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Machine learning interatomic
potential: Bridge the gap between small-scale
models and realistic device-scale simulations
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SUMMARY

Machine learning interatomic potential (MLIP) overcomes the challenges of high computational costs in
density-functional theory and the relatively low accuracy in classical large-scale molecular dynamics, facil-
itating more efficient and precise simulations in materials research and design. In this review, the current
state of the four essential stages of MLIP is discussed, including data generation methods, material struc-
ture descriptors, six unique machine learning algorithms, and available software. Furthermore, the appli-
cations of MLIP in various fields are investigated, notably in phase-change memory materials, structure
searching, material properties predicting, and the pre-trained universal models. Eventually, the future
perspectives, consisting of standard datasets, transferability, generalization, and trade-off between accu-
racy and complexity in MLIPs, are reported.

INTRODUCTION

Materials science stands at the forefront of interdisciplinary research, bridging various scientific domains and exploring phenomena across

multiple length scales, from atomic to macroscopic.1–7 The field focuses on how the composition, structure, and processing of materials

influence their properties and performance, leading to significant advancements in developing and refining materials.8,9 The evolution of

scientific paradigms from traditional empirical and model-based theoretical approaches to contemporary computational and data-driven

methodologies has significantly elevated the role of full-scale simulation in the design and development of materials.10–16 The primary

component of material simulations at any scale is the interatomic potentials, which define the potential energy surfaces (PES) of atomic in-

teractions within a material system.17–19 These potentials are essential for accurately predicting and understanding the physical and chemical

properties of materials, which play a pivotal role not just in materials science, but also in chemistry and condensed matter physics.20–29 The

precise determination of these potentials is crucial for reliablemolecular dynamics simulations and studyingmaterial behaviors under diverse

conditions.30–47

Traditionally, interatomic potentials have been derived from empirical methods, while computationally efficient methods often lack the

necessary accuracy and transferability for complex systems, such as the embedded-atom method (EAM),48 empirical N-body potential,49

Tersoff,50–52 and so on. First-principles methods, such as Density Functional Theory (DFT), offer higher accuracy but at a significant compu-

tational cost, limiting their applicability to smaller systems or shorter timescales.53,54

The advent of machine learning (ML) has opened new horizons in the field of interatomic potentials.55 Machine learning, with its ability to

learn from and make predictions or decisions based on data, presents a promising alternative to traditional methods.56–60 Therefore, Behler

and Parrinello proposed an artificial neural network61 for MLIP with symmetry function descriptors,62 effectively applied to silicon,63–65 vinyl

bromide,66 virtual reality,67 Ge-Te binary compounds,68 surface diffusion of CO/Ni,69 Ge-Sb-Te ternary alloys,70 synthetic chemists,71 multi-

scale-shock dynamics simulations,72 and many transition-metal oxide compositions.73,74 Meanwhile, Csanyi et al. also developed the

Gaussian approximation potential75 (GAP) using SOAP descriptors,76 applied to amorphous carbon77 and silicon.78 These two methods

now also are the main technologies of MLIPs.79–94 Previously, there are some review articles on MLIPs, for example, Behler et al.95–97 outlined

the timeline for the evolution of neural network potentials by classifying schemes for MLIPs into four generations; Deringer et al.98 introduced

the basic principles of MLIPs and highlighted the applications to some select problems in materials science, consisting of phase-change ma-

terials for memory devices, nanoparticle catalysts, and carbon-based electrodes for chemical sensing, supercapacitors, and batteries; Frie-

derich et al.99 summarized the underlying machine learning methods, the data acquisition process and active learning procedures for

MLIPs; Unke et al.100 gave chemical insights into MLIPs and describe a step-by-step guide for constructing and testing them from scratch.

In this review article, we highlight the process for constructing MLIPs from the perspective of data, consisting of the high-throughput gener-

ation of materials data, conversion of structural data into descriptors, machine learning models for data training, and the application of the
1School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
*Correspondence: zmsun@buaa.edu.cn
https://doi.org/10.1016/j.isci.2024.109673

iScience 27, 109673, May 17, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1

mailto:zmsun@buaa.edu.cn
https://doi.org/10.1016/j.isci.2024.109673
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109673&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. The number of published scientific articles on the topic of MLIP

The original data is queried by the keyword of machine learning potential, machine learning force field, and MLIP from Web of Science from 2000 to 2022, as

indexed in the Science Citation Index (SCI).
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model to new data. In particular, in the model section, we divided the models into six categories based on different ML algorithms and

provided executable code for each method.

In detail, this review focuses on the fundamentals, flowcharts, software, applications, and challenges of MLIPs. In section Fundamental and

flowchart of machine learning interatomic potential, we introduce the development tendency and the entire key flowcharts related to MLIPs.

The data collection methods, material structure descriptor, ML algorithm, and software are presented in sections three to five. The sixth sec-

tion outlines the application of MLIPs in the selection of phase-changememorymaterials, structure searching, material properties prediction,

and the development of pre-trained universal models. Finally, it looks forward to the challenges and opportunities of MLIPs in the future.
FUNDAMENTAL AND FLOWCHART OF MACHINE LEARNING INTERATOMIC POTENTIAL

From the year 2000–2022, the number of articles published in MLIP has increased across various fields, as shown in Figure 1. Initially, MLIP

research was predominantly rooted in the field of computer science, in which the earliest articles were published.69 The trend in Computer

Science has seen a consistent rise over the years, reflecting the increasing relevance and application of MLIP algorithms in this field.97 For

materials science, there were hardly any MLP publications before 2007. However, there has been a noticeable increment in recent years

with the development of supercomputing power and the wave of the AI technology revolution.101–108

The training process of machine learning models involves several key steps, as shown in Figure 2. In this part, we focus on introducing the

issues that need to be identified at each step.

� Data Collection: the first step is collecting the abundant and necessary data. This involves focusing on the problem to be solved and

then gathering all relevant data that can be used to train the model. The data should be as representative as possible of the problem

domain and diverse enough to capture all possible conditions.

� Materials Descriptors: once the data is collected, themost important step, which has the greatest impact on the accuracy of theMLIP, is

how to convert spatial configurations into a machine learning dataset, also known as the material descriptors. The material descriptor

determines the quality of the initial dataset for machine learning and also defines the highest accuracy that the MLIP can achieve.

Different machine learning algorithms are merely used to infinitely approximate this optimal goal value. Afterward, several steps

such as data cleaning, preprocessing, and normalization are also indispensable. Data cleaning can remove any irrelevant or duplicate

data, while preprocessing involves techniques such as scaling or encoding to make the data suitable for training. Normalization is a

process of adjusting the data to a common scale for better convergence during training.

� Model Selection: it is essential to choose amodel that suits the nature of the problem and has the capacity to learn from the given data.

