
SOFTWARE AND DATA RESOURCES

BGData - A Suite of R Packages for Genomic
Analysis with Big Data
Alexander Grueneberg*,1 and Gustavo de los Campos*,†,‡,1

*Department of Epidemiology and Biostatistics, †Institute for Quantitative Health Science and Engineering, and
‡Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824

ORCID IDs: 0000-0002-2287-4492 (A.G.); 0000-0001-5692-7129 (G.d.l.C.)

ABSTRACT We created a suite of packages to enable analysis of extremely large genomic data sets
(potentially millions of individuals and millions of molecular markers) within the R environment. The package
offers: a matrix-like interface for .bed files (PLINK’s binary format for genotype data), a novel class of linked
arrays that allows linking data stored in multiple files to form a single array accessible from the R computing
environment, methods for parallel computing capabilities that can carry out computations on very large
data sets without loading the entire data into memory and a basic set of methods for statistical genetic
analyses. The package is accessible through CRAN and GitHub. In this note, we describe the classes and
methods implemented in each of the packages that make the suite and illustrate the use of the packages
using data from the UK Biobank.

KEYWORDS

big data
parallel
computing

distributed
computing

genetic analyses
biobank

Modern genomic data sets are typically big (large-N), high-
dimensional (each subject may have information on potentially
millions of variables) and multi-layered (e.g., multi-omic data).
Storing, handling and analyzing such data sets can be extremely
challenging. Most Scientific Computing Environments (SCE, e.g.,
R, Python, Julia) offer data structures that can handle big data;
however, these formats are often not tailored to genetic data. More-
over, data stored in popular genetic data formats (e.g., the PLINK’s
.bed format) cannot be readily accessed for computations from a
SCE without loading all the data into physical memory. This im-
poses serious limitations when analyzing very large genomic data
sets such as the ones emerging from modern biobanks (e.g., the UK
Biobank, http://www.ukbiobank.ac.uk).

The BGData suite of R (RCore Team 2018) packages was developed
to offer scientists the possibility of analyzing extremely large (and po-
tentially complex) genomic data sets within the R environment. The
suite currently includes four packages (Table 1) which together offer: (i)
a matrix-like class that enables access to genotype data stored in a
PLINK (Purcell et al. 2007; Chang et al. 2015; Purcell and Chang) .bed
file without reading the entire file into physical memory, (ii) the novel
concept of linked arrays that allow users to link data contained in dif-
ferent objects into a single array without merging the content of the sub-
arrays, (iii) computational methods based on the split-apply-combine
approach that exploit parallelization (multi-core and multi-node)2 and
enable computations on linked arrayswithout loading the entire data into
memory, and (iv) a set of methods for standard computations with
genomic data, including summary statistics, genome-wide association
analyses, computation of genomic relationships, etc.

The data structures and methods included in BGData allow users
to work on very large arrays (of potentially different data types) with
sections (e.g., sets of columns or sets of rows) stored in different
physical locations (e.g., multiple .bed files) without physically merg-
ing the data. In this article, we introduce the main classes and
methods implemented in the BGData suite of packages and illus-
trate their use by implementing a pipeline for analysis of data from
the full release of the UK Biobank.

MATERIALS AND METHODS
The suite is currently composed of four packages (Table 1). The flagship
package is BGData; the whole suite can be installed by installing
BGData from either CRAN

Copyright © 2019 Grueneberg, de los Campos
doi: https://doi.org/10.1534/g3.119.400018
Manuscript received January 22, 2019; accepted for publication March 14, 2019;
published Early Online March 20, 2019.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material is available onGitHub at https://github.com/agrueneberg/
BGData-Supplemental-Material.
1Corresponding authors: E-mail: gustavoc@msu.edu, gruenebe@msu.edu, 909
Wilson Road Room B601, East Lansing, MI 48824

2An experimental version which enables computations using GPUs is offered in a
separate branch in the GitHub repository: https://github.com/QuantGen/BGData/
tree/gpu.

Volume 9 | May 2019 | 1377

http://orcid.org/0000-0002-2287-4492
http://orcid.org/0000-0001-5692-7129
http://www.ukbiobank.ac.uk
https://doi.org/10.1534/g3.119.400018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/agrueneberg/BGData-Supplemental-Material
https://github.com/agrueneberg/BGData-Supplemental-Material
mailto:gustavoc@msu.edu
mailto:gruenebe@msu.edu
https://github.com/QuantGen/BGData/tree/gpu
https://github.com/QuantGen/BGData/tree/gpu

or GitHub, in which case the devtools package (Wickham et al. 2018)
must be installed and loaded in advance.

