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Misestimation of heritability and prediction
accuracy of male-pattern baldness
Chloe X. Yap 1, Julia Sidorenko1,2, Riccardo E. Marioni3,4, Loic Yengo1, Naomi R. Wray 1,5 &

Peter M. Visscher 1,5

Pirastu et al.1 perform the largest GWAS to date on male-pattern
baldness (MPB), discover 71 loci (of which 30 are new) and
draw inference about its heritability and genetic architecture.
They report a SNP heritability on the scale of liability (hl2) of
94%, with 38% of total heritability explained by the 71 loci. From
these estimates, they draw strong conclusions about the genetic
architecture of MPB. However, the chosen definition of the
phenotype and the applied transformation to the unobserved
scale of liability have led to a large upwards bias of the estimates
of these parameters, as shown here in theory and from data.

In the UK Biobank (UKB), MPB is measured on a four-point
ordinal scale (values 1–4, with 1 representing no sign of bald-
ness). Using the same UKB sub-sample selection as Pirastu
et al. (unrelated British, genetically Caucasian, n= 54,813), the
proportion of men with self-report MPB in each category is
0.317, 0.229, 0.269 and 0.185, respectively. In analysis, the
authors ignore 23% of the population with a score of 2, and
define ‘cases’ as those with self-reported scores of 3 or 4, and
‘controls’ as self-reported scores of 1, leading to a ‘prevalence’
of 59%. Yet the reported hl2 estimates are presented as if
parameters in the (whole) population. An implicit assumption
of their approach is that those self-reporting a score of 2, which
they consider to be ‘rather dubious baldness’, are randomly
drawn from the population. To determine if this assumption is
valid, we took the 47 most associated independent autosomal
loci that were identified independently2–6,10 of the UKB data
(to avoid bias) and then used the same UKB data as in Pirastu
et al. to estimate the frequencies of the trait-increasing alleles
for each of the 4 scores. The results (Fig. 1) show that these
frequencies are approximately linear in scores 1–4, and clearly
score 2 is not random with respect to liability. Moreover, the
observed pattern is consistent with an additive model on the
scale of these scores. Therefore, since a score of 2 is correlated
with liability to MPB, ignoring individuals with a score of 2,
without accounting for the resulting extreme tail ascertainment,
will lead to a bias in the estimate of genetic parameters. We

derived from theory the general transformation equation that
should be applied to the estimate of heritability made on the
binary observed scale in samples that are ascertained based on
tail selection and/or oversampling of cases or controls (h2o½s�) to
achieve unbiased estimates of hl2 (equation [1] in
Supplementary Methods).

We first replicated the results of Pirastu et al., using their sam-
pling design and model (as best as we could deduce from the details
provided) and using the same UK Biobank data. The estimate h2o½s�
for scores 3+ 4 vs. score 1 using GCTA7 was 0.61 (s.e.= 0.03). If
this is transformed to the scale of liability using the standard
equation8 (equation [2] in Supplementary Methods) then the esti-
mate of hl2 is 0.98 (standard error, s.e.= 0.04) similar to the estimate
reported by Pirastu et al. However, the correct transformation
(equation [1] in Supplementary Methods) generates an estimate of
0.64 (s.e.= 0.03). To empirically explore assumptions of the liability
threshold model, we analysed random samples of 20,000 males
dichotomised in a number of ways (Table 1). These analyses gen-
erated estimates of hl2 in the range of 0.61–0.75. We also analysed
MPB on the continuous scale of 1–4, which does not remove
information through dichotomisation, transforming the estimate of
heritability to the liability scale hl2= 0.69 (s.e.= 0.03)9 (equation [3]
in Supplementary Methods).

We estimated the variance explained by the 107 SNP predictor
from the difference in the estimate of total phenotypic variance in
models excluding and including the predictor as a fixed effect. This
method for estimation of the contribution of the SNP predictor to
trait variation differs to that presented by Pirastu et al. In contrast
to their approach, it does not depend on unbiased estimation of
genetic variance in the two models. Moreover, it is accurate (the s.e.
of estimating a phenotypic variance is small) and quantifies a
parameter that is most relevant to epidemiology and risk predic-
tion. From the estimate of the variance explained by the predictor,
we calculated the proportion of variance it explained on the
observed scale and then transformed this proportion to the scale of
liability. Results (Table 1) imply that the variance in liability
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Fig. 1 Trait-increasing allele frequency by MPB score in UKB for 47 genome-wide significant GWAS loci identified in refs. 2–6,10. For each of the 47 loci, the
trait-increasing allele frequency in the UK Biobank sample is given on the y-axis, as a deviation from its frequency for men with a MPB score of 1. The x-axis
labels represent the observed MPB categories in the UK Biobank

Table 1 Estimates of heritability of liability of MPB using different random samples of 20,000 men ascertained in different ways

MPB scores for cases MPB scores for controls KL KU P h2o½s�ðs:e:Þ h2l ðs:e:Þ R2a

4 1,2,3 0.81 0.19 0.19 0.36 (0.03) 0.75 (0.06) 0.15
3,4 1,2 0.54 0.46 0.46 0.46 (0.03) 0.72 (0.05) 0.16
2,3,4 1 0.68 0.32 0.32 0.41 (0.03) 0.70 (0.05) 0.17
3,4b 1 0.32 0.46 0.59 0.61 (0.03) 0.64 (0.03) 0.16
4 1 0.32 0.19 0.37 0.96 (0.03) 0.63 (0.02) 0.13
Quantitative 1,2,3,4 0.59 (0.03) 0.69 (0.03) 0.16

KL proportion of the population in the lower tail, extreme controls. KU proportion of the population in the upper tail, cases. P proportion of the samples used for analyses that are cases.
aProportion of variance in liability explained by the 107-SNP predictor
bThe sampling strategy conducted by Pirastu et al.
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attributable to this predictor is ~15–20%, substantially less than
claimed by the authors.

In conclusion, the evidence presented by Pirastu et al. is not
consistent with the claims that virtually all variation in liability to
MPB is genetic and that common SNPs capture all that variation. A
correct transformation from the observed scale to a scale of liability
results in an estimate of SNP heritability of ~60–70%, and the 71-loci
(107-SNP predictor) explains about 15–20% of variation in liability.
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