoiesis,
PRMT1-mediated methylation of the transcription factor
AML1 enhances its ability to activate the transcription of
several target genes during hematopoietic differentiation
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(Zhao et al., 2008). Moreover, PRMT1 has also been found
to methylate ASH2L, which has been suggested to act as an
oncoprotein (Butler et al., 2011).

The interest in targeting PRMTs for AML therapy comes
from several studies reporting specific requirement of PRMT1
for leukemogenesis in some genetic subsets of AML, including
those with AML1-ETO and MLL rearrangements. In particular,
PRMT1 has been found to be required for leukemia initiation
by the fusion proteins MLL–GAS7 and MOZ–TIF2 and its
silencing was able to block leukemia transformation (Cheung
et al., 2016). Moreover, PRMT1 methylates the AE9a isoform of
the AML1-ETO leukemogenic fusion protein and activates AE9a
target genes, enhancing proliferation of hematopoietic progenitor
cells. Accordingly, knockdown of PRMT1 suppresses the self-
renewal capability of AE9a-positive cells, suggesting a role of
PRMT1 in regulating leukemogenesis (Shia et al., 2012). Along
these lines, preclinical studies reported that small molecules
inhibiting PRMT1 (AMI-408) suppressed the growth of both
human AML cell lines and leukemia mouse models (Dillon et al.,
2012; Cheung et al., 2016). Similar cytotoxic effects were reported
in lymphoma models overexpressing PRMT5 upon treatment
with the PRMT5 specific inhibitor EPZ015666 both in vitro and
in vivo (Chan-Penebre et al., 2015). ERZ015666 was also recently
reported to rescue the differentiation block of human leukemic
cells in vitro and in a mouse model of MLL-rearranged leukemia
(Kaushik et al., 2018).

HISTONE ACETYLATION

Although poorly described so far, alterations of enzymes
belonging to HAT family have been detected in AML. In
particular, several translocations involving HAT proteins as
fusion partners have been described, including t(8;16) (p11;p13)
and t(8;22) (p11;p13). These rearrangements generate the MOZ-
CBP and the MOZ-P300 fusion proteins respectively and both
have been shown to contribute to leukemogenesis (Borrow et al.,
1996; Kitabayashi et al., 2001). Inhibitors targeting components
of this family of enzymes have been developed and tested
in preclinical models. In particular, the P300 inhibitors C646
and L002 showed great selectivity in inducing proliferation
arrest of leukemia and lymphoma cell lines (Gao et al., 2013;
Yang et al., 2013).

Epigenetic Erasers
Enzymes able to remove epigenetic marks are identified as
“epigenetic erasers.” There are two main groups of proteins
belonging to this class: histone demethylases (HDMs) and histone
deacetylases (HDACs).

HDM
The first group of proteins can be, in turn, classified into two
other big families: amino oxidase homolog lysine demethylase
1 (KDM1) and JMJC domain containing HDMs. Mutations
of genes belonging to the latter family are rare in AML and
mainly limited to the ones occurring in lysine demethylase 6A
(KDMT6A) (Cancer Genome Atlas Research et al., 2013). The

lysine demethylase KDM1 (also known as LSD1) demethylates
di- and mono-methylated K4 on histone H3, reducing the levels
of H3K4me3, normally associated with active gene transcription.
LSD1 has been shown to affect a wide range of transcriptional
programs, acting either as a transcriptional repressor or as
an activator depending on the cellular context (Maiques-Diaz
and Somervaille, 2016). Pharmacological inhibition or genetic
depletion of LSD1 induces differentiation of MLL-driven AML
stem cells and of other genetically defined AML subtypes
(Maiques-Diaz et al., 2018). A recent study showed that the
LSD1 inhibitor tranylcypromine (TCP) induced the expression of
myeloid differentiation genes in AML cells and that combination
of TCP with ATRA exerted a potent anti-leukemic effect (Schenk
et al., 2012). Recently, two novel LSD1 inhibitors, NCD25
and NCD38, were identified for their ability to halt leukemia
growth and induce myeloid differentiation. In particular, NCD38
was shown to reactivate clusters of enhancer elements (e.g.,
super-enhancers) that control hematopoietic genes and that
are abnormally silenced by LSD1 during leukemia progression
(Sugino et al., 2017). If the treatment with the LSD1 inhibitor
SP2509 demonstrated high efficacy in blocking leukemia growth,
the co-treatment with a specific histone deacetylase (HDAC)
inhibitor, panobinostat, was synergistically lethal against both
primary and leukemia cell lines (Fiskus et al., 2014). The LSD1
inhibitors GSK2879552 and IMG-7289, alone or in combination
with all-trans retinoic acid therapy (ATRA), showed promising
activity against AML in vitro (Smitheman et al., 2019), leading to
two ongoing phase I trials for patients with relapsed/refractory
AML (NCT0217782, NCT02842827) and to a phase I/II trial for
MDS patients (NCT02929498).