An example data set, a subset of theArabidopsis thaliana 250k SNP
and phenotype data (Atwell et al. 2010), is included with the BGData
package. The genotype data were split into chromosomes and converted
to PLINK .bed binary files and the accompanying .bim and .fam text
files. Only the first 300 SNPs of the first three chromosomes were
included to keep the size of the dataset small enough for package
distribution. FT10 has been chosen as a phenotype and is provided
as a text file called pheno.txt. The data are included in the extdata
folder of the BGData package.

Matrix-Like types
Phenotypes, genotypes and data from many omics can be stored in two-
dimensional arrays. Core R has a limited selection of such types (e.g.,
matrix, data frame) and their instances are stored in physical memory.
Holding data in physical memory allows for very fast computations but is
constrained to small data sets. Genomic data sets often exceed those
boundaries. However, many operations involved in genetic analyses
can be performed on chunks of the data; therefore, not all data needs
to be loaded into memory at the same time. There are several packages
that implement “matrix-like” classes that extract chunks from binary flat
files on disk on demand rather than keeping the entire file in memory,
e.g., ff (Adler et al. 2018), bigmemory (Kane et al. 2013), mmap (Ryan
2018), and filematrix (Shabalin 2018). These classes have an interface like
the matrix class of R: there are methods to extract data (using square
brackets), get the dimensions of the matrix (using dim()), get the length
of the underlying array (using length()), and update row and column
names (using dimnames()). We extend the functionality available in
R for matrix-like objects by contributing three novel classes: BED-
Matrix, LinkedMatrix and symDMatrix.

BEDMatrix
We developed the BEDMatrix package to offer a class and methods for
memory mapping of PLINK .bed files. Memory mapping is a technique
that maps an entire file or a part of it into the virtual memory of a process.
Pages of thismapping can be accessed on demand and the kernel retrieves
the requested pages efficiently from disk. The BEDMatrix() function takes
the path to the .bed file as an argument and returns a BEDMatrix object.

Compared to .pedfiles, PLINK’splain-text representationofgenotypes,
.bed files are compact and therefore suitable for very large datasets. The
binary .bed files do not storemetadata such as the number of samples and
the number of variants; therefore, they are accompanied by a .fam file that
describes the samples and a .bim file that describes the variants. Both files
must be in the same directory and have the same root name as the .bed file.

Attributes from a BEDMatrix object can be accessed using the same
functions used for regular matrix objects, namely, dim(), length(), and
dimnames().

Note, that the creation of the object only establishes the memory
mapping, the actual data are not loaded in physical memory. However,
users can extract subsets of the data as regularmatrix objects that live in
physical memory using indexing operations.

Replacement is not implemented for BEDMatrix; therefore, the
content of the .bed file cannot be altered from within R. We believe
that this task is better left to PLINK to reduce accidental writes to the file
and to consequently increase reproducibility of analyses.

Linked arrays
Very largegenomicdata sets areoften stored inmultiplefiles. For instance,
large genome-wide association studies (GWAS) data sets are often stored
by chromosome. On the other hand, data from consortia and many data
sets in animal andplant breeding are stored inmultiplefiles, eachofwhich
contains a subset of the subjects (e.g., cohorts). To enable analysis of data
stored in multiple files, we developed the concept of linked arrays. The
LinkedMatrix package contains classes to virtually link matrix-like ob-
jects by rows or by columns. RowLinkedMatrix is a matrix-like type that
links matrix-like objects by rows, and ColumnLinkedMatrix is a matrix-
like type that links matrix-like objects by columns. Both classes are
subclasses of LinkedMatrix. The following example loads the remaining
two chromosomes and links all three chromosomes by columns:

n Table 1 Packages, their purpose and repositories

Name Purpose GitHub Repository1

BEDMatrix Matrix-like class to extract genotypes from PLINK .bed files https://github.com/QuantGen/BEDMatrix
LinkedMatrix Matrix-like class to link matrix-like objects by rows or by columns https://github.com/QuantGen/LinkedMatrix
symDMatrix Matrix-like class to link blocks of matrix-like objects into a

partitioned symmetric matrix
https://github.com/QuantGen/symDMatrix

BGData Computational methods for matrix-like objects, a class to
represent genotype/phenotype data, and the flagship package
of the suite

https://github.com/QuantGen/BGData

All packages are also available at https://CRAN.R-project.org/.

