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In recent years white adipose tissue inflammation has been
recognized to be associated with obesity. Adipocytes and
adipose tissue associated macrophages (ATMs) secrete bioac-
tive molecules, including adipokines, chemokines/cytokines
and free fatty acids that modulate the development of low-
grade inflammation and insulin resistance responsible for
obesity-related metabolic and cardiovascular diseases. Nuclear
receptors, notably peroxisome-proliferator-activated receptors,
are sensors of dietary lipids and control transcriptional pro-
grams of key metabolic and inflammatory pathways in adipo-
cytes and macrophages. This review focuses on mechanisms
by which nuclear receptors maintain white adipose tissue
homeostasis. The identification of ATMs as active players in
the initiation of chronic inflammation and the links between
inflammatory signaling and metabolic dysfunction will be
presented, followed by discussion of recent evidence for
nuclear receptors in ATM function, with an emphasis on the
paracrine interaction between adipocytes and ATMs.

Introduction

A primary role for adipocytes is energy storage. Adipocytes can
synthesize energy rich triacylglycerol from glucose or simply store
fats transported by very low-density lipoproteins. The compact,
anhydrous fat droplets holding triacylglycerol within adipocytes
can conveniently sustain energy requirements over periods of
starvation that likely affected our hunter-gatherer ancestors.
However, the discovery of leptin in 19941 has shifted our vision
of adipose tissue toward that of an active endocrine tissue.2 To
date, many more adipocyte-secreted molecules have been identi-
fied. Collectively termed adipokines, these molecules regulate

whole body homeostasis through endocrine3 and autocrine/
paracrine activities.4 It is now also clear that the maladaptation
of adipocytes to over-nutrition in obesity is causative to metabolic
dysfunction. Dietary overload and an inactive lifestyle are modern
phenomena leading to excess accumulation of body fat responsible
for a chronic inflammatory disease that is tightly connected to
insulin resistance, thereby linking obesity with its metabolic
complications.5 This inflammation does not rely on the classic
instigators of immune responses, e.g., infection or tissue injury,
which initiate the recruitment of leukocytes toward affected
tissues. Rather, it is an immunological response to adipose tissue
malfunction. This type of inflammation is referred to as para-
inflammation6 and is dependent on white adipose tissue (WAT)
infiltration by macrophages.7-9 Mechanisms involved in the self-
maintenance of this inflammatory state in response to chronic
caloric overload are currently being investigated. Evidence
suggests that adipocytes and adipose tissue resident macrophages
(ATMs) secrete bioactive molecules including inflammatory
and anti-inflammatory cytokines that could be related to the
development of low-grade systemic inflammation and insulin
resistance.10-14

Studies have shown that nuclear receptors are intracellular
points of convergence for metabolism and inflammation. In the
past decade, several nuclear receptors have been identified as
sensors for dietary lipids that regulate transcriptional programs
of key metabolic pathways. Recent findings further highlighted a
role for nuclear receptors in the pathophysiology of the metabolic
syndrome through the control of adipocyte function and ATM
activation. This review will discuss the mechanisms by which
nuclear receptors modulate WAT signaling and how the activities
of nuclear receptors in WAT relate to the metabolic complications
of obesity. A report of the link between chronic inflammation,

*Correspondence to: Chih-Hao Lee; Email: clee@hsph.harvard.edu
Submitted: 11/22/11; Accepted: 12/13/11
http://dx.doi.org/10.4161/adip.1.1.19036

Adipocyte 1:1, 4–12; January/February/March 2012; G 2012 Landes Bioscience

4 Adipocyte Volume 1 Issue 1

http://dx.doi.org/10.4161/adip.1.1.19036


© 2012 Landes Bioscience.

Do not distribute.

ATMs and metabolic diseases will be presented, followed by
discussion of the involvement of nuclear receptors in maintaining
homeostasis within WAT. We will also review recent evidence for
nuclear receptors in ATM function, focusing on the paracrine
interaction between adipocytes and ATMs.

