$\gamma = 100.4446 \ (19)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.21 \text{ mm}^-$

T = 110 K

 $R_{\rm int} = 0.023$

Z = 4

 $V = 2507.55 (10) \text{ Å}^3$

 $0.47 \times 0.41 \times 0.15 \text{ mm}$

32779 measured reflections

16481 independent reflections

10873 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorimipraminium picrate

Jerry P. Jasinski,^a* Ray J. Butcher,^b Q. N. M. Hakim Al-Arigue,^c H. S. Yathirajan^c and B. Narayana^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 5 December 2009; accepted 7 January 2010

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.115; data-to-parameter ratio = 23.9.

The title compound {systematic name: 3-chloro-5-[3-(dimethylamino)propyl]-10,11-dihydro-5H-dibenz[b,f]azepinium picrate}, $C_{19}H_{24}ClN_2^+ \cdot C_6H_2N_3O_7^-$, crystallizes with two independent cation-anion pairs in the asymmetric unit. The chlorimipraminium cation contains two benzene rings (one with a chloro substituent) fused to a V-shaped sevenmembered azepine ring whose mean planes are separated by 61.1 (0) and 66.5 (8) $^{\circ}$ with a 3-(dimethylamino)propyl group extending away from the apex of this ring. In the picrate anion, the mean planes of the two o-NO₂ groups in each anion are twisted by 3.7 (2)/31.9 (3) and 31.3 (1)/11.4 (0)°, respectively, with respect to the mean plane of the six-membered benzene ring. The phenolate O atoms are bent slightly away from the mean plane of the benzene ring. The mean planes of the p- NO_2 groups are twisted by 6.6 (1) and 2.88°, respectively, from the mean plane of the benzene ring. The crystal packing features bifurcated N-H···(O,O) intermolecular hydrogenbond interaction, which connects each cation-anion pair. Additional π - π ring and C-H··· π weak intermolecular interactions are also observed.

Related literature

For related structures, see: Bindya et al. (2007); Hallberg et al. (1984); Harrison, Bindva et al. (2007); Hallberg et al. (1984); Harrison, Sreevidya et al. (2007); Post et al. (1975); Post & Horn (1977); Swamy et al. (2007); Yathirajan et al. (2007). For obessive-compulsive disorder treatment, see: Albert et al. (2002). For pain disorder treatment, see: Cassano et al. (1988). For non-toxic cancer-therapeutic activity, see: Daley et al. (2005). For experimental anxiety in humans, see: Guimaraes et al. (1987). For quantum mechanical calculations, see: Becke (1988); Schmidt & Polik (2007); Frisch et al. (2004); Lee et al. (1988).

Experimental

Crystal data

 $C_{19}H_{24}ClN_2^+ \cdot C_6H_2N_3O_7^ M_r=543.96$ Triclinic, $P\overline{1}$ a = 11.2252 (3) Å b = 13.1514 (3) Å c = 17.2787 (4) Å $\alpha = 90.9414 \ (19)^{\circ}$ $\beta = 91.1253 \ (19)^{\circ}$

Data collection

Oxford Diffraction Gemini R CCD diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) $T_{\min} = 0.918, \ T_{\max} = 0.969$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	689 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
16481 reflections	$\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdot \cdot \cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2A - H2AB \cdots O1D$	0.93	1.85	2.7000 (13)	151
$N2A - H2AB \cdots O21D$	0.93	2.23	2.8982 (14)	128
$N2B - H2BB \cdots O1C$	0.93	1.92	2.6970 (13)	140
$N2B - H2BB \cdots O62C$	0.93	2.36	3.0657 (15)	133
$C12A - H12A \cdots Cg7^{i}$	0.95	2.83	3.656 (4)	145

Symmetry code: (i) x, y - 1, z. Cg7 is the centroid of the C1B–C6B ring.

Table 2

 π - π hydrogen-bond geometry (Å).