HDAC
Given the importance of histone acetylation in regulating the
expression of many genes, it is not surprising that enzymes able
to regulate this modification are frequently hit by alterations
in different tumor types including hematological malignancies.
Thus, HDAC alterations can be linked to both silencing of tumor
suppressor genes and activation of oncogenic processes altering
the cell cycle progression, activation of the DNA damage response
(DDR) pathway, apoptosis, and many others. Although HDAC
somatic mutations have been identified so far in several solid
tumors with a relatively high frequency (Stark and Hayward,
2007; Taylor et al., 2011), they are rare in AML patients.
However, the contribution of HDAC to AML pathogenesis
has been linked to aberrant recruitment of these enzymes by
myeloid oncoproteins such as AML1-ETO, PML-RARA, and
EVI1 (Izutsu et al., 2001; Senyuk et al., 2002; Hug and Lazar, 2004;
Falkenberg and Johnstone, 2014).

In the last years, several clinical trials have been conducted
with HDACi in patients with MDS and AML. The HDACi
vorinostat and panobinostat are among the earliest approved
by FDA for treatment of cutaneous T cell lymphoma and
multiple myeloma, given their capacity to induce cancer cell
differentiation. Second-generation HDACi are currently in
use in several clinical trials for different tumors, including
relapsed AML (Finazzi et al., 2013; Li Y. et al., 2016). In
the past years, several studies addressed the molecular effects
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of HDAC inhibition in cancer cells. Microarray analyses
revealed transcriptional changes of a large number of genes
(approximately 10–20% of the genome), including proapoptotic
inducers and genes involved in cell cycle arrest in leukemic
cell lines after exposure to different HDACi (Peart et al., 2005).
According to the literature, HDACi exert their anti-proliferative
effects via induction of apoptosis, regulation of different signaling
pathways (Bali et al., 2005; Insinga et al., 2005; Nebbioso et al.,
2005; Xu et al., 2006), and activation of the DDR pathway in
oncogene-expressing cells (Di Micco et al., 2011). Of note, it
has also been reported that HDAC inhibition in normal and
leukemic cells induces DDR activation in the absence of physical
DNA lesions. Specifically, chromatin remodeling induced by
these inhibitors may directly activate DDR through the increased
phosphorylation of the histone H2AX (γH2AX) and/or through
ROS production (Gaymes et al., 2006; Petruccelli et al., 2011).