Common models used for MLIP include Gaussian approximation, neural networks, and active learning. Then, it is trained on the pre-

pared data, which involves optimizing the model’s parameters using a suitable optimization algorithm such as gradient descent or

Adam and so on. The model iteratively updates its parameters based on the feedback provided by the loss function, which measures

how well the model is performing on the training data. A crucial aspect of model training is tuning hyperparameter, which are used to

control the learning process of the model, such as learning rate, batch size, or the number of hidden layers in a neural network. Com-

mon techniques for hyperparameter tuning include grid search, random search, or more advanced methods such as Bayesian optimi-

zation or gradient-based optimization. After training, it is essential to evaluate themodel’s performance on a separate test dataset that

was not used during training. This helps in gauging how well the model generalizes to unseen data and provides an accurate estimate

of its future performance in real-world scenarios. Evaluation metrics such as accuracy, precision, recall, or F1-score are commonly used

to assess the model’s performance.
� Model improvement and deployment: based on the evaluation results and feedback from domain experts, further improvements can

be made to the model. This might involve modifying the architecture of the model, trying different hyperparameter settings, or incor-

porating more advanced techniques such as ensemble methods or transfer learning to improve performance. While the model
2 iScience 27, 109673, May 17, 2024



Figure 2. The flowchart and four essential stages of MLIPs
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achieves satisfactory performance, it can be deployed in a production environment for real-time predictions or decision-making. It is

essential to have a well-designed deployment strategy that ensures scalability, fault tolerance, andmonitoring of the deployedmodel’s

performance over time.

DATA COLLECTION OF MACHINE LEARNING INTERATOMIC POTENTIALS

Datasets are fundamental to machine learning, providing the raw material from which algorithms learn and derive insights.109–111 Diverse

datasets help in building robust models that can generalize well across different scenarios, reducing biases and improving the accuracy of

predictions. In materials science, collecting comprehensive datasets through various methods is vital for exploring the entire spectrum of

material properties and behaviors.112–116 This extensive data collection enables the identification of novel materials with desired character-

istics, supports the understanding of complex material interactions, and facilitates the prediction of material performance under different

conditions. In this part, we introduce some possible data collection methods for training MLIPs.

� Open-source material databases: the concepts of materials genomics have led to the creation of numerous large-scale materials

databases globally, such as ICSD,117 Materials Project,118 Aflow,119 Materials Cloud,120 NOMAD,121 ALKEMIE MatterDB,122–124

OQMAD,125 COD,126 OMD,127 C2DB,128 MatNavi,129 among others. These databases provide a wealth of data obtained fromDFT cal-

culations, which typically require extensive computational resources. Therefore, efficiently filtering and selecting target materials from

these open-source databases presents a highly effectivemethod for gathering relevant data for MLIPs without the need for time-inten-

sive DFT calculations.130–133

� Ab Initio Molecular Dynamics (AIMD) Sampling: AIMD simulations to explore the configurational space. The temperature of the simu-

lation determines the regions of the potential energy surface (PES) and energy ranges explored. This technique is suitable for equilib-

rium or near-equilibrium properties, such as studying vibrational spectra or thermodynamic properties.
� Adaptive Sampling or On-the-Fly ML: this technique starts with a small initial set of reference data to train a preliminary ML potential,

which is then used inMD simulations.134 Additional conformations are collectedwhenmodel predictions become unreliable, based on

an uncertainty criterion, and reference calculations are performed.135,136

� Meta dynamics Sampling: similar to adaptive sampling, this method uses preliminary ML potentials in MD simulations but biases

the dynamics to visit unexplored regions on the PES.137–139 It combines metadynamics with uncertainty estimates to select relevant

structures.
� Normal Mode Sampling: this approach does not require MD simulations. It starts from a minimum on the PES and generates distorted

structures by displacing atoms along normal modes. It is efficient for exploring PES but is limited to regions close to minima and is best

combined with other sampling methods.

After collecting data, it is crucial to clean data by feature engineering, including removing inconsistencies, addressingmissing values, and

filtering out irrelevant information.140–144 Subsequently, data splitting segregates the refined dataset into training, validation, and test sets,

which are used to assess the model’s generalization capability while mitigating the risk of overfitting. Concurrently, data standardization and

normalization emerge as pivotal steps in preprocessing. Specifically, standardization is the best method to rescale the data to yield a mean of

zero and a standard deviation of one, effectively resolving issues arising from differing scales among features. Normalization, often achieved
iScience 27, 109673, May 17, 2024 3



Table 1. The various descriptors list for materials structure

Description Year Author

Atom-centered symmetry functions (ACSF) 2011 Behler62

Coulomb Matrix 2012 Rupp152

Smooth Overlap of Atomic Positions (SOAP) 2013 Csányi76

Ewald sum and Sine Matrix 2015 Faber153

Spectral neighbor analysis method (SNAP) 2015 Thompson151

Moment Tensor Potentials (MTP) 2016 Shapeev177

Weighted atom-centered symmetry functions (wACSF) 2018 Gastegger150

Automatic selection of fingerprints 2018 Giulio220

Atomic-position independent material descriptor (U-api) 2018 Thompson157

Deep Potential Dynamic Descriptor (DP) 2018 Zhang158

Graph Descriptor 2018 Jeffrey159

Optimizing SOAP 2019 Caro221

Atomic Cluster Expansion (ACE) 2019 Drautz156

Many-body Tensor Representation (MBTR) 2022 Huo154
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by scaling data within a specific range such as 0 to 1, guarantees that all input features contribute uniformly to model training. In a word, data

preprocessing, consisting of feature engineering, data standardization, and normalization, enhances the model’s overall performance and

stability.145–149

MATERIALS DESCRIPTORS OF MACHINE LEARNING INTERATOMIC POTENTIALS

To construct an effective descriptor for material structure in MLIP, the following criteria are essential.

� Spatial Translation Invariance: the descriptor must remain consistent regardless of any shifts in the coordinate system, ensuring it re-

spects the isometry of space.
� Rotational Invariance: it should be unaltered by any rotations of the coordinate system, adhering to the principle of isotropy of space.
� Permutation Invariance: the order of atomic indices should not impact the descriptor, meaning that reordering the atoms does not

change the system’s physical characteristics.
� Uniqueness: each descriptor should be distinctly tied to a specific atomic environment and correspond to a unique property, avoiding

multiple representations for the same structure.

� Continuity: the descriptor should sensitively reflect minor variations in atomic arrangements, ensuring a proportional relationship be-

tween small structural changes and descriptor adjustments.
� Compactness: while providing comprehensive information necessary for accurate predictions, the descriptor shouldminimize the num-

ber of features to avoid complexity.
� Computational Efficiency: calculating the descriptor should be significantly less resource-intensive compared to direct computations of

the physical properties it represents.

Here, we have listed the several commonly used and efficient descriptors, as shown in Table 1. In detail, for constructing high-dimensional

neural network potentials, Behler62 first reported atom-centered symmetry functions (ACSF), which can transform cartesian coordinates to a

series of symmetry functions to accurately represent atomic environments (Figure 3A), and also can be extended to various systems such as

molecules, solids, and liquids. Furthermore, Gastegger et al.150 introduce weighted atom-centered symmetry functions (wACSFs) as an effi-

cient and accurate alternative to conventional atom-centered symmetry functions (ACSFs) for MLIP, which offer better scalability with diverse

chemical elements and require fewer functions for equal spatial resolution, significantly improving generalization in machine learning poten-

tials. Utilizing the QM9 database’s molecular structures and enthalpies, as shown in Figures 3B and 3C, they demonstrate that wACSFs

achieve lower prediction errors compared to ACSFs. Moreover, it shows that simple empirical parametrization schemes are sufficient for

high accuracy, and the use of genetic algorithms for optimizing wACSFs can further enhance small neural network potentials.