$Cg \cdots Cg$	D···A
$Cg1\cdots Cg14^{i}$	3.838 (8)
$Cg7 \cdots Cg13^{ii}$	3.473 (5)
$Cg13 \cdots Cg14^{i}$	3.590 (5)

Symmetry codes: (i) x, y, z; (ii) 1 - x, y, z; Cg1, Cg7, Cg13 and Cg14 are the centroids of the C1A-C6A, C1B-C6B, C1C-C6C and C1D-C6D rings.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5128).

References

- Albert, U., Aguglia, E., Maina, G. & Bogetto, F. (2002). J. Clin. Psychiatry, 63, 1004–1009.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Becke, A. D. (1988). Phys. Rev. A, 38, 3098-3100.
- Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, 0546–0548.
- Cassano, G. B., Petracca, A., Perugi, G., Nisita, C., Musetti, L., Mengali, F. & McNair, D. M. (1988). J. Affect. Disord. 14, 123–127.
- Daley, E., Wilkie, D., Loesch, A., Hargreaves, I. P., Kendall, D. A., Pilkington, G. J. & Bates, T. E. (2005). *Biochem. Biophys. Res. Commun.* 328, 623– 632.

- Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
- Guimaraes, F. S., Zuardi, A. W. & Graeff, F. G. (1987). J. Psychopharmacol. 1, 184–192.
- Hallberg, A., Hintermeister, N. M., Martin, A. R., Bates, R. B. & Ortega, R. B. (1984). Acta Cryst. C40, 2110–2112.
- Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, 03143.
- Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, 03871.
- Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford
- Diffraction Ltd, Abingdon, Oxfordshire, England.
- Post, M. L. & Horn, A. S. (1977). Acta Cryst. B33, 2590–2595.
- Post, M. L., Kennard, O. & Horn, A. S. (1975). Acta Cryst. B31, 1008–1013.
- Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO LLC, Holland, MI, USA, available from http://www.webmo.net.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, 04919.
- Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–01692.

Acta Cryst. (2010). E66, o347-o348 [doi:10.1107/S1600536810000905]

Chlorimipraminium picrate

J. P. Jasinski, R. J. Butcher, Q. N. M. Hakim Al-Arique, H. S. Yathirajan and B. Narayana

Comment

Chlorimipramine [IUPAC name: 3-chloro-5-(3-dimethylaminopropyl)-10, 11-dihydro-5*H*-dibenz[b,f]azepine] is a tricyclic antidepressant that was developed in the 1960's by the Swiss drug manufacturer Geigy (now known as Novartis) and has been in clinical use worldwide for decades. Chlorimipramine, a 3-chloro derivative of imipramine, is a strong, but not completely selective, serotonin reuptake inhibitor (SSRI), which like the primary active metabolite desmethylclomipramine acts preferably as a norepinephrine reuptake inhibitor. It is used in the treatment of obsessive-compulsive disorder (Albert *et al.*, 2002) and panic disorder (Cassano *et al.*, 1988). The effect of chlorimipramine and maprotiline on experimental anxiety in humans has been reported (Guimaraes *et al.*, 1987). The use of chlorimipramine in humans as an effective, non-toxic cancer-therapeutic having a strong selectivity between cancer cells and normal cells on the basis of their mitochondrial function has also been discussed (Daley *et al.*, 2005).

The crystal and molecular structure of tricyclic antidepressant imipramine hydrochloride (Post *et al.*, 1975), chloripramine hydrochloride (Post & Horn, 1977; Hallberg *et al.*, 1984), amitriptylinium picrate (Bindya *et al.*, 2007), mepazinium picrate (Yathirajan *et al.*, 2007), imipraminium picrate (Harrison, Bindya *et al.*, 2007), nevirapinium picrate (Harrison, Sreevidya *et al.*, 2007) and desipraminium picrate (Swamy *et al.*, 2007) have been reported. In view of the importance of chlorimipramine and to study the hydrogen bonding patterns in the title compound, (I), C₂₅H₂₆ClN₅O₇, a crystal structure is reported.