1378 | A. Grueneberg and G. de los Campos

https://github.com/QuantGen/BEDMatrix
https://github.com/QuantGen/LinkedMatrix
https://github.com/QuantGen/symDMatrix
https://github.com/QuantGen/BGData
https://CRAN.R-project.org/

LinkedMatrix objects behave similarly to regular matrices; thus, one
could potentially link by columns or rows various linked arrays into a
‘meta-array’. Importantly, LinkedMatrix can link arrays of different
types. For instance, one could link by columns a BEDMatrix containing
genotypes and a data frame with phenotypes (of course, such operation
will be meaningful provided that both arrays have the same number of
rows and are sorted accordingly).

LinkedMatrix objects are themselves matrix-like types that can be
linked with themselves, a technique illustrated in the symDMatrix
package.

Creating linked arrays from a list of files: The RowLinkedMatrix()
and ColumnLinkedMatrix() constructors behave similarly to the list
constructor and can be combined with the do.call() function. Alterna-
tively, the as.ColumnLinkedMatrix() method for lists can be used to
initialize a linked array from a list of matrix-like objects.

Efficient computational methods for file-backed arrays
Neither BEDMatrix nor LinkedMatrix have specialized computational
methods. This is addressed in theBGData package. While themethods
implemented in BGData were originally developed with a focus on file-
backed arrays, they can be used with any matrix-like object (e.g., in-
cluding regular matrices, data frames and sparse matrices).

The computational methods implemented in BGData follow the
split-apply-combine approach (Wickham 2011): chunks of the array
(either columns or rows) are loaded intomemory and computations on
these chunks are performed using standard R functions. Results
from each of these chunks are either combined or aggregated.
For instance, suppose we want to compute the matrix product
XY ’ without fully loading X and Y in memory. The operation
can be reduced into sub-tasks that can later be aggregated

XY ’ ¼ Pp

j¼1
XjY ’

j . Here, Xj and Yj are columns of X ¼ ½X1;X2; :::;Xp� and
Y ¼ ½Y1;Y2; :::;Yp�, respectively. Similar concepts can be used for
implementing ‘apply-like’ operations.

Apply-function for file-backed arrays: The chunkedApply() function
is similar to apply() and allows to call a function on each row or
column of X, depending on MARGIN (1 for rows, 2 for columns).
chunkedApply() loads either row or column chunks in memory,
processes them using methods for in-memory arrays and aggregates
the results. The amount of data that is loaded in memory is controlled
by the chunkSize parameter. Care must be taken to not set chunkSize
too high to avoid memory shortage. The following snippet computes
the columnmeans of our linkedfile-backedXmatrix in parallel on four
cores, loading 250 columns into physical memory on each core.

Parallel computing:Mostof the functions inBGDatasupportmulti-core
computing; this is implementedusingfunctionalitiesofferedbytheparallel

package. The argument nCores (see example immediately above) deter-
mines the number of cores the code is run on. In this context, chunkSize
determines the amount of data that is loaded in memory per core. For
furtherdetailsonhowtospecify thisargumentandothers thatcontrolhow
computations are distributed in cores see the online documentation.

Computations on subsets of a file-backed array: Often one needs to
carry out computations on a subset of an array only. For instance, one
maywant tocarryout aGWASona subsetof the subjects (e.g., for sex-or
ethnicity-stratified analyses). Subsetting a very large file-backed array
can be time consuming, memory intensive, and, if the data are written
to the file system, lead to data duplications that increase storage needs.
Likewise, for distributed computing (i.e., computations distributed over
many nodes in a computer cluster) one may want to split the compu-
tations on subsets of columns. For instance, a GWAS can be split into
tasks, each involving analyses in one chromosome. To this end, most
of the functions in the BGData package have two arguments (i, for
indexing rows, and j for indexing columns) that allow users to specify
rows and columns of the array to be used in computations. By default,
these arguments are set so that computations are carried out on the
entire array. In a computer cluster, tasks can be distributed over nodes
and subsequently combined. The following example illustrates the use
of index sets in the chunkedApply() function.