Nevertheless, Csanyi introduces the Smooth Overlap of Atomic Positions (SOAP) descriptor,76 which maintains crucial properties such as

differentiability with respect to atomic movement and invariance to physical symmetries such as rotation, reflection, translation, and permu-

tation of atoms of the same species, and offers a more faithful representation that remains consistent regardless of the number of neighbors,

avoiding the tradeoff between descriptor size and accuracy. Thismakes SOAP, integrated intoGAP software, particularly effective for systems

with larger clusters of atoms, where traditional descriptors tend to lose accuracy. Moreover, Thompson et al.151 introduce the Spectral

Neighbor Analysis Potential (SNAP), whose uniqueness lies in its characterization of each atom’s local environment through bispectrum com-

ponents of local neighbor density, projected onto a hyperspherical harmonic basis in four dimensions. Unlike the GAP potential, SNAP
4 iScience 27, 109673, May 17, 2024



Figure 3. Depict of various descriptors

(A) Atom-centered symmetry functions.62 (Reproduced with permission from Ref.,62 ª J. Chem. Phys. 2011).

(B) Weighted atom-centered symmetry functions.150 (Reproduced with permission from Ref.,150 ª J. Chem. Phys. 2018).

(C) Weighted atom-centered symmetry functions optimized with the GA using fitness functions based on linear ridge regression and neutral network

potentials.150 (Reproduced with permission from Ref.,150 ª J. Chem. Phys. 2018).

(D) Coulomb, Eward sum and sine matrices.155 (Reproduced with permission from Ref.,155 ª Comput. Phys. Commun. 2020).

(E) Many-body tensor representation.155 (Reproduced with permission from Ref.,155 ª Comput. Phys. Commun. 2020).

(F) Atomic cluster expansion.156 (Reproduced with permission from Ref.,156 ª Phys. Rev. B 2019).

(G) Atomic-position independent material descriptor.157 (Reproduced with permission from Ref.,157 ª Phys. Rev. B 2018).

(H) Deep potential dynamic descriptor.158 (Reproduced with permission from Ref.,158 ª Phys. Rev. Lett. 2018).

(I) Graph descriptor.159 (Reproduced with permission from Ref.,159 ª Phys. Rev. Lett. 2018).
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assumes a linear relationship between atom energy and bispectrum components, with linear coefficients determined via weighted least-

squares linear regression against a comprehensive quantum mechanics training set.

Subsequently, as shown in Figure 3D, Rupp et al.152 reportmolecular representationmethods based onCoulombmatrices, inspired by the

nuclear repulsion term in themolecular Hamiltonian. By transforming the challenge of solving themolecular Schrödinger equation into amore

manageable nonlinear statistical regression problem, the model is trained and validated on a dataset of over seven thousand organic mol-

ecules, showing a mean absolute error of approximately 10 kcal/mol. This approach demonstrates high accuracy and transferability in pre-

dicting atomization energies for a wide range of organic molecules and distorted equilibrium geometries, highlighting the broader utility of

the Coulombmatrix as a descriptor in various chemical contexts. Similarly, Faber et al.153 also generalize the Coulombmatrix representation,

successful in modeling atomization energies of organic molecules, to periodic systems using three approaches: (i) a matrix based on the

Ewald sum of electrostatic interactions in the unit cell; (ii) an extended Coulomb-like matrix considering neighboring unit cells; and (iii) a

sine matrix representation mimicking the periodicity and elemental features of the Ewald summatrix. These representations were compared

using a Laplacian kernel with the Manhattan norm on a dataset of 3938 crystal structures. The generalization error in predicting structure for-

mation energies was 0.49, 0.64, and 0.37 eV/atom for the respective representations. Next, Haoyan et al.154 highlight the development of a

many-body tensor representation (MBTR) for MLIP, which is invariant to translations, rotations, and nuclear permutations, and can represent

both molecules and crystals, and is showcased in phase diagrams of Pt-group/transition-metal binary systems, as shown in Figure 3E. The

Coulomb, Ewald, sine matrices, and MTBR can be performed in DScribe software packages.155

Additionally, Drautz et al.156 report the atomic cluster expansion (ACE) as a novel and comprehensive descriptor method for MLIP, effi-

ciently scaling linearly with the number of neighbors, a significant improvement over traditional many-atom expansion. Applied to small

Cu clusters, it demonstrates smooth convergence to accuracies within themeV range, whose innovation lies in its ability to integrate nonlinear

functions into the expansion, producing interatomic potentials that rival the accuracy of advanced MLIPs, as shown in Figure 3F. In addition,
iScience 27, 109673, May 17, 2024 5



ll
OPEN ACCESS

iScience
Review
Thompson et al.157 also report an atomic-position independentmaterial descriptor with the feature of using crystallographic space group and

Wyckoff-sites, rather than specific atomic positions, to describe structure details of materials, as shown in Figure 3G. Employing this atomic-

position independent descriptor, they also used an attention-weights sharing convolution neural network, which learns across diverse

structure types without explicitly using atomic positions, to achieve a mean absolute error of only 0.07 eV/atom in predicting the formation

energies of over 85,000 diverse materials.

In addition to the aforementioned static descriptors related to numerical analysis, Zhang et al.158 have proposed dynamic descriptors in

DeepPotential software, which involves training a neural network to automatically determine the coefficients of different many-body interac-

tion terms, as shown in Figure 3H. Although this method has improved accuracy, it requires a significant number of computational resources.

Particularly, with the development of mathematical graph theory, unlike traditional methods that rely onmanually constructed feature vectors

or complex transformations of atom coordinates, Jeffrey et al.159 introduce an original machine learning framework, Crystal Graph Convolu-

tional Neural Networks (CGCNN), which directly learns material properties from the atomic connections within a crystal structure, as shown in

Figure 3I. This approach offers a universal and interpretable representation for various types of crystalline materials and has demonstrated

high accuracy in predicting properties calculated by DFT for a diverse range of crystal structures and compositions, using a dataset of approx-

imately 104 data points.

MACHINE LEARNING MODELS OF MACHINE LEARNING INTERATOMIC POTENTIALS

In this section, we categorize MLIPs into six types of methods and summarize the software codes that can be executed for each type of MLIP,

as listed in Table 2. The first type is artificial neural networks (ANN) and deep neural networks (DNN), originally proposed and used in MLIP by

Behler et al.,160 collectively referred to as NN in Table 2. Initially, this model converts spatial configurations into numerical matrices based on

the structural descriptors mentioned in Section Materials descriptors of machine learning interatomic potentials, and then iterates the model

through forward andbackward propagation algorithms, obtaining the best predictive results of themodel performance through the loss func-

tion, as shown in Figure 3A. Detailed descriptions of this type of model can be found in the referenced articles.161 This method has now

extended to include more single-layer neural network NEP methods, high-dimensional approaches 4G-HDNNP,97 Accurate Neural Network

Engine (ANI-1),162 Hierarchical Interacting Particle NN,163 and GPU-accelerated algorithms such as aenet-Pytorch.164

The secondmethod is the graph neural network (GNN)model.159,165–168 The process of constructing a potential function for a graph neural

network model in the article can be described as follows, as shown in Figure 4A. The execuable code can be found in Table 2.