Valproic acid (VPA) is a short-chain fatty acid acting as a
powerful HDACi that causes hyperacetylation of the N-terminal
tails of H3 and H4 histones by inhibiting the catalytic activity
of class I HDACs (Gottlicher et al., 2001). VPA has a wide
range of effects on leukemic cells. By analyzing the effects of
VPA treatment on AML patient blasts (Rucker et al., 2016)
identified a signature enriched for pathways implicated in cell
cycle arrest, apoptosis, and DNA repair. However, indirect
effects of VPA on the reactivation of antitumor immune
response may also be considered. In addition to VPA, other
HDACi including romidepsin/depsipeptide, mocetinostat, and
entinostat, have been tested in phase 1/2 studies for leukemia
treatment. However, HDACi have shown better results when
used in combination with other agents with known anti-
leukemia activity (Garcia-Manero et al., 2012; Gojo et al.,
2013; Kirschbaum et al., 2014). Panobinostat, already approved
for the treatment of multiple myeloma, is now under clinical
investigation for AML patients. As a single agent, panobinostat
showed modest anti-leukemic activity in clinical trials for
myeloid malignancies (Giles et al., 2006; DeAngelo et al.,
2013; Schlenk et al., 2018). On the other hand, in vitro
studies showed that combinations of panobinostat with other
treatments or epigenetic drugs could have synergistically lethal
effects on AML cells (Fiskus et al., 2014). However, results
from a recent clinical trial of panobinostat in combination
with intensive chemotherapy did not show any clinical
improvement and was accompanied by increased toxicities
in treated AML patients (Schlenk et al., 2018). Overall, as
HDACs also deacetylate numerous non-histone proteins, the
widespread effects on the whole cellular proteome should be
better investigated and taken into consideration to fine-tune
successful therapies.

Epigenetic Readers
The group of proteins able to recognize and bind post-
translational modifications are called “epigenetic readers.” These
proteins have specialized domains able to recognize a variety of
nucleosome modifications acting directly on the transcription
or indirectly by serving as scaffold for the recruitment of other
epigenetic regulators. The cooperation between these proteins
and the chromatin-modifying enzymes is therefore fundamental

for gene expression patterns and deregulation of chromatin
readers has been frequently reported in cancer.

BET
Bromodomain and extra-terminal domain (BET) proteins are
a class of chromatin readers that act by binding histone
and non-histone acetyl groups at lysine residues (Wu and
Chiang, 2007). Among these, BRD4 has emerged as a key
regulator of transcriptional networks in development and cellular
differentiation (Di Micco et al., 2014; Dey et al., 2019) as well
as a key player in driving aberrant transcriptional programs in
cancer cells (Asangani et al., 2014; Filippakopoulos and Knapp,
2014; Shu et al., 2016; Fontanals-Cirera et al., 2017). In the
context of AML, BRD4 sustains the expression of c-MYC to
promote aberrant self-renewal (Zuber et al., 2011). More recently,
it has been reported that BRD4 binds and recognizes specialized
regions of H3K27 acetylation called “super-enhancers,” which
control several lineage-specific genes and can be hijacked by
tumor cells to express critical oncogenes (Loven et al., 2013).
In addition to its originally described chromatin reader activity,
BRD4 was recently shown to have HAT activity that results in
chromatin relaxation and is conserved across species (Devaiah
et al., 2016). Based on these findings, and on the detrimental
effects of BRD4 depletion on AML proliferation, many inhibitors
targeting BET proteins have been designed and tested against
several tumor types, including leukemia (Perez-Salvia and
Esteller, 2017). Among these, the small molecules JQ1 and the
I-BET151 have been shown to be highly effective in inducing
cell cycle arrest and apoptosis of MLL-rearranged leukemia cells
both in vitro and in vivo. These inhibitors act by displacing BRD4
from regulatory elements and blocking the RNA Pol II mediated
transcriptional elongation at the level of specific oncogenes
including c-MYC, BCL2, and CDK6 (Dawson et al., 2011; Zuber
et al., 2011). Similarly, the BET inhibitor OTX015 showed the
ability to induce apoptosis in a variety of leukemic cell types
(Coude et al., 2015). Several clinical trials testing BET inhibitors
are currently ongoing; the small molecule RO6870810/TEN-010
(a more stable derivate of JQ1) has been tested in a recently
completed phase I trial for the treatment of refractory AML
and MDS (NCT02308761), and a phase II trial testing the BET
inhibitor CPI-0610 in combination with ruxolitinib is open for
patients with myelofibrosis (NCT02158858). On the same line,
the BRD4 inhibitor GSK525762 entered early phase clinical trials
for patients with relapsed refractory hematological malignancies.
Importantly, a recent work by Gerlach et al. (2018) identified
a novel BET inhibitor (BI-894999) belonging to the family of
[1,2,4]triazolo[4,3-a]pyrazines. Distinct in structure compared to
other BET inhibitors, BI-894999, although regulating the same
genes as JQ1, showed a higher efficacy in killing AML cells
derived from primary samples and xenograft models. In addition,
the combination with an inhibitor of CDK9, a component of
the transcriptional elongation complex, strongly enhanced its
antitumor effects (Gerlach et al., 2018). Even if the interest
in targeting BET proteins for cancer treatment keeps growing,
there is still a lack of valuable BET transgenic animal models
to elucidate the toxic effects and the mechanisms of action of
BET inhibitors. Of note, an inducible BRD4 RNA interference
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animal model showed that BRD4 depletion causes toxicity in
several organs and induces intestinal stem cell depletion (Bolden
et al., 2014). Furthermore, even though still largely unexplored,
one of the best-characterized mechanisms of tumor resistance
to epigenetic therapy includes resistance to BET inhibitors.
In particular, it has been reported in a MLL-AF9;Nras(G12D)
AML mouse model that resistance to BET inhibition involves
chromatin remodeling that in turn activates the WNT signaling
pathway (Rathert et al., 2015). In addition, elevated levels
of ERK/PI3K activity were shown to mediate BET inhibitor
resistance (Kurimchak et al., 2016) providing a rationale for
combinatorial strategies that simultaneously target BET proteins
and receptor tyrosine kinases (RTKs) (Wyce et al., 2018) or the
PI3K pathway (Stratikopoulos et al., 2015).