Adipose Tissue: An Important Source
of Metabolic Inflammation

An increase in fat mass as a result of sustained positive energy
balance correlates with changes in endocrine and metabolic
functions. Notably, WAT from obese individuals show increases
in inflammatory mediators, such as tumor necrosis factor-a
(TNF-a),10 interleukin 6 (IL-6),15 inducible nitric oxide synthase
(iNOS),16 tumor growth factor β1 (TGF-β1),17 and monocyte
chemotactic protein-1 (MCP-1).11 In addition to adipocytes, the
stromal-vascular fraction of WAT contains a heterogenic cellular
population, including endothelial cells, pre-adipocytes/fibroblasts,
macrophages and other immune cells (e.g., T cells and eosino-
phils). In 2003, two reports provided the first evidence that
obesity is associated with increased presence of macrophages in
WAT in mouse models of obesity. These studies identified gene
transcripts encoding proteins distinctive of macrophages in
perigonadal fat tissues.8,9 Gene expression in macrophage and
non-macrophage cells from WAT also showed that ATMs are the
main source of TNF-a and other pro-inflammatory molecules in
adipose tissue.8,9 Based on the results in mice, histological studies
in human showed that the quantity of macrophage in WAT
correlated positively with body mass index and adipocyte size.8

Follow-up studies demonstrated that human visceral WAT, the
accumulation of which is associated with alteration in lipid profile
and insulin sensitivity,18-23 also contains macrophages in greater
number in obesity.12 In paired biopsies obtained from obese
adults during bariatric surgery, there were twice as many
macrophages in visceral as in subcutaneous WAT.24 Similar to
the results derived from mouse models, studies of human WAT
showed that non-adipocyte cells were the main sources of
inflammatory cytokines.7,12 Analysis of adipose tissue in obesity
shows the convergence of macrophages on adipocytes of necrotic
appearance, described as “crown-like structures.”25 Collectively,
these findings suggest that WAT in the obese state is associated
with sustained inflammation, characterized by excessive macro-
phage infiltration.

The M1/M2 Dichotomy of Adipose Tissue
Macrophages

Identification of different subsets of macrophages in WAT
represents a second significant finding in understanding the
pathogenesis of metabolic diseases. Macrophages are heterogen-
eous, with phenotypic differences associated with differential
expression patterns of cytokines, surface markers and metabolic
enzymes. Two separate states are commonly used to define
macrophage activation, although they likely represent extremes
of a continuum. Pro-inflammatory mediators and microbial
triggers, such as the bacterial lipopolysaccharide (LPS), a major

component of the outer membrane of Gram-negative bacteria,
induce M1 or “classically activated” macrophages. M1 macro-
phages produce pro-inflammatory cytokines (e.g., TNF-a, IL-6
and IL-1β) and reactive oxygen species such as nitric oxide via
activation of iNOS. Whereas the M1 macrophages are essential
for removal of pathogens, long-lasting activation of this phenotype
is considered to be deleterious to body homeostasis. In contrast,
the M2 or “alternatively activated” macrophage produces IL-10 to
suppress inflammation (for reviews see refs. 26 and 27). Follow-
ing the reports that obesity increases macrophage infiltration in
WAT, it was shown that diet-induced obesity is also associated
with a change in the polarization of ATMs from the M2 state
in lean mice to a predominantly M1 proinflammatory state.13

Therefore, the balance between M1 and M2 macrophages
controls the progression of immune responses in WAT, which
is thought to have a key role in the development of metabolic
diseases (Fig. 1).

Links Between Inflammation and Insulin Resistance

Evidence supporting pro-inflammatory signaling-dependent
induction of metabolic dysfunction preceded our understanding
of adipocyte/macrophage interactions. Data exists showing a
positive correlation between macrophage infiltration of visceral fat
and the severity of hepatic damage in obese patients.24 Specific
knockout experiments in the myeloid lineage provide insights
into the involvement of macrophages in the anomalies of the
metabolic syndrome. However, these studies did not specify ATM
contributions.