� Defining relationships between nodes: the relationships between nodes, represented as edges in the graph, are defined. In the context

of chemical molecules, nodes can represent atoms, and edges can represent chemical bonds. The similarity between nodes is also

determined.
� Establishing graph convolutional network: the core of the graph neural network is the graph convolutional network, which models the

relationships between nodes. Parameters such as the number of layers, the number of nodes per layer, and the feature dimensions of

the nodes are determined. Additionally, the similarity calculation and weight update methods between nodes are specified.
� Extracting node features: each node in the graph convolutional network has a set of feature vectors representing its attributes. These

feature vectors undergo nonlinear transformations to extract and transform more meaningful representations. The parameters for the

nonlinear transformation and the dimensions of the feature vectors are determined.
� Training and optimizing the model: the potential function represents the state or behavior of the nodes in the graph neural network. It

calculates the output value for each node. After defining the potential function, themodel is trained and optimized using training data.

Gradient descent or other optimization algorithms are employed to update themodel’s parameters, enhancing its prediction accuracy.

Hyperparameters, loss functions, and evaluation metrics for the model are also determined during this process.

Furthermore, message passing network is one type of GNN, rapidly advancing in accuracy and generality forMLIPs. This research presents

a TensorMol-0.1 model,169 which describes an original approach to energy calculation using a combination of short-range and long-range

potentials based on message-passing neural networks. A key feature is the use of TensorFlow for automatic differentiation in molecular po-

tential calculations, allowing for the efficient optimization of network weights. The study also introduces a charge model for molecular dipole

moments and a modified damped-shifted force for Coulomb energy calculation, ensuring smooth transition and differentiability, as shown in

Figure 4B. The other message passing GNN include DimeNet++,170 DimeNet,171 MACE,172 and so forth.

Next, the third method of MLIPs is the E(n)-Equivariant Graph Neural Networks (EGNNs),173 an original model for learning graph neural

networks that are equivariant to rotations, translations, reflections, and permutations, as shown in Figure 4C. Unlike existing methods, the

EGNNs do not require computationally intensive higher-order representations in intermediate layers, yet they deliver competitive or superior

performance. A distinctive advantage of the EGNNs is their scalability to higher-dimensional spaces beyond the typical 3D, broadening their

applicability. The article demonstrates the model’s effectiveness in various applications including dynamical systems modeling, graph

autoencoder representation learning, and predicting molecular properties. In the same way, there are many other EGNN models, such as

NequIP,174 UNET,175 Tensor-Field Networks,176 and so forth.

As shown in Figure 4D, the fourth category of MLIPs is polynomial-type,177 which are potential function fitting methods formed by com-

binations of polynomials, similar to the MTP descriptors and others mentioned in the descriptor in Section Materials descriptors of machine

learning interatomic potentials. The fifthMLIP is GaussianApproximation Potential,75 which addresses the gap betweenmodels that explicitly

treat electrons and those that do not, aiming to accurately model the Born-Oppenheimer potential energy surface (PES) without simulating
6 iScience 27, 109673, May 17, 2024



Table 2. The list of implemented software of various MLIP models

Model Type Release time Reference

NNP NN 1995 Blank69

BPNN NN 2007 Behler160

ænet-Fortran NN 2016 Artrith222

DTNN NN 2017 Schutt223

ANI-1 NN 2017 Smith162

HIP-NN NN 2018 Nebgen163

SchNet NN 2018 Schutt224

DeepPotential NN 2018 Zhang158,225,226

PhysNet NN 2019 Unke227

ACE NN 2019 Drautz156

LieConv NN 2020 Finzi228

4G-HDNNP NN 2021 Ko97

NEP NN 2021 Fan229

ænet-Pytorch NN 2023 Artrith164

GNNFF GraphNN 2021 Park230

MDGNN GraphNN 2021 Wang231

NoisyNodes GraphNN 2022 Godwin232

M3GNet GraphNN 2022 Chen211

TeaNet GraphNN 2022 Takamoto233

PotentialMind GraphNN 2023 Wang187

CHGNet GraphNN 2023 Deng214

TensorMol 0.1 GraphNN 2018 Yao169

DimeNet++ GraphNN 2020 Gasteiger170

DimeNet GraphNN 2020 Gasteiger171

NewtonNet GraphNN 2021 Haghighatlari234

SphereNet GraphNN 2021 Liu235

PAINN GraphNN 2021 Schutt236

GemNet GraphNN 2022 Gasteiger237

HermNet GraphNN 2022 Wang238

MACE GraphNN 2022 Batatia172

Allegro GraphNN 2023 Musaelian239

Tensor-Field EquivariantNetwork 2018 Thomas176

Cormorant EquivariantNetwork 2019 Anderson240

UNET EquivariantNetwork 2021 Qiao175

EGNN EquivariantNetwork 2021 Satorras173

NequIP EquivariantNetwork 2022 Batzner174

MTP Polynomials 2016 Shapeev177

IPMLs Polynomials 2018 Bereau241

aPIPs Polynomials 2021 Allen242

GAP Gaussian 2010 Bartok75

FCHL19 Gaussian 2020 Christensen178

GMNN Gaussian 2020 Zaverkin179

SE(3)-Transformers Transfomer 2020 Fuchs243

DeepMoleNet Transfomer 2021 Liu244

TorchMD-NET Transfomer 2022 Thölke180
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Figure 4. Schematic of the ML model in MLIPS

(A) Many-body graph potential and the major computational blocks.165 (Reproduced with permission from Ref.,165 ª Chem. Mater. 2019).

(B) Charge the network and energy network for message passing network.169 (Reproduced with permission from Ref.,169 ª Chem. Sci. 2018).

(C) Example of ros).tation equivariance on a graph.173 (Reproduced with permission from Ref.,173 ª Int. Conf. Mach. Learn. 2022).

(D) Polynomial model.98 (Reproduced with permission from Ref.,98 ª Adv. Mater. 2019).

(E) Transformer model.180 (Reproduced with permission from Ref.,180 ª The Author(s). 2022).
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electrons, such as FCHL19,178 GMNN,179 and so forth. Finally, this study introduces TorchMD-NET,180 a novel equivariant Transformer (ET)

architecture for MLIP, notably overcoming the traditional trade-off between accuracy and computational speed. The model sets a standard

in accuracy and efficiency, outperforming existing methods on the MD17, ANI-1, and QM9 datasets. A key feature of TorchMD-NET is its

attention-based architecture that leverages rotationally equivariant features, making it particularly effective in predicting energies and atomic

forces in molecular dynamics. The study also emphasizes the importance of including off-equilibrium conformations in training datasets for a

more accurate evaluation of molecular potentials. By analyzing themodel’s attention weights, the researchers gain insights into themolecular

representation, noting differences in how the model treats hydrogen atoms in energy-minimized molecules versus those in off-equilibrium

states, as shown in Figure 4E.