ENHANCER DEREGULATION IN AML

The systematic characterization of regulatory regions in normal
and AML blasts led to the identification of clusters of
transcriptionally active chromatin domains with putative or
proven enhancer activity for expression of leukemic genes
(defined as “active enhancers” or “super-enhancers”). Enhancer
elements present in normal blood cells may accumulate
mutations that generate new binding sites for transcription
factors and establish new enhancers driving leukemia oncogene
expression (Mansour et al., 2014). Similarly, pre-existing
enhancers may be inverted, translocated, or even undergo
duplications to drive the aberrant upregulation of oncogenes
or to suppress the expression of tumor suppressor genes. In
addition, mutations in CTCF, a key player in driving the
3D chromatin organization (Zuin et al., 2014), may favor
novel promoter/enhancer interactions to sustain leukemic cell
proliferation. Recently, it was reported that a blood enhancer
cluster (BENC) known to regulate the expression of c-MYC in
normal HSCs can be hijacked by leukemic stem cells in mouse
models of leukemia and displays an accessible chromatin profile
even in primary AML samples (Bahr et al., 2018). Furthermore,
charting the enhancer landscape by chromatin accessibility in
single AML cells revealed a peculiar “regulome” profile that
paralleled the developmental stage of disease, with the acquisition
of a closed chromatin conformation at the level of HOXA genes,
which have been suggested to be important in the first step of
leukemogenesis (Corces et al., 2016).

EPIGENETIC THERAPIES AND IMMUNE
RESPONSE

To date, most of the studies on epigenetic drugs focused
on understanding the direct effects of epigenetic therapy
on tumor cells. However, interest is now extending to
decipher whether epigenome rewiring may as well contribute
to cancer cell eradication by triggering changes in the tumor
microenvironment and in particular in the interplay between
cancer cells and the immune system. In fact, the accumulation
of epigenetic alterations during tumorigenesis contributes to