Suppression of inflammation in obesity improves insulin
resistance. Hotamisligil et al. first observed that WAT and
circulating TNF-a protein levels were elevated in obese rodents, as
compared with lean controls. Neutralization of TNF-a action
with a recombinant soluble TNF-a receptor in obese fa/fa rats
caused an increase in peripheral glucose uptake in response to
insulin.10 The definitive proof that inflammation and increased
cytokine levels in obesity are responsible for insulin resistance
was obtained four years later using genetic models of mice lack-
ing TNF-a or TNF-a receptors. Absence of TNFa signaling
resulted in improved insulin sensitivity in both diet-induced obese
mice and the ob/ob model of obesity.14 Inflammatory signaling
pathways, including that of TNFa, are mediated by several
protein kinases, such as IkB kinase (IKKs) and c-Jun N-terminal
kinases (JNKs). Mice lacking Ikk-β, a regulator of inflammatory
responses through activation of NFkB (nuclear factor kappa B),
in myeloid cells are protected from insulin resistance.28 Studies
on JNK1 action during development of insulin resistance support
a common mechanism through which JNK1 activation in insulin
target cells directly interferes with insulin signaling.29 Jnk12/2

mice exhibit a lean phenotype, are protected from diet-induced
obesity and have reduced expression of pro-inflammatory
mediators such as IL-6, TNFa, IL-1β, migration inhibitor factor
and MCP-1, compared with wild-type mice. Subsequent work
demonstrated that removal of Jnk1 in the non-hematopoietic
tissues protects mice from insulin resistance caused by high fat
diet, partly through decreased adiposity. Jnk1 deletion from
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hematopoietic cells has no effect on adiposity but confers
protection against high fat diet-induced inflammation and insulin
resistance.30 However, this latter result was not reproducible in a
separate study.31 Lastly, MCP-1, a chemokine that recruits
macrophages, and its receptor CCR2, have been shown to
promote insulin resistance.11,32 Interestingly, addition of MCP-1
to mature adipocytes in vitro decreased insulin-stimulated glucose
uptake and the expression of several adipogenic genes, suggest-
ing that chemokines may have a direct impact on metabolic
homeostasis, in addition to their role in mediating immune cell
infiltration.11

Loss of alternatively activated macrophages facilitates insulin
resistance. Using mouse models in which macrophage alternative
activation (M2) was genetically impaired, susceptibility to diet-
induced obesity, hepatic steatosis, insulin resistance and glucose
intolerance all increased.33,34 We will discuss these studies in
greater details below.

Macrophage insulin signaling in inflammation and metabolic
diseases. Insulin signaling is thought to affect macrophage
function. However, mechanistic insights in this area are lacking.
Studies have shown that deletion of the gene Sorb1 encoding
Cbl-associated protein (Cap), a molecule implicated in insulin-
stimulated glucose uptake, protects against high fat diet-induced
insulin resistance and reduces inflammation. The insulin sensiti-
vity phenotype could be transferred to wild-type mice on high
fat diet by transplantation of Sorb12/2 bone marrow,35 supporting
a role for macrophage insulin signaling in modulation of systemic
insulin sensitivity. Studies in atherosclerosis with insulin receptor
knock out macrophages show conflicting results. In the back-
ground of LDL receptor knockout mice, these macrophages
show an impaired ability to handle ER stress-induced apoptosis
leading to worsening of atherosclerotic plaques.36 In contrast,
insulin receptor and apoE double knockout macrophages were
associated with less inflammation and smaller atherosclerotic
lesions.37