The title compound, $C_{25}H_{26}CIN_5O_7$, crystallizes with two independent cation-anion pairs $[C_{19}H_{24}CIN_2^+, C_{6}H_2N_3O_7^-]$ in the asymmetric unit (Fig. 1). The chlorimipraminium cation contains two benzene rings (one halogenated) fused to a Vshaped, seven-membered azepine ring whose mean planes are separated by $61.1(0)^{\circ}(A)$ and $66.5(8)^{\circ}(B)$ with a 3-dimethylaminopropyl) group extending away from the apex of the bent azepine group (Torsion angles C1A-N1A-C15A-C16A = 59.19 (14)°; C1B—N1B—C15B—C16B = 165.18 (10)°). In the picrate anion, the mean planes of the two o-NO₂ groups (O21D-N2D-O22D & O61D-N6D-O62D; O21C-N2C-O22C & O61C-N6C-O62C are twisted by 3.7 (2)°, 31.9 (3)° and 31.3 (1)°, 11.4 (0)°, respectively, with respect to the mean plane of the 6-membered benzene ring (Fig. 1). The phenolate oxygen atoms are bent slightly away from the mean plane of the benzene ring (Torsion angles O1D—C1D—C2D—C3D = 171.41 (12)°; O1C—C1C—C2C—C3C = -172.94 (12)°). The mean planes of the *p*-NO₂ oxygen atoms (O41D-N4D-O42D & O41C-N4C-O42C) are twisted by 6.6 (1)° and 2.88°, respectively, from the mean plane of the benzene ring. The difference in the twist angles of the mean planes of the two o-NO₂ groups and the bend in the phenolate oxygen atoms in each of the cation units can be attributed to the influence of strong bifurcated (3center) "side" hydrogen bond intermolecular interactions with the nitrogen atom in the 3-dimethylaminopropyl group of their cation neighbors (N2A—H2AB···O1D, N2A—H2AB···O2D and N2B—H2BB···O1C, N2B—H2BB···O62C; Fig. 2, Table 1). Crystal packing is also influenced by additional weak π - π ring intermolecular interactions (Table 2, Fig. 3) and a weak C12A—H12A···Cg7 π -ring intermoleclar interaction (H12A···Cg7 = 2.83°, C12a—H12A···Cg7 = 145°, C12A···Cg7 $= 3.656 (4)^{\circ}; x, -1 + y, z).$

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the two independent cation-anion pairs $(C_{19}H_{24}CIN_2^+, C_{6}H_2N_3O_7^-)$ of the asymmetric unit with the GAUS-SIAN03 program package (Frisch et al., 2004; Becke, 1988; Lee et al., 1988) and the 3-21 G basis set. Starting geometries were taken from X-ray refinement data. In the cation, the angle between the two benzene rings fused to the azepine ring decreases to 53.2 (9)° (A) and 55.8 (5)°, a change of -7.8 (1)° and -10.7 (3)°, respectively. In the picrate anion, the mean planes of the two o-NO₂ groups (O21D—N2D—O22D & O61D—N6D—O62D; O21C—N2C—O22C & O61C—N6C—O62C become twisted by 18.2 (8)°, 6.3 (5)° and 15.5 (6)°, 13.6 (4)°, with respect to the mean plane of the 6-membered benzene ring, changes of +14.5 (6)°, -25.5 (8)° and -15.7 (5)°, +2.2 (4)°, respectively. The torsion angles of the phenolate oxygen atoms (O1D-C1D-C2D-C3D & O1C-C1C-C2C-C3C) become 175.1 (6)° and -171.6 (7)°, changes of +3.7 (5)° and -1.2 (7)° relative to the mean plane of the benzene ring. The mean planes of the p-NO₂ oxygen atoms (O41D—N4D—O42D & O41C—N4C—O42C) become twisted by 0.4 (8)° and 6.2 (3)°, changes of -6.3 (1)° and +3.3 (5)°, respectively, from the mean plane of the anion benzene ring. The dihedral angle between the benzene ring of the anion and the benzene and chloro substituted benzene ring in the cation change from 70.1 (5)°, 15.0 (4)° and 67.9 (3)°, 4.3 (5)° to 35.1 (5)°, 44.8 (3)° and $36.7 (3)^{\circ}$, $12.0 (2)^{\circ}$, changes of $-35.0 (0)^{\circ}$, $+21.6 (9)^{\circ}$, and $-23.1 (0)^{\circ}$, $+7.6 (7)^{\circ}$, respectively. Examination of the partial charges from the DFT geometry optimization indicate that H2BD (0.43570) is slightly more positive than H2AB (0.424847) producing a slightly stronger proton charge associated with the N2B atom of the cation-anion pair (B & C groups).