profound changes in a plethora of transcriptional signatures
including genes regulating antitumor immunity (Figure 1). As
described earlier, there has been a substantial body of research
showing that hypomethylating agents (such as DNMTi) act
on tumor cells by counteracting hypermethylation in tumor
suppressors, differentiation genes, and pathways involved in cell
cycle progression. More recently, studies have highlighted a
series of both positive and negative effects of epigenetic drugs
on immune cells. An indirect way to unleash the immune
system against AML cells is to upregulate the expression of
developmental antigens in order to increase tumor antigenicity.
These proteins are often regulated at the level of promoter
methylation and are expressed in cancer cells due to epigenetic
changes. In AML cell lines, the use of azacytidine and decitabine
resulted in increased expression of the tumor-associated antigens
NY-ESO-1 and WT1 and of the MAGE cancer testis antigen, with
consequent activation of cytotoxic T cells (Almstedt et al., 2010;
Goodyear et al., 2010). In some tumor types, including AML, the
treatment with epigenetic drugs, including high doses of DNMT
and HDACi, induces the reactivation of human endogenous
retroviral transcripts (ERVs) (Conti et al., 2016; Daskalakis et al.,
2018). ERVs are epigenetically repressed in normal somatic cells
and their reactivation has been originally associated to increased
genomic instability or aberrant expression of oncogenes in
several cancers (Bannert et al., 2018). However, recent pieces
of evidence support a role for ERV reactivation in fighting
cancer in response to epigenetic therapies. Indeed, cancer cell
treatment with azacytidine and decitabine leads to the cytosolic
accumulation of ERV nucleic acids that in turn (i) trigger the
interferon-induced viral defense pathways, (ii) boost antitumor
innate and adaptive immune responses, and (iii) potentiate
the effects of immune checkpoint therapies (Chiappinelli et al.,
2015; Roulois et al., 2015). Similarly, gene expression analyses
of transposable elements in a panel of cancer cell lines treated
or not with epigenetic drugs revealed increased levels of ERVs
also in response to the HDACi SB939, with an even stronger
ERV reactivation observed when treating cancer cells with a
combination of SB939 and decitabine (Daskalakis et al., 2018).
In agreement with this observation, HDACi have been shown to
induce cryptic transcription start sites encoded in long terminal
repeats (Brocks et al., 2017). Whether or not HDACi exert their
anticancer activity also via immune-mediated recognition of ERV
nucleic acids remains to be further investigated. Finally, chemical
inhibition of LSD1 was shown to concomitantly increase ERV
transcription and their accumulation through reduced stability of
the RNA-induced silencing complex (RISC). As a consequence,
LSD1 inhibition triggers viral mimicry interferon responses,
increases the infiltration of effector T cells in the tumor
microenvironment, and, in preclinical models of melanoma,
synergizes with the anticancer activities of immune checkpoint
blockade (Sheng et al., 2018). Despite the abovementioned
promising antitumor effects, further studies need to elucidate
the potential impact of epigenetic therapy-mediated transposable
element reactivation on cancer cell genomic instability and
tumor aggressiveness.

In addition to CTAs and ERVs, genes involved in antigen
presentation, both via HLA class I and class II, have been
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FIGURE 1 | Immune-related effects of epigenetic drugs in AML. Positive and negative effects of epigenetic drugs on different immune pathways are depicted. Genes
important for antitumor immunity are represented in green; in red are genes leading to inhibition of cytotoxic T cell functions. Arrows indicate induction while dotted
lines represent inhibition. DNMTi and HDACi upregulate genes belonging to immune-checkpoint family (PD-L1/2) in tumor cells; DNMTi induce PD-1 and CTLA-4 in
T effector cells. BETi downregulate the expression of PD-L1 on tumor cells. DNMTi together with LSD1i increase the expression of ERVs. Epigenetic drugs able to
increase tumor immunogenicity include (i) DNMTi that act on cancer testis antigens (CTAs) and genes belonging to antigen presentation machinery and
co-stimulation (HLA class I/II and CD80) and (ii) EZH2i, which are able to increase the expression of the latter gene family. DNMTi and HDACi can also act on ULBP
gene expression, a ligand for NKG2D, an activatory receptor able to enhance NK cell functions. DNMTi upregulate FoxP3 gene expression in T regulatory cells (Treg

cells) while HDACi downregulate it. HDACi also reduce tumor infiltration, which is instead increased by LSD1i. EZH2i enhance antitumor immunity by increasing the
number of T effector cells (Teff cells) at the expense of Treg cells. Mechanisms are experimentally proven in acute myeloid leukemia or inferred by studies in
solid tumors.