The Origin of Metabolic Inflammation in Obesity

The mechanism underlying metabolic dysfunction/obesity induced
chronic inflammation is still unclear. The so-called “portal
hypothesis” proposes that increased lipolysis in the visceral fat of
obese individuals exposes the liver to high concentrations of free
fatty acids (FFA), eventually contributing to liver insulin resist-
ance.38 Similar effects from FFA are seen in other tissues, such as
muscle and pancreas (a process termed lipotoxicity, for a review see
ref. 39). FFA have been shown to directly activate the macrophage
M1 response in vitro (Fig. 2). For example, toll-like receptor 4
(TLR4), the receptor for LPS, was shown to mediate the effects of
FFA on inflammation. The capacity of FFA to induce inflammatory
signaling and cytokine expression in adipocytes and macrophages is
decreased in the absence of TLR4. Furthermore, Tlr42/2 mice are
protected from diet-induced insulin resistance.40 While it is known
that visceral WAT has higher levels of lipolysis and contains more
ATMs than abdominal subcutaneous WAT,41-43 recent studies have
characterized the effects of weight loss and fasting on ATMs in mice
and identified a role for lipolysis in macrophage recruitment.44 First,
increases in ATM number correlate with plasma concentrations of
FFA and adipose tissue lipolysis. Second, dietary and genetic
modifications aimed at reducing lipolysis or weight gain decreased
ATM accumulation. Finally, macrophage/adipocyte co-cultures
suggested that local lipid fluxes are important regulators of ATM
activation. Taken together, these studies are consistent with the
possibility that withinWAT, pro-inflammatory adipokines and FFA
play a major role in the initiation of chronic inflammation and
metabolic dysregulation that are observed in obesity (Fig. 2).

Lipid Sensing Nuclear Receptors
in Adipose Tissue Homeostasis

Although the findings discussed above strongly suggest a link
between increased adiposity, systemic inflammation and insulin

Figure 1.White adipose tissue and the metabolic complications of obesity. In addition to its function in energy storage, adipose tissue is now considered
an endocrine organ, producing circulating molecules, including adipokines (e.g., leptin and adiponectin), inflammatory mediators (e.g., TNF-a, IL-6, IL-1b
and MCP-1) and bioactive lipids (e.g., FFA) that have important impacts on metabolic homeostasis. The maladaptation of adipocytes in response to
chronic positive energy balance leads to increased production of pro-inflammatory chemokines/cytokines and release of non-esterified FFA, resulting in
the infiltration of pro-inflammatory macrophages (M1) and a shift in the balance between pro- and anti-inflammatory (M2) macrophage populations
within white adipose tissues. This so called “para-inflammation” or metabolic inflammation is associated with obesity-related metabolic syndrome.
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resistance through the activation of ATMs, a critical unanswered
question is whether ATM activation can be modulated pharma-
cologically. Since certain nuclear receptors act as sensors for
dietary fats and are also involved in the regulation of inflam-
mation, they represent attractive druggable targets to control
metabolic inflammation and associated diseases. We will focus
on members of the fatty acid sensing peroxisome proliferator-
activated receptor (PPAR) family, as they are known to regulate
adipocyte function and macrophage immune response and as
such, play an important role in WAT homeostasis.

The Transcriptional Action of Nuclear Receptors

Nuclear receptors are ligand-activated transcription factors
responsible for the control of diverse biological processes.45 The
biochemical studies that first described the action of steroid
hormones provided a general mode of action for a large family of
nuclear receptors responsive to a variety of lipophilic signaling
molecules, including steroids, retinoids, dietary lipids and xeno-
biotics.46 Most of the receptors contain a conserved structure with
a heterogeneous N-terminal domain, a central DNA binding
domain and a C-terminal ligand-binding domain, responsible for
ligand binding, receptor dimerization and ligand-dependent
activation of transcription.46 Several members in this superfamily,
such as PPARs, liver X receptors (LXRs), farnesoid X receptor
(FXR) and the retinoid-related orphan receptors (RORs), are
thought to be metabolic sensors, as their ligands include fatty

acids and cholesterol derivatives. Activation of these receptors,
notably PPARs and LXRs, using synthetic ligands improves
metabolic homeostasis.47 Nuclear receptors modulate gene
expression through recruitment of large protein complexes, which
modify the structure of chromatin through histone modification
(Fig. 3). Unliganded receptors interact with co-repressors, most
notably silencing mediator of retinoic and thyroid hormone
receptors (SMRT) and nuclear receptor co-repressor (NCoR),
which recruit histone deacetylases (HDACs), particularly
HDAC3, to deacetylate histones leading to a tighter chromatin
structure and less accessible promoters.48,49 Co-activators such
as PPARc coactivator-1a (PGC-1a) and steroid receptor co-
activators (SRC1/2/3) and histone acetylases (p300/CBP) are
recruited to ligand-bound nuclear receptors to upregulate gene
expression.50-52 Ligand-dependent repression of inflammatory
gene expression by nuclear receptors is less understood and is
mediated by several unconventional mechanisms (described
below).