Experimental

Clorimipramine hydrochloride (3.5 g, 0.01 mol) in 25 ml of a mixture of (1:1) acetonitrile & methanol and picric acid (4.5 g, 0.01 mol) in 25 ml of mixture of (1:1) acetonitrile & methanol were mixed and stirred in a beaker at 318 K for two hours. The mixture was kept aside for about five days at room temperature. The separated salt was filtered and dried in vacuum desiccator over phosphorous pentoxide. The crystals obtained (m.p: 393 - 395 K) were used for *x*-ray studies.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93 Å, C—H = 0.95-0.99 Å, and with $U_{iso}(H) = 1.18-1.51U_{eq}(C,N)$.

Figures

Fig. 1. Molecular structure of the two $C_{19}H_{24}ClN_2^+$. $C_6H_2N_3O_7^-$ cation-anion pairs in the asymmetric unit showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate bifurcated (3-center) N2A—H2AB···O1D, N2A—H2AB···O2D and N2B—H2BB···O1C, N2B—H2BB···O62C, cation-anion hydrogen bond interactions.

Fig. 2. Packing diagram of the title compound, (I), viewed down the *b* axis. Dashed lines indicate intermolecular N—H···O hydrogen bond interactions which produces a two-dimensional network of infinite O—H···O—H chains arranged along the (101) plane of the unit cell.

Fig. 3. π - π interactions in the asymmetric of (I).

3-Chloro-5-[3-(dimethylamino)propyl]-10,11-dihydro-5*H*-dibenz[*b*,*f*]azepinium picrate

Crystal data

$C_{19}H_{24}CIN_2^+ C_6H_2N_3O_7^-$	Z = 4
$M_r = 543.96$	F(000) = 1136
Triclinic, PT	$D_{\rm x} = 1.441 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.2252 (3) Å	Cell parameters from 14780 reflections
b = 13.1514 (3) Å	$\theta = 4.7 - 32.7^{\circ}$
c = 17.2787 (4) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\alpha = 90.9414 \ (19)^{\circ}$	T = 110 K
$\beta = 91.1253 \ (19)^{\circ}$	Plate, yellow
$\gamma = 100.4446 \ (19)^{\circ}$	$0.47 \times 0.41 \times 0.15 \ mm$
$V = 2507.55 (10) \text{ Å}^3$	