The BGData class: To treat genotypes and phenotypes as one unit, we
created the BGData class that contains three slots, modeled after
PLINK’s .bed, .fam, and .bim files: geno, pheno, and map. The geno
slot contains genotype calls, pheno contains sample information (in-
cluding phenotypes), and map contains variant information. Typically,
geno will be a (potentially linked) file-backed array and the other two
would be data frames. When a BGData object is used for computations
(see next section) the methods assume that the rows of pheno are in the
same order as those of geno. Likewise, the rows of map are assumed to
be in the same order as the columns of geno. The following snippets
illustrate two ways of creating a BGData object, the first one from either
a BEDMatrix object or a LinkedMatrix object containing BEDMatrix
objects, the second one from arbitrary matrix-like objects.

Basic functions for common statistical genetic analyses: BGData also
provides some basic functionality for statistical genetic analysis, includ-
ing computation of summary statistics from genotypes, single marker
regression and computation of genomic relationships. All these func-
tions support parallel and distributed computing in the same way as
chunkedApply().

The summarize() function computes the minor allele frequencies,
frequencies ofmissing values, and standarddeviations of genotypes (i.e.,
per column of DATA@geno).

Volume 9 May 2019 | BGData: Genomic Analyses with Big Data | 1379

The GWAS() function supports many methods for single marker
regression, including least-squares, logistic and probit regression,
and mixed models (see the online documentation for a full list), and
makes use of a formula interface, which takes the markers from the
geno and the phenotypes from the pheno slot of the BGData object
passed as the data parameter. The following example uses the rayOLS
method to perform aGWAS for the trait FT10 using an intercept plus
one SNP at a time model.

For least squares we offer three methods: lm, lsfit and rayOLS. The
first two invoke the corresponding R functions (note that lsfit is often
much faster than lm). For models without covariates (specified as
trait�1 in the GWAS function), rayOLS is the faster option; it
centers both the phenotype and the variants and regresses the centered
phenotype on the centered marker using a model without intercept.

The getG() function computes a positive semi-definite symmet-
ric genomic relation matrix XX’ offering options for centering and
scaling the columns of X beforehand.

For matrices with a large number of individuals, genomic relation-
shipmatrices canbe prohibitive to hold inmemory. The symDMatrix
class of the symDMatrix package was developed to represent a
symmetric matrix (e.g., XX’) partitioned into file-backed blocks.
The symDMatrix class is a special case of a LinkedMatrix and in-
herits from the RowLinkedMatrix class. It can store instances of
the ColumnLinkedMatrix class containing blocks of file-backed ff

objects. The lower-triangular blocks can be efficiently stored as virtual
transposes of the upper-triangular blocks. Internally, getG_symDMatrix()
uses getG() with an i2 argument to control the individuals of Y.
getG_symDMatrix() supports the same centering and scaling op-
tions as getG().

Developing new functionalities
New functionality for algorithms involving computations one-variant
orone-sampleat a timecanbeeasilydevelopedwith thechunkedApply()
function. For instance, suppose one has a function that computes a chi-
square test for Hardy-Weinberg Equilibrium for a single locus (say,
getChisq()). Then, a function that performs the operation in the entire
array can be created using

Data Availability
The packages are available on CRAN and GitHub (Table 1). Supple-
mentalmaterial is available onGitHub at https://github.com/agrueneberg/
BGData-Supplemental-Material. The example pipeline uses data from the
UK Biobank under project identification number 15326. The data are
available to all bona fide researchers and can be acquired by applying at
https://www.ukbiobank.ac.uk/register-apply/.

RESULTS

Example of a Pipeline Combining BGData and BGLR
The examples provided above were developed to illustrate functionality
andarebasedonarelatively small data set that is included in thepackage.
To demonstrate the use of BGData with Big Data we present a modular
pipeline (Table 2 and Supplemental File 1) that we used to analyze data
from the UK Biobank (n�500K, K = 1,000). The pipeline combines the
use of BGData and BGLR (Pérez and de los Campos 2014) and is

n Table 2 Summary of the modular pipeline used to analyze data from the UK Biobank