APPLICATION OF MACHINE LEARNING INTERATOMIC POTENTIALS IN MATERIALS SCIENCE

Accelerating the molecular dynamic calculation in multi-scale simulation

Gabriele61 firstly reports the creation and validation of a Neural Network (NN) potential for the phase changematerials (PCMs) GeTe. The NN

potential successfully replicates the characteristics of GeTe’s crystalline, liquids, and amorphous states, closely matching previous DFT

calculations, as shown in Figure 5A. The study highlights the potential’s robustness in larger (4096-atom) simulations and its sensitivity to

fluctuations in smaller (216-atom) models. Notably, the NN potential is also applicable to slightly altered GeTe alloys but faces limitations

with off-stoichiometric compositions, such as Ge0.15Te0.85, due to its inability to accurately model long Te-Te chains.181–183 Additionally, using

the GAP framework, another research184 introduces an MLIP for the single ternary PCMs compounds of Ge2Sb2Te5, which enabled the cre-

ation of a detailed 7200-atom model, providing insights into the material’s structure, and facilitated the generation of smaller models for in-

depth chemical bonding studies, as shown in Figure 5B. Furthermore, without extra datasets, they expand the abovemodel to six Sb-Te alloy

PCMs,185,186 with compositions ranging from2:3 to 4:1, revealing that all exhibit similar local structuralmotifs of defective octahedra. Figure 5C

reveals that the crystallization behavior can be influenced by the noticeable shift in medium-range order and cavity concentration with the Sb

content increases. For instance, Sb2Te3, fulling of ABAB rings, favors nucleation-driven crystallization, while Sb-rich alloys such as Sb4Te show

more 5-fold rings, leading to growth-driven crystallization due to structural dissimilarities with the crystalline phase.Meanwhile, Wang et al.187

also develop a graph convolution neural network for six binary Sb-Te alloys, with a broader composition ranging from 7:1 to 1:2, as shown in

Figure 5D. For the exploration of PCM behaviors in realistic memory device geometries and conditions, Zhou et al.30 introduce an ML-based

potential model, trained using quantum-mechanical data, to simulate all Ge-Sb-Te compositions used in PCMs, which significantly enhances
8 iScience 27, 109673, May 17, 2024



Figure 5. The molecular dynamic calculation results, which is accelerated by MLIPs in multi-scale simulation

(A) The radial distribution function compared MLIP with DFT in GeTe.61 (Reproduced with permission from Ref.,61 ª Phys. Rev. B 2012).

(B) The radial distribution function compared MLIP with DFT in Ge2Sb2Te5.
184 (Reproduced with permission from Ref.,184 ª J. Phys. Chem. B 2018).

(C) The fraction of primitive rings for the six amorphous Sb–Te alloys.185 (Reproducedwith permission from Ref.,185ª Phys. Status Solidi Rrl: Rapid Res. Lett. 2021).

(D) The energy-volume curves of six crystal Sb–Te alloys.187 (Reproduced with permission from Ref.,187 ª J. Phys. Chem. C 2023).

(E) Schematic of commercial cross-point products, the processes of melting and heat dissipation in a Ge1Sb2Te4 structural model, and the evolution of the

amorphous GST.219 (Reproduced with permission from Ref.,219 ª Sci. Bull. 2023).
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the speed and accuracy of atomistic simulations. Notably, it supports simulations of multiple thermal cycles and operations crucial for neuro--

inspired computing, including cumulative SET and iterative RESET processes. A large-scale device model, containing over half a million

atoms, demonstrates the model’s capability to accurately depict critical processes in PCM-based memory devices, as shown in Figure 5E.

Since the scaling ofMLIPs withO(Nelectron) is identical to that of a traditional force-fieldMD simulation, comparedwith theO(Nelectron
3) scaling

of DFT, this cost reduction is more effective for multi-scale simulation. Based on data from experiments and ab initio calculations as refer-

ences, Rowe et al.188 developed a GAPMLIPs model to simulate the thermal expansion of graphene, detailing the spread of small molecules

on graphene surfaces and addressing nuclear quantum effects through path integral molecular dynamics, which is especially useful when pre-

cise descriptions of processes are required. MLIPs have also been used in actinide molten salts in nuclear energy. For instance, Nguyen189

developed an MLIP model using AIMD data with 90 atoms, which enables the acquisition of extended molecular dynamics trajectories (in

nanoseconds) for larger systems (103 atoms) at significantly reduced computational cost, facilitating the exploration of bonding structures,

thermodynamics, and dynamics across various temperatures. Deng et al.190 expendedMLIPs on complex ceramics with three kinds of repre-

sentative structures, i.e., Ti3SiC2 of the MAX structure, zircon of the mineral structure, and lead zirconate titanate of the perovskite structure,

facilitating the analysis and design of complex crystalline materials. Miwa et al.191 successfully applied MLIPs for large molecular dynamics

simulations of the lithium superionic conductor Li10GeP2S12. In a word, MLIPs offer an accuracy nearly equivalent to that of AIMD but at a

much lower cost, which accelerates molecular dynamic calculations for large material systems (up to 100 million atoms192), bridging the

gap in multi-scale simulation.

Prediction of material properties

MLIP has beenwidely applied to predict variousmaterial properties. Formetal alloys, a study has developed aMTPs approach193 formaterials

prediction using MLIP to approximate quantum-mechanical energies, coupled with an active learning algorithm for optimal training dataset

selection.Unlikemethods limited to a few lattice types, this approachcanpredict structureswith lattice types absent in the trainingdataset. For

Cu-Pd, Co-Nb-V, andAl-Ni-Timetallic alloys, they discovered stable structures beyondAFLOW’s listings, thanks to exploring a vast number of

candidate structures (40,000 forCu-Pd, 27,000 forCo-Nb-V, and377,000 forAl-Ni-Ti) andusingMTPs for relaxation. Thismethoddrastically cuts
iScience 27, 109673, May 17, 2024 9



Figure 6. The flowcharts and results of the application of MLIPs in the prediction of material properties

(A) A viewpoint on the synergy betweenmachine learning-based potentials, traditional density functional theory (DFT) methods, and experimental approaches in

pursuing the characterization and comprehension of battery materials at the atomic level.195 (Reproduced with permission from Ref.,195 ª J. Phys. Energy 2020).

(B) A highly simplified sketch of different components of a battery, each requiring different atomistic modeling approaches.195 (Reproducedwith permission from

Ref.,195 ª J. Phys. Energy 2020).