shown to be under the control of DNA methylation (Coral
et al., 1999, 2013; Campoli and Ferrone, 2008). Moreover, the
expression of CD80, a key co-stimulatory molecule normally
absent in cancer cells, can be increased by hypomethylating
agents resulting in enhanced antitumor immunity (Goodyear
et al., 2010). In addition, hypomethylating agents can act
also by enhancing the susceptibility of AML cells to NK
cell action. In fact, azacytidine in combination with other
differentiation-promoting drugs resulted in enhanced NK cell-
mediated antitumor activity through the up-regulation on tumor
cells of ligands for the NK cell activating receptor NKG2D
(Rohner et al., 2007). Besides these positive effects on immune
system activation against cancer cells, treatment of AML and
MDS patients with azacytidine also led to elevated expression of
a series of immune-checkpoint molecules on T cells including
CTLA-4, PD-1 and its ligands (PD-L1 and PD-L2) (Yang
et al., 2014). However, other studies showed that DNMT
inhibitors may avoid the onset of exhaustion of cytotoxic T

lymphocytes and reprogram exhausted cells into effector cells
(Ghoneim et al., 2017).

Whereas it might be difficult to leverage on these immune-
related effects in patients that are treatment-naive or exposed to
a tight schedule of cycles of intensive chemotherapy, boosting
an anti-leukemic immune response might be highly desirable in
the maintenance setting, especially after allo-HCT. It is in fact
well established that most of the therapeutic effect of allo-HCT
relies on the transfer from the donor to the patient of a healthy
immune system, capable of recognizing and eliminating residual
cancer cells. Boosting this “graft-versus-leukemia” effect, possibly
without unleashing severe graft-versus-host disease, has indeed
over the last decades represented the “holy grail” of transplanters.
For instance, the ability of DNMT inhibitors to concomitantly
prime T cell-mediated anti-leukemic responses and induce T
regulatory cells (Tregs) has attracted considerable interest in the
allo-HCT setting (Kim and Leonard, 2007; Polansky et al., 2008;
Lal et al., 2009; Feng et al., 2014). Supporting this hypothesis, in
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murine models of allo-HCT, the use of hypomethylating agents
suppresses T cell proliferation and cytokine production, resulting
in reduced graft versus host disease without any effect on graft
versus leukemia (Choi et al., 2010; Sanchez-Abarca et al., 2010).
Similar results were also reported in AML patients, where post-
transplantation treatment with azacytidine was associated with
an increase in the number of Tregs (Goodyear et al., 2012).
Indeed, trials testing azacytidine in the prophylactic (de Lima
et al., 2010; Craddock et al., 2016a) and pre-emptive (Platzbecker
et al., 2012) settings have reported encouraging results in terms of
both overall survival and donor chimerism stabilization.

Interestingly, azacytidine, either alone or in combination
with donor lymphocyte infusions (DLIs), has shown interesting
results also in the more challenging setting of the treatment
of AML patients with frank hematological relapse. To date,
data on more that 600 patients have been collected, reporting
very variable results in terms of clinical outcomes (Lubbert
et al., 2010; Schroeder et al., 2013, 2015; Steinmann et al., 2015;
Ghobadi et al., 2016; Craddock et al., 2016b). Starting from
these heterogeneous results and lack of consent on treatment
schedules, two retrospective surveys have been performed in
more homogeneous cohorts of patients, with the aim of
identifying prognostic factors for treatment response and long-
term survival. These studies reported that patients with the
highest benefit from azacytidine + DLI combination were those
transplanted in complete remission, who presented with low
disease burden at the time of relapse (molecular relapse or blasts
<20% in bone marrow) and that experienced a longer remission
time from HCT to overt relapse (Schroeder et al., 2015; Craddock
et al., 2016a). Even if not so well substantiated, studies reporting
the efficacy of decitabine after allo-HCT showed similar results
(Han et al., 2015; Pusic et al., 2015; Schroeder et al., 2018).

Like DNMT inhibitors, small molecules targeting
HDAC activity are able to induce positive and negative
immunomodulatory effects; in fact, they can increase cancer
immunogenicity through the expression of HLA class I genes and
tumor antigens and/or block T cell response by the upregulation
of ligand for checkpoint inhibitor receptors as well as by
reducing the number of Tregs (Setiadi et al., 2007; Shen et al.,
2012; Woods et al., 2015).