Task

Data Set R Package Used
Train Test

1) Form a linked array with genotypes ☒ ☒ BGData
2) Determine white British cohort ☒ ☒ base
3) Summaries ☒ ☒ BGData
4) SNP filtering (allele frequency & call rate) ☒ ☒ base
5) Genomic relationships (GR) ☒ ☒ BGData
6) Identification of samples with GR , 0.03 ☒ ☒ BGData
7) Computation of 5 PC ☒ ☒ base
8) Phenotypes adjustments ☒ ☒ base
9) Building of training and test set ☒ ☒ base
10) GWAS (using adjusted phenotypes) ☒ BGData
11) Selection of the top-p variants ☒ base
12) Bayesian Genomic Regression ☒ BGLR
13) Assessment of prediction accuracy ☒ base

1380 | A. Grueneberg and G. de los Campos

https://github.com/agrueneberg/BGData-Supplemental-Material
https://github.com/agrueneberg/BGData-Supplemental-Material
https://www.ukbiobank.ac.uk/register-apply/

inspired by the analyses presented in Kim et al. (2017) who applied
similarmethods for analysis of data from the interim release (n�150K).
Each module in Table 2 completes a task. A brief description of the
pipeline follows; further information and example codes can be found
in Supplemental File 1.

The original 26 PLINK .bed files (autosomal chromosomes, sex
chromosomes, pseudo-autosomal region of X, andmitochondrial DNA),
which contain 805,426 variants for each of the 488,377 samples, were
loaded using the BEDMatrix package and linked to a ColumnLinked-
Matrix. Phenotypes were loaded and combinedwith the genotypes in a
BGData object.

Inclusion criteria: analyses were based on data of individuals with
white British ancestry (determined using the sample QC file, n =
409,637). We produced summary statistics for each SNP using the
summarize() function of BGData. Only variants that had minor-allele
frequency.1% and calling rate.0.95 (624,523 variants) were used in
analyses. Note that we did not create subsets of .bed files. Instead,
during the QC process we identified the set of individuals and variants
that we will use in analyses and passed the row and column position of
these individuals/variants to functions using the i and j arguments
discussed above.

A genomic relationship among all the white British samples was
computed using the getG() function. This task was split into indepen-
dent jobs that run on different nodes of MSU’s HPCC. Specifically, we
partition the individuals into 21 sets (20 sets with 20K subjects and 1 set
with 9,637 individuals); these sets lead to partitions of the genomic
relationship matrix into (21 � 22) / 2 = 231 blocks. Each of these blocks
were computed using the getG() function, using argument i and i2 to
specify the rows and columns of the block. Each block was saved into an
ff object and all the blocks were linked into a single array using the

symDMatrix class. The getG_symDMatrix() function is a convenience
method that performs these steps in an iterative manner. The resulting
(linked) genomic relationship matrix was used to determine a set of
individuals that had mutual genomic relationships smaller than 0.03
(i.e., distantly related). This was done using the findRelated() function
in BGData. For the 233,117 unrelated white British samples, we com-
puted the principal components based on a singular-value decomposi-
tion using the svd() function in R and using 5,000 evenly spaced variants.

The standing height phenotype was adjusted by sex, age, batch,
assessment center, and thefirstfiveprincipal components using the lm()
function in R. Outliers were removed.

Training/testing: the set of unrelated white British samples with
complete observations for standing height was randomly split into a test
set of 10,000 samples and the remaining 222,648 samples were used as a
training set.

Associationanalysiswasperformedonthe trainingset, regressing the
adjusted trait on one variant at a time using the GWAS() function and
rayOLS as a regressionmethod. Figure 1 shows the resultingManhattan
plot generated with the qqman package (Turner 2014).

We used the results from the GWAS (Figure 1) to rank variants.
Further analyses were conducted using the top-p (i.e., those with small-
est p-value, for p = 500, 1K, 2K, 5K, 10K, 20K, 30K, 40K, and 50K, K =
1,000 variants). These variants were grouped into count-based sets and
used to fit a Bayesian regression where the adjusted phenotype was
regressed on the selected variants using the BayesB method of the
BGLR package. The estimated effects were then used to predict height
in the testing set, and prediction accuracy was estimated by correlating
predicted and observed (adjusted) height (Figure 2). The standard
errors in Figure 2 were estimated using bootstrap samples of the vectors
of predicted and observed (adjusted) height.

Figure 1 Manhattan plot obtained by re-
gressing sex-age adjusted height on variants
using data from the training set (n = 222,648,
unrelated White British).