Data collection

Oxford Diffraction Gemini R CCD diffractometer	16481 independent reflections
Radiation source: Enhance (Mo) X-ray Source	10873 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 32.8^\circ, \ \theta_{\text{min}} = 4.7^\circ$
φ and ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -19 \rightarrow 16$
$T_{\min} = 0.918, \ T_{\max} = 0.969$	$l = -23 \rightarrow 26$
32779 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.115$	H-atom parameters constrained
<i>S</i> = 0.98	$w = 1/[\sigma^2(F_0^2) + (0.0635P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
16481 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
689 parameters	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.59334 (3)	0.87280 (3)	0.92251 (2)	0.03074 (9)
N1A	0.37421 (9)	0.86170 (8)	0.65507 (6)	0.0172 (2)
N2A	0.64917 (9)	0.73998 (8)	0.53424 (6)	0.0175 (2)
H2AB	0.6526	0.7035	0.5796	0.021*
C1A	0.39922 (10)	0.81199 (9)	0.72519 (7)	0.0166 (2)
C2A	0.47865 (10)	0.86207 (10)	0.78235 (7)	0.0183 (2)
H2AA	0.5199	0.9309	0.7755	0.022*
C3A	0.49670 (11)	0.81002 (10)	0.84951 (7)	0.0198 (3)
C4A	0.43734 (11)	0.71005 (10)	0.86195 (7)	0.0200 (3)
H4AA	0.4498	0.6760	0.9087	0.024*
C5A	0.35871 (11)	0.66092 (10)	0.80371 (8)	0.0210 (3)
H5AA	0.3167	0.5925	0.8114	0.025*
C6A	0.34025 (11)	0.70941 (10)	0.73483 (7)	0.0184 (2)
C7A	0.25976 (12)	0.65622 (10)	0.67027 (8)	0.0240 (3)
H7AA	0.2404	0.5812	0.6802	0.029*
H7AB	0.3038	0.6655	0.6211	0.029*
C8A	0.14237 (12)	0.69788 (11)	0.66183 (9)	0.0288 (3)
H8AA	0.0972	0.6631	0.6160	0.035*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H8AB	0.0931	0.6765	0.7077	0.035*
C9A	0.14981 (11)	0.81328 (10)	0.65337 (7)	0.0212 (3)
C10A	0.03832 (12)	0.84621 (11)	0.64822 (8)	0.0265 (3)
H10A	-0.0339	0.7961	0.6512	0.032*
C11A	0.02888 (12)	0.94905 (12)	0.63898 (8)	0.0273 (3)
H11A	-0.0484	0.9685	0.6342	0.033*
C12A	0.13302 (12)	1.02253 (11)	0.63690 (8)	0.0246 (3)
H12A	0.1281	1.0934	0.6314	0.030*
C13A	0.24533 (11)	0.99277 (10)	0.64291 (7)	0.0201 (3)
H13A	0.3168	1.0440	0.6420	0.024*
C14A	0.25533 (11)	0.88889 (10)	0.65020 (7)	0.0171 (2)
C15A	0.47414 (11)	0.93650 (10)	0.62436 (8)	0.0192 (2)
H15A	0.4982	0.9939	0.6625	0.023*
H15B	0.4462	0.9658	0.5763	0.023*
C16A	0.58398 (11)	0.88708 (10)	0.60687 (7)	0.0189 (2)
H16A	0.6517	0.9410	0.5906	0.023*
H16B	0.6103	0.8554	0.6543	0.023*
C17A	0.55383 (11)	0.80490 (10)	0.54323 (7)	0.0191 (2)
H17A	0.4761	0.7595	0.5548	0.023*
H17B	0.5429	0.8390	0.4936	0.023*
C18A	0.77140 (11)	0.80309 (11)	0.52275 (8)	0.0268 (3)
H18A	0.7975	0.8448	0.5696	0.040*
H18B	0.7680	0.8488	0.4788	0.040*
H18C	0.8292	0.7572	0.5122	0.040*
C19A	0.61616 (13)	0.66325 (11)	0.46961 (7)	0.0249 (3)
H19A	0.5368	0.6208	0.4790	0.037*
H19B	0.6772	0.6188	0.4664	0.037*
H19C	0.6127	0.6996	0.4208	0.037*
C12	0.19710 (4)	0.83645 (3)	0.44656 (2)	0.03975 (10)
N1B	-0.00504 (8)	0.84031 (8)	0.17770 (6)	0.0164 (2)
N2B	0.16727 (9)	0.76659 (8)	0.02222 (6)	0.0194 (2)
H2BB	0.1600	0.7376	0.0710	0.023*
C1B	-0.00482 (11)	0.79100 (9)	0.25044 (7)	0.0179 (2)
C2B	0.08559 (11)	0.82856 (10)	0.30604 (7)	0.0196 (2)
H2BA	0.1479	0.8848	0.2941	0.024*
C3B	0.08492 (13)	0.78428 (11)	0.37833 (8)	0.0257 (3)
C4B	-0.00406 (14)	0.70222 (12)	0.39755 (9)	0.0322 (3)
H4BA	-0.0046	0.6725	0.4473	0.039*
C5B	-0.09206 (13)	0.66473 (11)	0.34232 (9)	0.0307 (3)
H5BA	-0.1533	0.6081	0.3552	0.037*
C6B	-0.09587 (11)	0.70576 (10)	0.26812 (9)	0.0242 (3)
C7B	-0.19630 (13)	0.65203 (12)	0.21395 (10)	0.0354 (4)
H7BA	-0.2743	0.6529	0.2395	0.043*
H7BB	-0.1874	0.5787	0.2086	0.043*
C8B	-0.20590 (12)	0.69393 (11)	0.13257 (9)	0.0299 (3)
H8BA	-0.1331	0.6859	0.1033	0.036*
H8BB	-0.2777	0.6536	0.1050	0.036*
C9B	-0.21672 (11)	0.80566 (10)	0.13599 (8)	0.0224 (3)
C10B	-0.32578 (12)	0.83958 (12)	0.12103 (8)	0.0283 (3)