Nuclear Receptors and Adipocyte Function

The PPARs (PPARa, β/d and c) are activated by dietary fatty
acids and have been shown to modulate various cellular functions,
mostly related to fat transport, storage and oxidation. PPARc in
particular has been well studied in its regulation of adipose tissue.
The mammalian PPARc was cloned by analysis of the adipose-
specific enhancer from the adipocyte protein 2 (ap2) gene, an
adipocyte-specific fatty-acid binding protein.53 It later became
clear that PPARc is needed for adipocyte differentiation and
maintenance in vivo54-58 and that anti-diabetic drugs, thiazolidi-
nediones (TZDs), were synthetic ligands for PPARc.59,60 It is
thought that TZDs improve insulin sensitivity partly through
promoting fatty acid storage as triglycerides in adipocytes, thereby
reducing lipotoxicity. PPARd, on the other hand, is a regulator
of fat burning.61 In genetically predisposed mouse models of
obesity (db/db), overexpression of constitutively active PPARd
in adipocytes induces expression of genes involved in fatty acid
oxidation and energy dissipation, which leads to reduced adiposity
and improved lipid profiles.62 Treatment of db/db mice with
a PPARd agonist improves insulin sensitivity, while PPARd-
deficient mice show reduced energy expenditure.63 PPARd is also
involved in brown adipose tissue (BAT) metabolism. Unlike
WAT that stores excess energy in the form of triacylglycerol,
BAT dissipates energy as heat. In BAT, PPARd regulates
mitochondrial oxidative metabolism and thermogenesis through
PGC-1a.64 PGC-1a is a cold-inducible, master regulator of
mitochondrial biogenesis.65,66 The SRC co-activators also play a
role in adipocyte differentiation and BAT thermogenesis.65,67-69

The role of co-repressors in PPAR-mediated lipid metabolism is
more complex. Disruption of SMRT-PPARc interaction leads
to spontaneous differentiation of pre-adipocytes to adipocytes.70

Increased SMRT-PPAR interaction in vivo causes obesity,
premature aging and related metabolic diseases due to suppressed
fatty acid oxidation and mitochondrial oxidative metabolism.71,72

Finally, recent work has identified NCoR as a negative regulator
of adipogenesis both in vivo73 and in vitro.74

Figure 2. Adipose tissue macrophages and the origin of metabolic
inflammation. In obesity, adipose tissue resident macrophages exhibit an
M1/pro-inflammatory phenotype. They are activated either by systemic
chronic inflammation before entering adipose tissues or by locally
produced inflammatory mediators. Histologically, they are seen to be
concentrated around dying fat cells (insert, top panel). These M1
macrophages produce pro-inflammatory cytokines (e.g., TNF-a and
IL-1b) known to induce metabolic dysfunction and insulin resistance in
neighboring adipocytes through inflammatory signaling kinases (e.g.,
JNK and IKKs), creating an unresolvable inflammatory response.
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Nuclear Receptors and Macrophage Activation

The notion that PPARc is critical for adipocyte differentiation
prompted investigation of similar functions in other cell types.
Early studies showed that PPARc was involved in a signaling
pathway controlling differentiation in monocytic cells,75,76

although later work using genetic models of PPARc2/2 mice
showed that macrophage differentiation was not critically
dependent on PPARc.77,78 These studies initiated a new field of
research examining the regulatory effects of nuclear receptors on
inflammation. We now know that in addition to the well charac-
terized immuno-suppressive activity of glucocorticoid receptor,
activation of several nuclear receptors, particularly PPARs and
LXRs, are able to modulate macrophage activation through several
anti-inflammatory mechanisms or by Th2 polarization.