Volume 9 May 2019 | BGData: Genomic Analyses with Big Data | 1381

We ran all the tasks on a node with four cores and 350 GB of RAM
provided by theMSUHighPerformanceComputingCenter (HPCC).A
summary of the computational times involved in some of the most
demanding tasks of the pipeline is presented in Table 3.

FINAL REMARKS
We developed BGData to make the analysis of extremely large genetic
data sets, potentially stored in multiple files, possible within the R
environment. The suite of packages achieves this goal by provid-
ing classes and methods to access genetic data sets stored in hard
drives without loading the entire dataset intomemory. Our approach
combines memory mapping (provided by BEDMatrix) with the
possibility of (virtually) linking several data sets into a single array
using the classes and methods defined in the LinkedMatrix package.
We also provide a set of tools for common genetic data analyses,
many of which are based on the split-apply-combine strategy and
incorporate multi-core and distributed computing.

There are a large number of packages for statistical genetic analyses
in R that require either genotypes in memory or files in formats other
than .bed, e.g., BGLR, synbreed (Wimmer et al. 2012), and R/qtl
(Broman et al. 2003). BEDMatrix opens the possibility to use these
packages with .bed files by extracting subsets into memory or
files under memory constraints. Recent developments in R Core
added support for native memory-mapping and other alternate
representations of data (ALTREPs), which may eventually en-
able packages to make use of file-backed matrices without

being optimized for them. The examples provided in this study
illustrate how BGData can be used in combination with existing
R packages to enable genomic analyses with very large data sets.

n Table 3 Computational times involved in some of the most
demanding tasks of the pipeline, performed on a node with four
cores and 350 GB of RAM provided by the MSU High Performance
Computing Center (HPCC).

Task Dimension

Median Time (SD)
in either seconds (s)

or hours (hr)

Summaries n = 410K·p = 805K 0.27 hr (23.94 s)
Block of Genomic
Relationship Matrix

n = 20K·n = 20K 1.00 hr (105.32 s)

GWAS n = 223K·p = 625K 0.57 hr (139.9 s)
BGLR Regression
(single iteration)

n = 223K·p = 0.5K 0.156 s (0.039 s)

n = 223K·p = 1K 0.391 s (0.061 s)
n = 223K·p = 2K 0.612 s (0.042 s)
n = 223K·p = 5K 1.665 s (0.095 s)
n = 223K·p = 10K 3.355 s (0.126 s)
n = 223K·p = 20K 6.858 s (0.174 s)
n = 223K·p = 30K 10.804 s (0.240 s)
n = 223K·p = 40K 14.985 s (1.200 s)
n = 223K·p = 50K 20.901 s (0.536 s)

223K and 625K were n = 222,661 and p = 624,528.

Figure 2 Correlation (+/2 SE) between sex-
adjusted height and predicted height in the
testing set, by the number of SNPs used.

1382 | A. Grueneberg and G. de los Campos

BGData can be highly synergistic with R packages that implement
methods for multi-core and/or multi-node systems.

For routine problems such as summarizing a dataset or performing a
genome-wide association study, we have developed a few custom
functions in C that carry out the computations faster and using less
memory than what is available in R, but the other functions are
implemented in R and thus, the performance and memory usage is
bound by the performance of the Rmethods used. In the future, we plan
to develop additional custom functions to further improve the perfor-
mance of tasks that are routinely used such as computations of genomic
relationshipmatrices that are currently boundby the performance of the
crossprod() function in R.

For better performance, it may also be worth looking into general-
purpose data formats such as HDF5 or column-oriented databases.We
have not pursued this because many data repositories such as UK
Biobank and dbGaP provide their data in .bed format and the format
is simple, efficient and compact enough to not require additional
infrastructure to store alternate representations of the same data. In
addition, PLINK 2.0 will introduce a new format called .pgen, adding
new features such as more efficient indexing, variable-length records,
and LD-based compression, which will reduce the file size even more.
We are aiming to add support for .pgen once the format has been
finalized and widely adopted.

Wewill furtherdevelopandmaintain thepackageboth inCRANand
GitHub. In the spirit of open-source software we invite users to develop
andcontributenewfunctionality in the formof functionsorpackage that
take advantage of the classes andmethodsdefined in theBGData suite of
packages.