H10B	-0.3956	0.7910	0.1050	0.034*
C11B	-0.33334 (12)	0.94331 (12)	0.12930 (8)	0.0286 (3)
H11B	-0.4079	0.9655	0.1188	0.034*
C12B	-0.23241 (12)	1.01431 (11)	0.15281 (7)	0.0236 (3)
H12B	-0.2380	1.0852	0.1587	0.028*
C13B	-0.12244 (11)	0.98269 (10)	0.16791 (7)	0.0181 (2)
H13B	-0.0529	1.0319	0.1833	0.022*
C14B	-0.11529 (10)	0.87815 (10)	0.16026 (7)	0.0176 (2)
C15B	0.10829 (10)	0.90796 (9)	0.15678 (7)	0.0160 (2)
H15C	0.1776	0.8734	0.1689	0.019*
H15D	0.1187	0.9729	0.1880	0.019*
C16B	0.10798 (11)	0.93317 (10)	0.07102 (7)	0.0191 (2)
H16C	0.0473	0.9779	0.0615	0.023*
H16D	0.1884	0.9735	0.0586	0.023*
C17B	0.08041 (11)	0.84068 (10)	0.01625 (7)	0.0201 (3)
H17C	-0.0022	0.8027	0.0263	0.024*
H17D	0.0804	0.8658	-0.0375	0.024*
C18B	0.29610 (11)	0.81780 (11)	0.01351 (8)	0.0245 (3)
H18D	0.3482	0.7655	0.0146	0.037*
H18E	0.3199	0.8679	0.0561	0.037*
H18F	0.3049	0.8536	-0.0359	0.037*
C19B	0.13262 (14)	0.68120 (11)	-0.03663 (8)	0.0293 (3)
H19D	0.0488	0.6468	-0.0287	0.044*
H19E	0.1868	0.6310	-0.0311	0.044*
H19F	0.1396	0.7098	-0.0887	0.044*
01C	0.26076 (8)	0.70245 (7)	0.15382 (5)	0.0229 (2)
O21C	0.38889 (9)	0.86117 (7)	0.24018 (6)	0.0298 (2)
O22C	0.50236 (9)	0.79895 (8)	0.32264 (7)	0.0370 (3)
O41C	0.27695 (10)	0.55178 (8)	0.49309 (5)	0.0319 (2)
O42C	0.12957 (9)	0.43593 (8)	0.44634 (6)	0.0346 (3)
O61C	-0.00593 (11)	0.44920 (9)	0.18672 (7)	0.0511 (4)
O62C	0.04994 (9)	0.58148 (9)	0.11703 (6)	0.0384 (3)
N2C	0.41012 (9)	0.79142 (8)	0.28158 (7)	0.0214 (2)
N4C	0.20810 (10)	0.51373 (9)	0.43944 (6)	0.0229 (2)
N6C	0.05988 (10)	0.53218 (9)	0.17559 (6)	0.0225 (2)
C1C	0.24304 (10)	0.66219 (9)	0.21843 (7)	0.0156 (2)
C2C	0.31920 (10)	0.69712 (9)	0.28621 (7)	0.0161 (2)
C3C	0.31107 (11)	0.64889 (9)	0.35594 (7)	0.0174 (2)
H3CA	0.3660	0.6739	0.3974	0.021*
C4C	0.22078 (11)	0.56251 (9)	0.36500 (7)	0.0171 (2)
C5C	0.14014 (10)	0.52518 (10)	0.30518 (7)	0.0175 (2)
H5CA	0.0786	0.4665	0.3126	0.021*
C6C	0.14961 (10)	0.57354 (9)	0.23489 (7)	0.0168 (2)
O1D	0.71604 (8)	0.69222 (7)	0.67815 (5)	0.0226 (2)
O21D	0.52660 (10)	0.56347 (9)	0.61786 (6)	0.0393 (3)
O22D	0.43317 (9)	0.44269 (9)	0.68675 (6)	0.0362 (3)
O41D	0.53373 (9)	0.39608 (8)	0.94767 (6)	0.0316 (2)
O42D	0.68754 (10)	0.49588 (8)	1.00391 (6)	0.0322 (2)
O61D	0.91601 (11)	0.78149 (10)	0.86413 (8)	0.0555 (4)