Anti-inflammatory mechanisms. Previous work examining
anti-inflammatory effects of PPARs was conducted mainly in
the macrophage in the context of vascular inflammation and
atherosclerosis. However, PPARs are expressed in several cell
types in the vasculature (e.g., immune cells, endothelial cells and
smooth muscle cells) and have been shown to inhibit the

production of several inflammatory mediators and cytokines
in these cells. For example, treatment with PPARa agonist
fenofibrate in patients with hyperlipidemia and atherosclerosis
decreases circulating levels of fibrinogen, IL-6, CRP, IFN-c and
TNF-a.79,80 In aortic smooth muscle cells, PPARa inhibits the
expression of classical mediators of inflammation such as IL-6
and cyclooxygenase-2 via repression of NFkB signaling.79 PPARc
activation inhibits the expression of iNOS, gelatinase B and
scavenger receptor A in response to the prostaglandin D2
metabolite, 15-deoxy-prostaglandin J2 (15dPGJ2), and synthetic
PPARc ligands.81 PPARc expression was shown to be induced
by IL-4 in macrophages82 and was later demonstrated to have a
crucial role in macrophage M2 polarization (discussed below). It
was proposed that PPARc inhibited inflammation by antagonist
actions on the activities of inflammatory transcription factors,
including activator protein 1 (AP-1), NFkB and signal transducer
and activator of transcription 1 (STAT1). However, several syn-
thetic and natural PPARc agonists at higher concentrations pro-
duce anti-inflammatory responses through PPARc-independent
mechanisms, such as the direct inhibition and modification of
IKK-β.83 The Glass laboratory identified a transrepression

Figure 3. Mechanisms of nuclear receptor action in the macrophage. Nuclear receptors, in the form of homo- or heterodimers, regulate transcription
through differential recruitment of co-repressors (e.g., SMRT and NCoR) and co-activators (e.g., SRCs and PGC-1s). In the absence of ligand, nuclear
receptors recruit co-repressor complexes to actively repress transcription. Upon ligand binding, the conformation of the receptor changes, releasing the
co-repressor complex and recruiting co-activator complexes to activate transcription of target genes. There are at least three different mechanisms by
which nuclear receptors regulate target gene expression. The ligand-dependent inhibition of inflammatory gene expression involves unconventional
mechanisms (right). In the transrepression model, the liganded nuclear receptor is SUMOylated by SUMO ligase Pias1, which is then recruited to
promoters of NFkB target genes to block degradation of co-repressor complexes. In the repressor sequestration model, unliganded-PPARd/SMRT
sequesters the repressor BCL-6 by direct interaction. Upon ligand binding, BCL-6/SMRT dissociates from PPARd to repress pro-inflammatory target genes.
Liganded PPARd also controls the expression of M2 genes, thereby promoting macrophage alternative activation.
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mechanism whereby liganded nuclear receptors actually repress
transcription of inflammatory genes through post-translational
modifications and protein-protein interactions.84 In this model,
ligand-bound PPARc is SUMOylated, which in turn recruits
NCoR co-repressor complexes to directly repress NFkB target
genes (Fig. 3).85 Similar mechanisms were subsequently identified
for glucocorticoid receptor86 and LXR.87,88 Compared with the
other PPARs, less is known about the roles of PPARd in
inflammation. PPARd agonists also inhibit LPS-inducible genes.89

Lee et al. proposed a unique transcriptional pathway through
which PPARd exerts its anti-inflammatory effects by sequestering
the transcriptional repressor BCL-6 away from the promoters of
inflammatory genes, such as MCP-1, IL-1β and MMP-9.90 BCL-
6 is released from ligand-activated PPARd and becomes available
to inhibit inflammatory gene expression (Fig. 3).91

Th2 polarization. Th2 cytokines, particularly IL-4 and IL-13,
mediate M2 activation.26 The observation that both PPARc and
PPARd levels in macrophages are increased by IL-4/IL-13
initiated closer examination of the role of macrophage PPARs
in mouse models of diet-induced obesity.33,34,92-95 In the macro-
phage, IL-4/IL-13-induced alternative activation is associated
with increased fatty acid β-oxidation and oxidative metabolism,
programs that are transcriptionally controlled by PPARc and
PPARd.33,34,94,96,97 Accordingly, PPARd and PPARc were shown
to regulate the expression of certain M2 genes and control
alternative activation in the macrophage.33,34,93 Mice with myeloid
specific deletion of PPARd or PPARc show increased M1 and
decreased M2 markers in WAT and liver.33,34,92,93,98 Of note, in a
separate study, mice lacking PPARc or PPARd in hematopoietic
cells did not show expected metabolic phenotypes.99 Interestingly,
STAT6, a Th2 transcription factor, was shown to facilitate the