ACKNOWLEDGMENTS
The development of the BGData package was supported in part by the
NIH grant R01GM101219 and by Michigan State University through
computational resources provided by the Institute for Cyber-Enabled
Research. The authors thank the participants and the personnel in charge
of generating, curating, and maintaining the data of the UK Biobank.

LITERATURE CITED
Adler, D., C. Gläser, O. Nenadic, J. Oehlschlägel, and W. Zucchini, 2018 ff:

Memory-Efficient Storage of Large Data on Disk and Fast Access
Functions. https://CRAN.R-project.org/package=ff.

Atwell, S., Y. S. Huang, B. J. Vilhjálmsson, G. Willems, M. Horton et al.,
2010 Genome-wide association study of 107 phenotypes in Arabidopsis

thaliana inbred lines. Nature 465: 627–631. https://doi.org/10.1038/
nature08800

Broman, K. W., H. Wu, S. Sen, and G. A. Churchill, 2003 R/qtl: QTL
mapping in experimental crosses. Bioinformatics 19: 889–890. https://
doi.org/10.1093/bioinformatics/btg112

Chang, C. C., C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell et al.,
2015 Second-generation PLINK: rising to the challenge of larger and
richer datasets. Gigascience 4: 7. https://doi.org/10.1186/s13742-015-
0047-8

Kane, M. J., J. Emerson, and S. Weston, 2013 Scalable Strategies for
Computing with Massive Data. J. Stat. Softw. 55: 1–19. https://doi.org/
10.18637/jss.v055.i14

Kim, H., A. Grueneberg, A. I. Vazquez, S. Hsu, and G. de los Campos,
2017 Will Big Data Close the Missing Heritability Gap?
Genetics 207: 1135–1145. https://doi.org/10.1534/genetics.
117.300271

Pérez, P., and G. de los Campos, 2014 Genome-Wide Regression and
Prediction with the BGLR Statistical Package. Genetics 198: 483–495.
https://doi.org/10.1534/genetics.114.164442

Purcell, S., and C. Chang PLINK 1.9. www.cog-genomics.org/plink/1.9/.
Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira et al.,

2007 PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am. J. Hum. Genet. 81: 559–575. https://doi.org/
10.1086/519795

R Core Team, 2018 R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. https://
www.R-project.org/.

Ryan, J. A., 2018 mmap: Map Pages of Memory. https://CRAN.R-project.org/
package=mmap.

Shabalin, A. A., 2018 filematrix: File-Backed Matrix Class with Conve-
nient Read and Write Access. https://CRAN.R-project.org/
package=filematrix.

Turner, S. D., 2014 qqman: an R package for visualizing GWAS results
using Q-Q and manhattan plots. bioRxiv 005165; https://doi.org/10.1101/
005165

Wickham, H., 2011 The split-apply-combine strategy for data analysis.
J. Stat. Softw. 40: 1–29. https://doi.org/10.18637/jss.v040.i01

Wickham, H., J. Hester, and W. Chang, 2018 devtools: Tools to Make
Developing R Packages Easier. https://CRAN.R-project.org/
package=devtools.

Wimmer, V., T. Albrecht, H.-J. Auinger, and C.-C. Schön,
2012 synbreed: a framework for the analysis of genomic prediction
data using R. Bioinformatics 28: 2086–2087. https://doi.org/10.1093/
bioinformatics/bts335

Communicating editor: J. Prendergast

Volume 9 May 2019 | BGData: Genomic Analyses with Big Data | 1383

https://CRAN.R-project.org/package=ff
https://doi.org/10.1038/nature08800
https://doi.org/10.1038/nature08800
https://doi.org/10.1093/bioinformatics/btg112
https://doi.org/10.1093/bioinformatics/btg112
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.18637/jss.v055.i14
https://doi.org/10.18637/jss.v055.i14
https://doi.org/10.1534/genetics.117.300271
https://doi.org/10.1534/genetics.117.300271
https://doi.org/10.1534/genetics.114.164442
http://www.cog-genomics.org/plink/1.9/
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=mmap
https://CRAN.R-project.org/package=mmap
https://CRAN.R-project.org/package=filematrix
https://CRAN.R-project.org/package=filematrix
https://doi.org/10.1101/005165
https://doi.org/10.1101/005165
https://doi.org/10.18637/jss.v040.i01
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://doi.org/10.1093/bioinformatics/bts335
https://doi.org/10.1093/bioinformatics/bts335