(C) Formation energies and convex hull of Ti10xAlx with different compositions.198 (Reproduced with permission from Ref.,198 ª Phys. Rev. B 2020).
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downon the number of requiredDFT calculations,marking a significant advancement in the discovery of alloy phases, especially for thosewith

multiple components. For studyingphononic properties ofmaterials,194 particularly focusingon low-symmetry and 2Dnanomaterials. Bohayra

et al. have developed anMLIPmethod as an efficient alternative to the traditional DFT simulationswith PHONOPY code, which often face high

computational demandsandcanproducenonphysical results for suchcomplex structures. This studydemonstrate that this approachcanaccu-

rately and efficiently substitute traditional DFTmethods, offering a practical solution for assessing the dynamical stability and phononic prop-

erties of complexmaterials. In addition,MLIP serves as a pivotal tool, complementing establishedDFTmethods and experimental techniques,

particularly in characterizing and understandingbatterymaterials at an atomic scale,195,196 as shown in Figure 6A. This integration ofML-based

potentials with traditional approaches enhances our capability to delve into the complex nature of battery components. The utilization of

ML-based potentials is especially crucial given the diverse atomistic modeling requirements of different battery components, as illustrated

in a simplified sketch of a battery’s various parts in Figure 6B. This development marks a stride forward in the precision and efficiency of

modeling battery materials, providing a more comprehensive understanding of their atomic-level behavior and interactions.

As shown in Figure 6C, for the prediction of mechanical properties, MLIPs are used to predict the elastic constants and mechanically

induced rippling in graphene and hBN,197 stacking fault energy of Ti-Al alloys,198 elastic tensor of C11, C21, and C44, and dislocation emissions

of Al-Cu alloys.199 For instance, Arabha et al.200 highlight the application of MLIPs for assessing the mechanical properties of nitrogenated

holey graphene (C2N), a two-dimensional nanomaterial. They revealed a thermal conductivity of 85.5 G 3 W/m-K and an elastic modulus of

390G 3 GPa, demonstrating close agreement with DFT results. Additionally, their study explored the impact of point defects on C2N’s me-

chanical properties, showing a reduction in the elastic modulus, fractural stress, and ultimate strength with the incorporation of defects. The

effectiveness of MLIPs in simulating the thermal and mechanical behavior of C2N, including defective structures, underscores their potential

as a powerful tool for predicting the properties of two-dimensional nanostructures. By developing a model named UNEP-v1, Fan et al.201

constructed unifiedgeneralMLIPs for 16 elementalmetals and their alloys, showing an efficient approach to represent the vast chemical space

without the need to generate training data for all possible combinations. This work highlights the MLP’s application in investigating the me-

chanical behavior of complex materials, such as the plasticity and primary radiation damage in MoTaVW refractory high-entropy alloys. The

study’s approach, which employs distinct neural networks for each species and multiple loss functions for parameter optimization, is scalable

and adaptable, paving the way for future models that could encompass the entire periodic table.

In addition to their strong potential in simulating and assessing mechanical properties, MLIPs have also been shown to predict character-

istics of thermal properties effectively. Arabha et al.200 reviewed the thermal conductivity of a few 2D and 3D structures, which have been

calculated using MLIPs, and compared with their experimental and quantum counterparts. Ladygin et al.202 introduced a groundbreaking

method integrating active learning and MLIPs, specifically moment tensor potentials (MTPs), for predicting lattice dynamics properties

with accuracy comparable to DFT. The research thoroughly evaluated the accuracy of these potentials by investigating four materials (Al,

Mo, Ti, and U) with varying phonon and thermodynamic properties, achieving high fidelity in reproducing both harmonic and anharmonic
10 iScience 27, 109673, May 17, 2024



Figure 7. Comparison of the structure searching results by DFT and MLIPs

Lowest-energy structures obtained from the classical GA searches by NNP and EAM at the composition of (A) Pd3Si and (B) Pd9Si2 with the corresponding DFT,

NNP, and EAM energies.206 (Reproduced with permission from Ref.,206 ª Phys. Rev. B 2019).

(C) Comparison of the found 106-atom structure and the existing structure.207 (Reproduced with permission from Ref.,207 ª Phys. Rev. B 2019).

(D) Grain boundary structures predicted by ANN and DFT structural relaxation.209 (Reproduced with permission from Ref.,209 ª Phys. Chem. Chem. Phys. 2022).
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behaviors. Furthermore, the study showcases theMLIPs’ capability to efficiently calculate phonon dispersion curves and vibrational density of

states, providing insights into materials’ thermodynamic performances. Notably, MTPs offer substantial computational speed-ups over tradi-

tional DFT calculations without compromising accuracy, marking a significant advancement in the field of materials science and enabling

detailed exploration of complexmaterial behaviors on an unprecedented scale. In addition,MLIPs are used for predicting the phonon density

of states for b-Ga2O3 consisting of 2500-atoms,203 unraveling the significant regulation of stress on the contribution of optical phonons to

thermal conductivity in layered Li2ZrCl6,
204 exploring the four-phonon scattering in WS2,

205 to name a few.

Structure searching

In materials science, the conventional approach of calculating material energies through DFT is widely adopted due to its high accuracy. How-

ever, a significant drawback of DFT is its time-consuming nature, particularly in the structural search of complex material systems. To overcome

this limitation, MLIP methods leverage machine learning techniques to predict material properties and energies, significantly speeding up the

structure search process while maintaining reasonable accuracy. By learning from existingDFT computational data, thesemethods rapidly eval-

uate a vast array of potential material structures, greatly enhancing the efficiency of material design and discovery. Recent research highlights

the development of neural networkMLIP for the Pd-Si system,206 addressing the challenge of achieving both accuracy and efficiency in structure

prediction. TheNNPmethods demonstrate superior accuracy over the existing embedded-atommethod (EAM) potential, especially in predict-

ing ground-state structures for Pd3Si and Pd9Si2 compositions, where the EAM potential fails, as shown in Figure 7A. Additionally, Evgeny

et al.207 introduces a crystal structure prediction methodology combining the evolutionary algorithm USPEX with an MLIP that learns on-the-

fly, which significantly accelerates the process, offering a computational efficiency several orders of magnitude greater than DFT methods. It

automates the construction of the interatomic interaction model, eliminating the need for manual training dataset assembly and seamlessly

replacing DFT in the prediction algorithm. Tested on various elements including carbon, sodium under high pressure, and boron, as shown

in Figure 7B. In order to predict grain boundary, Takayuki et al.208,209 highlight the effectiveness of MLIP in predicting grain boundary energies

in face-centered-cubic (fcc) elemental metals such as Ag, Al, Au, Cu, Pd, and Pt. Despite the absence of grain boundary structures in the training

datasets,MLPs demonstrated high accuracy in forecastinggrain boundary structures and energies, aligningwell withDFT. Furthermore, Tatsuya

et al. present the development of an artificial neural network (ANN) MLIP for accurately predicting grain boundary (GB) atomic structures in

CdTe. Using a comprehensive training dataset that includes DFT data of point defects, surfaces, and GBs, the ANN potential was trained to

cover various atomic environments. The potential’s effectiveness was demonstrated by its ability to predict low-energy structures and GB en-

ergetics with accuracy comparable to DFT results, outperforming conventional empirical potentials, as shown in Figure 7C. The study also out-

lines a method for improving the ANN potential’s transferability to more complex GBs, using limited training data. Except for predicting grain

boundary configurations, MLIPmethods for predicting crystal defects have also been developed. As shown in Figure 7D, Alexandra et al. intro-

duce a novel quadratic noise ML (QNML) approach for bcc Fe and W, focusing on accurately modeling radiation defects and dislocations,

enhancing the accuracy of standard linear MLIP without compromising transferability. These potentials, trained on a range of defect configu-

rations, accurately predict complex issues such as the stability and mobility of defects, which is challenging for semiempirical potentials.