As a result of the evidence that both DNMT and HDACi can
contribute to T cell exhaustion, a number of clinical studies are
currently testing the combination of these epigenetic drugs with
immune checkpoint inhibitors (Daver et al., 2019).

With these immune-related effects in mind, HDACi alone
or in combination with azacytidine and DLI have been tested
in a post-transplantation setting. Results on phase I/II trials
testing the combinatorial treatment as maintenance therapy
after transplantation reported a 2-year rate overall survival
and a relapse free survival rate of 81 and 75%, respectively,
(Bug et al., 2017).

Besides their reported effect in suppressing tumor cell
proliferation, recently published preclinical studies highlighted
the role of EZH2 inhibitors in enhancing antitumor immunity
by altering the ratio between effector and regulatory T cells
in favor of the first population (Wang et al., 2018). Another
interesting property of these drugs is the ability to restore HLA

class I and II expression in EZH2-mutated cases of DLBCL
(Ennishi et al., 2019), rendering them promising candidates to be
tested in the post-transplantation setting.

DISCUSSION

AML is a highly heterogeneous cancer type often associated
with bad prognosis, with the minority of patients being cured
without allo-HCT and for which new therapeutic approaches are
urgently needed. Here, we provide a comprehensive overview
of studies documenting the effects of epigenetic aberrations in
AML pathogenesis and summarized the most recent clinical
efforts reporting safety and efficacy of epigenetic compounds for
AML treatment. By targeting multiple pathways simultaneously,
epigenetic drugs hold great therapeutic promise, although several
challenges need to be faced to see in the clinics the full success
of such a therapy. One of the most clinically relevant issue
still limiting the full implementation of epigenetic therapies
in the treatment algorithms for AML patient relates to our
incomplete understanding of their interactions with chemo- and
immunotherapies. Understanding synergistic and antagonistic
effects of epigenetic drugs with current therapeutic paradigms
will be fundamental to design new trials incorporating epigenetic
therapies based on a specific biological rationale, possibly
associated to ancillary studies aimed at determining their effects
on leukemic cells and the immune system. For this purpose,
it will be necessary to develop new models to test epigenetic
therapies, possibly employing actual primary patient samples
instead of cell lines and mouse models, that poorly recapitulate
the complexity of such a heterogeneous disease. Very recently,
the group of Melnick developed a platform to systematically
study long-term effects of epigenetic drugs as monotherapy
and in combination on a large number of ex vivo cultured
primary AML (Duy et al., 2019). Other suitable models known
to better mirror AML complexity are next-generation patient-
derived xenograft (PDX) models and humanized niche xenograft
models (Antonelli et al., 2016; Reinisch et al., 2016; Abarrategi
et al., 2017). Although the stability of the epigenetic landscape
of primary AML samples in these models remains to be
experimentally tested, they can provide a valid alternative to
monitor the long-term biological consequences of epigenetic
treatments and study their impact on tumor cells as well as on
several components of the tumor microenvironment. Given the
abovementioned impact of epigenetic therapies in modulating
antitumor immunity, the same preclinical ex vivo and in vivo
models will be instrumental to also test epigenetic drugs in
combinations with immunotherapy to further enhance their
antitumor efficacy. Of note, most epigenetic regulators will
have an impact on transcriptional programs fundamental also
for normal cell fitness, posing the risk for increased toxicity.
Accurate selection of patients that will benefit from a given
epigenetic therapy is thus needed to guide a proper choice
of epigenetic therapies in AML patients. Additionally, the
concomitant presence of distinct leukemia subclones may further
challenge the success of epigenetic therapies for AML treatment.
The advent of NGS technologies mapping all the different
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layers of epigenetic regulation at a single-cell level together with
transcriptomic and genomic analysis will help to better address
these questions in the setting of AML. Altogether, we believe
that the application of innovative technologies and more suitable
preclinical models that take into consideration the interplay
between cancer cells and the immune system will, in the near
future, better elucidate biological processes on the basis of tumor
response to epigenetic therapy and contribute to move one step
forward toward personalized medicine for cancer treatment.
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