PPARc response to IL-4 at the transcriptional level in macro-
phages, with the net effect being an increase in the number of
regulated genes and in the magnitude of responses.100

Nuclear Receptors in Paracrine Interaction of Adipose
Tissue Resident Macrophages with Adipocytes

Given their important functions in adipocytes and macrophages,
activation of PPARs is expected to improve WAT homeostasis
and reduce metabolic inflammation. In adipocytes, PPARc and
PPARd reduce fatty acid efflux by promoting fat storage or
burning, respectively (Fig. 4). In macrophages, PPARs can
suppress inflammatory responses by anti-inflammatory mechan-
isms or by Th2 polarization. In fact, myeloid-specific PPAR
deletion experiments described above are consistent with the
notion that the beneficial activities of PPARs may rely in part on
their anti-inflammatory properties. PPARc deletion in macro-
phages is associated with impaired glucose tolerance and insulin
resistance in response to a high fat diet.33 Additionally, it has been
demonstrated that the insulin sensitizing effect of rosiglitazone
was decreased when PPARc was inactivated in macrophages.92

Kang et al. proposed a paracrine pathway in which adipose tissue-
derived IL-13 activates macrophage PPARd to modulate M2
activation (Fig. 4).34 Disruption of this pathway by myeloid-
specific PPARd gene deletion leads to WAT inflammation,
hepatosteatosis and systemic insulin resistance. Collectively, these
studies support the notion that the dynamics between adipocytes
and ATMs play a key role in the initiation of chronic inflam-
mation and demonstrate that the PPAR signaling pathway serves
as an important regulatory node in the control of lipid-induced
metabolic stress and “para-inflammation.”

Figure 4. Role of PPARs in the paracrine interaction between adipocytes and adipose tissue macrophages. As sensors of dietary fatty acids, PPARs play an
important role in maintenance of white adipose tissue homeostasis. In adipocytes, PPARc activation reduces fatty acid efflux by promoting fat storage
and increasing adiponectin production, which improves systemic lipid and glucose metabolism. In the macrophage, PPARs can suppress inflammatory
responses by anti-inflammatory mechanisms or by Th2 polarization, which increases the production of an anti-inflammatory cytokine, IL-10. Th2
cytokines are produced locally by many cell types (eosinophils, T lymphocytes, mast cells and adipocytes) to activate downstream transcription factors in
the macrophage, including STAT6 and PPARd/PPARc. Studies have demonstrated that disruption of the IL-13-PPARd paracrine pathway leads to white
adipose tissue inflammation and insulin resistance, highlighting the importance of PPAR signaling in controlling the initiation of metabolic inflammation.
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Conclusion

At the signaling level, inflammatory and metabolic processes are
integral and linked to components of metabolic diseases.
Modulation of the activities of nuclear receptors is a potential
therapeutic strategy to restore the imbalance of pro-inflammatory
and anti-inflammatory signaling for preventing and/or treating
obesity-related metabolic and cardiovascular diseases that are
thought to be triggered by unresolved, chronic inflammation. In
fact, PPAR agonists are currently used to treat type 2 diabetes and
dyslipidemia. However, the side effects of PPARc ligands in
cardiovascular complications have limited their use. Future studies

aiming to isolate localized effects of PPARs within the WAT
microenvironment, either through targeting tissue-specific co-
activators/co-repressors or identifying selective synthetic modula-
tors, will provide new therapeutic opportunities. New mechanistic
insights derived from these studies will also help define relative
contributions from PPAR signaling in adipocytes or immune cells
in the control of metabolic inflammation and associated diseases.
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