Pre-trained universal machine learning interatomic potential model

Existing MLIPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery.

Therefore, Takamoto et al.210 first report PreFerred Potential (PFP), a universal Neural Network Potential (NNP) capable of handling any
iScience 27, 109673, May 17, 2024 11



Figure 8. The three pre-trained universal MLIPs model

(A) Element counts for all atoms in the dataset, covering 89 elements across the periodic table. And the model predictions on the test dataset compared to DFT

calculations.211 (Reproduced with permission from Ref.,211 ª Nat. Comput. Sci. 2022).

(B) Force, energy, and stress mean absolute errors for the 27 TM systems, using the B2 invariant ACE descriptors and NequIP.212 (Reproduced with permission

from Ref.,212 ª The Author(s). 2023).

(C) A foundation model for materials modeling, which is based onMaterials Project data. MACE-MP-0 is capable of molecular dynamics simulation across a wide

variety of chemistries in the solid, liquid, and gaseous phases.213 (Reproduced with permission from Ref.,213 ª The Author(s). 2023).
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combination of 45 elements. Unlike existing NNPs tailored for specific materials, PFP’s versatility is demonstrated in diverse applications,

including lithiumdiffusion in LiFeSO4F, molecular adsorption inmetal-organic frameworks, Cu-Au alloy transitions, and Fischer–Tropsch cata-

lyst discovery. PFP shows high quantitative accuracy and computational efficiency, even reproducing structures and properties not initially

considered in its design.

In addition, Shyue et al.211 introducea universalMLIPmodel (M3GNet) basedongraph neural networkswith three-body interactions, trained

on the extensiveMaterials Project database.M3GNet canbe applied to awide range ofmaterials for structural relaxation, dynamic simulations,

and property prediction. Figure 8A reveals the distribution of the initial datasets and the accuracy on the test dataset compared to DFT calcu-

lations. UsingM3GNet, around 1.8 million potentially stable materials were identified from 31million hypothetical structures, with 1,578 out of

the top2,000 low-energymaterials confirmedas stable viaDFT.M3GNet’s broadapplicability extends tomolecular dynamics simulations, iden-

tifying potential lithium superionic conductors and serving as a surrogate for DFT in other structural exploration techniques. Its current version,

the best achievable with existing data, anticipates future enhancements through more accurate training data and active learning strategies.

For many-body interactions, recent research focuses on the accuracy of MLIPs for bulk solid and liquid phases of d-block elements (TM23

dataset).212 It compares two FLARE and NequIP models in transition metals, revealing that early transition metals pose a greater challenge in

learning accuracy than later groupmetals, as shown in Figure 8B. The complexity of interatomic interactions varies among thesemetals, influ-

enced by their electronic structures and themany-body character of interactions. Additionally, based on 1.5 million structures dataset, Ceder

et al. also trained a universal graphMLIP, named Crystal Hamiltonian Graph Neural Network (CHGNet), to learn and accurately represent the

orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom.

Another work introducesMACE-MP-0,213 as shown in Figure 8C, a general-purposemachine-learned force fieldmodel, trained on a public

database of 150k inorganic crystals. Capable of stable molecular dynamics across various materials, MACE-MP-0 marks a significant advance-

ment in atomistic modeling, demonstrating both qualitative and quantitative accuracy in diverse physical science problems, including water

and aqueous systems, catalysis, metal–organic frameworks and the performance on calculating phonon dispersions, bulk and shearmoduli of

crystals, atomic energies and lattice constants of elemental solids, the cohesive energies of molecular crystals, the reaction barrier heights,

and the homonuclear diatomic binding curves. Despite its broad applicability, the model has limitations, including its reliance on the PBE
12 iScience 27, 109673, May 17, 2024
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exchange-correlation functional, lack of explicit long-range interactions, and challenges in capturing intermolecular interactions and high-

pressure conditions. Future improvements may involve refitting with modern functionals, incorporating electrostatic and spin interactions,

and extending training data. MACE-MP-0, while a foundational model, still requires fine-tuning for specific systems, but shows promise as

a step toward democratizing MLIP by lowering barriers to entry in material simulations.214

PERSPECTIVE OF MACHINE LEARNING POTENTIAL

Standard datasets for machine learning interatomic potentials

The vast range of time and spatial scales in material computational simulations, from quantum-level calculations to macroscopic continuum

models, results in a diverse array of simulation software and data formats tailored to specific applications. Therefore, standard datasets play a

crucial role in the development and evaluation of MLIPs. These datasets serve as the foundational tools upon which the robustness, accuracy,

and versatility of MLIPs are built and assessed. Standard datasets provide a common ground for benchmarking various MLIP models. By

training and testing different MLIPs on the same dataset, researchers can objectively compare their performance, ensuring a fair and consis-

tent evaluation of different approaches. Particularly, the diversity and comprehensiveness of high-quality standard datasets are essential for

training and validating MLIPs, which determine the generalization capability of the models. In order to learn a broader spectrum of atomic

interactions, the initial datasets must cover a wide range of chemical compositions, crystal structures, and physical conditions.

To overcome the lack of standardized, universal material datasets for MLIPs, firstly, the development of unified data formats and interop-

erability standards across different simulation software will facilitate data sharing and integration, such as Pymatgen,215 ASE,216 and so forth.

Secondly, establishing centralized databases for material properties, accessible to researchers worldwide, could promote data standardiza-

tion, consisting of material structure databases, such as Materials Project,217 AFLOW,119,218 Materials Cloud,120 and ALKEMIE-Matter DB.122

Finally, leveragingmachine learning and artificial intelligence to harmonize and translate betweendifferent data formats could bridge the gap

between diverse datasets, enhancing the field’s overall efficiency. Recently, Justin et al.47 reported the ANI-1ccx and ANI-1x datasets, which

especially can be used to build generalized and accurate ML models and assess the accuracy of different models.

Trade-off between accuracy and complexity in machine learning interatomic potentials

The development ofMLIPs often faces a critical trade-off between accuracy and complexity. As the complexity of anMLIP increases to achieve

higher accuracy, the computational efficiency typically decreases. This can negate one of the main advantages of MLIPs over traditional ab

initio methods, which is to enable faster and larger-scale simulations. In addition, a more complex MLIP might fit the training data exception-

ally well, but lead to poor performance on unseen data. Finally, complexmodelsmay not scale well with system size, limiting their applicability

to larger systems or longer time scales, which are often the primary motivation for usingMLIPs. Therefore, it is preferable to construct models

with minimal complexity while ensuring accuracy for specific material problems.

To balance accuracy and complexity in ML models, feature engineering and dimensionality reduction methods are essential to improve

the quality of datasets while retrieving material information from the data ocean. In the training process, regularization techniques such as

Lasso or Ridge are utilized to prevent overfitting without overly simplifying the model. Additionally, cross-validation and ensemble methods

are used to combinemultiplemodels to improve accuracy without significantly increasing individual model complexity. Lastly, iterative refine-

ment, by gradually adjusting model complexity based on performance metrics, can ensure a balanced approach, optimizing both accuracy

and computational efficiency.

Transferability and generalization

TrainingMLIPs involves datasets of immense complexity and size, whose cost associated with gathering data, computational processing, and

model training is significant. Therefore, transferability and generalization are cornerstone features that determine the practical usefulness of

MLIPs in diverse computational simulations. Transferable and generalizable MLIPs can accurately predict the potential energy surface for a

wide range of chemical elements and compounds, not just those included in the training dataset. This is crucial for the exploration ofmaterials

and chemical phenomena. If MLIPs can generalize well, it reduces the need to create and train other models for every uniquematerial system,

saving computational resources and time.

To extend MLIP models that are applicable across various materials, incorporating a diverse dataset representing a broad range of

materials and their properties can enhance the model’s generalizability. Second, using transfer learning techniques allows models trained

on one material to adapt to new materials with minimal additional training. Finally, developing models with scalable architectures (such as

the Transformer model in large language model) ensures they can handle the complexity of different materials. In addition, a unified API

for MLIPs supports the integration of these models into existing computational frameworks, enabling seamless workflow and interoperability

between different simulation tools. Lastly, continuous validation and updating of the model with strange data ensure its applicability to

emerging materials. This further democratizes access to advanced simulation capabilities, allowing researchers to readily apply MLIPs across

various applications without needing to navigate disparate software ecosystems.

CONCLUSIONS

In this review, the advancements and applications of MLIPs in materials science are explored, highlighting their role in overcoming the lim-

itations of high computational costs and specificity inherent in density-functional theory and classical molecular dynamics. The four essential
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stages of MLIP development are thoroughly examined, including data generation techniques, material structure descriptors, machine

learning algorithms, and executable software, providing a roadmap for researchers in the field.

A significant portion of the review is dedicated to the practical applications of MLIPs in various domains such as phase-change memory

materials, structural searching, material properties prediction, and the development of pre-trained universal models. These applications

showcase the versatility and robustness of MLIPs in addressing complex material science challenges. Notably, the review delves into the

future perspectives of MLIPs, discussing the need for standard datasets, the balance between accuracy and complexity, and the importance

of transferability and generalization in these models.

In summary, this review paints a comprehensive picture of the current state and future potential of MLIPs in materials science. It under-

scores the transformative impact of MLIPs in bridging the gap between small-scale models and realistic device-scale simulations, thereby

revolutionizing the approach to materials research and design. The advancements in MLIPs promise not only enhanced efficiency and accu-

racy but also open new horizons for material discovery and innovation.
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(2013). On representing chemical
environments. Phys. Rev. B 87, 184115.
https://doi.org/10.1103/PhysRevB.87.
184115.

77. Deringer, V.L., and Csányi, G. (2017).
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A.M., Kovács, D.P., Riebesell, J., Advincula,
X.R., Asta, M., Baldwin, W.J., Bernstein, N.,
et al. (2023). A foundation model for
atomistic materials chemistry. Preprint at
ArXiv. https://doi.org/10.48550/arXiv.2401.
00096.

214. Deng, B., Zhong, P., Jun, K., Riebesell, J.,
Han, K., Bartel, C.J., and Ceder, G. (2023).
CHGNet as a pretrained universal neural
network potential for charge-informed
atomistic modelling. Nat. Mach. Intell. 5,
1031–1041. https://doi.org/10.1038/s42256-
023-00716-3.

215. Ong, S.P., Richards, W.D., Jain, A., Hautier,
G., Kocher, M., Cholia, S., Gunter, D.,
Chevrier, V.L., Persson, K.A., and Ceder, G.
(2013). Python materials genomics
(pymatgen): a robust, open-source python
library for materials analysis. Comput.
Mater. Sci. 68, 314–319. https://doi.org/10.
1016/j.commatsci.2012.10.028.

216. Hjorth Larsen, A., Jørgen Mortensen, J.,
Blomqvist, J., Castelli, I.E., Christensen, R.,
Dułak, M., Friis, J., Groves, M.N., Hammer,
B., Hargus, C., et al. (2017). The atomic
simulation environment—a python library
for working with atoms. J. Phys. Condens.
Matter 29, 273002. https://doi.org/10.1088/
1361-648x/aa680e.

217. Jain, A., Persson, K.A., and Ceder, G. (2016).
Research update: the materials genome
initiative: data sharing and the impact of
collaborative ab initio databases. Apl.
Mater. 4, 053102. https://doi.org/10.1063/1.
4944683.

218. Curtarolo, S., Setyawan, W., Wang, S., Xue,
J., Yang, K., Taylor, R.H., Nelson, L.J., Hart,
G.L., Sanvito, S., Buongiorno-Nardelli, M.,
et al. (2012). AFLOWLIB. org: a distributed
materials properties repository from high-
throughput ab initio calculations. Comput.
Mater. Sci. 58, 227–235. https://doi.org/10.
1016/j.commatsci.2012.02.002.

219. Wang, G., and Sun, Z. (2023). Atomic
insights into device-scale phase-change
memory materials using machine learning
potential. Sci. Bull. 68, 3105–3107. https://
doi.org/10.1016/j.scib.2023.11.038.

220. Imbalzano, G., Anelli, A., Giofré, D., Klees,
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(2022). Gemnet: universal directional graph
neural networks for molecules. Adv. Neural
Inf. Process. Syst. 34, 6790–6802. https://doi.
org/10.48550/arXiv.2106.08903.

238. Wang, Z., Wang, C., Zhao, S., Xu, Y., Hao, S.,
Hsieh, C.Y., Gu, B.-L., and Duan, W. (2022).
Heterogeneous relational message passing
networks for molecular dynamics
simulations. npj Comput. Mater. 8, 53.
https://doi.org/10.1038/s41524-022-
00739-1.

239. Musaelian, A., Batzner, S., Johansson, A.,
Sun, L., Owen, C.J., Kornbluth, M., and
Kozinsky, B. (2023). Learning local
equivariant representations for large-scale
atomistic dynamics. Nat. Commun. 14, 579.
https://doi.org/10.1038/s41467-023-
36329-y.

240. Anderson, B., Hy, T.-S., and Kondor, R.
(2019). Cormorant: covariant molecular
neural networks. Adv. Neural Inf. Process.
Syst. 32, 1–16. https://doi.org/10.48550/
arXiv.1906.04015.

241. Bereau, T., DiStasio, R.A., Jr., Tkatchenko,
A., and von Lilienfeld, O.A. (2018). Non-
covalent interactions across organic and
biological subsets of chemical space:
physics-based potentials parametrized from
machine learning. J. Chem. Phys. 148,
241706. https://doi.org/10.1063/1.5009502.

242. Allen, A.E.A., Csányi, G., Ortner, C., and
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