O62D	0.81134 (9)	0.84577 (8)	0.77794 (6)	0.0337 (2)
N2D	0.51250 (9)	0.51864 (8)	0.67940 (6)	0.0176 (2)
N4D	0.61854 (10)	0.47077 (9)	0.94774 (6)	0.0232 (2)
N6D	0.83039 (10)	0.77441 (9)	0.81814 (7)	0.0266 (3)
C1D	0.68478 (10)	0.64639 (9)	0.73884 (7)	0.0149 (2)
C2D	0.59071 (10)	0.55516 (9)	0.74548 (7)	0.0152 (2)
C3D	0.56982 (10)	0.49945 (9)	0.81231 (7)	0.0167 (2)
H3DA	0.5083	0.4395	0.8129	0.020*
C4D	0.63868 (11)	0.53121 (10)	0.87829 (7)	0.0176 (2)
C5D	0.72585 (11)	0.62116 (10)	0.87969 (7)	0.0198 (3)
H5DA	0.7717	0.6434	0.9256	0.024*
C6D	0.74406 (11)	0.67694 (9)	0.81332 (7)	0.0175 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02852 (17)	0.0392 (2)	0.02166 (16)	-0.00019 (14)	-0.00720 (13)	-0.00441 (14)
N1A	0.0177 (5)	0.0158 (5)	0.0173 (5)	0.0004 (4)	0.0016 (4)	0.0029 (4)
N2A	0.0208 (5)	0.0189 (5)	0.0131 (5)	0.0044 (4)	-0.0010 (4)	0.0026 (4)
C1A	0.0173 (5)	0.0164 (6)	0.0162 (6)	0.0032 (4)	0.0016 (4)	0.0000 (5)
C2A	0.0183 (5)	0.0164 (6)	0.0195 (6)	0.0013 (4)	0.0029 (5)	0.0007 (5)
C3A	0.0162 (5)	0.0272 (7)	0.0160 (6)	0.0042 (5)	-0.0005 (5)	-0.0044 (5)
C4A	0.0223 (6)	0.0225 (7)	0.0167 (6)	0.0069 (5)	0.0033 (5)	0.0039 (5)
C5A	0.0236 (6)	0.0162 (6)	0.0234 (6)	0.0039 (5)	0.0032 (5)	0.0030 (5)
C6A	0.0195 (6)	0.0156 (6)	0.0200 (6)	0.0030 (4)	-0.0003 (5)	-0.0010 (5)
C7A	0.0299 (7)	0.0157 (6)	0.0237 (7)	-0.0018 (5)	-0.0039 (5)	-0.0019 (5)
C8A	0.0281 (7)	0.0219 (7)	0.0329 (8)	-0.0043 (5)	-0.0065 (6)	0.0024 (6)
C9A	0.0229 (6)	0.0211 (7)	0.0180 (6)	0.0006 (5)	-0.0047 (5)	0.0009 (5)
C10A	0.0201 (6)	0.0334 (8)	0.0243 (7)	0.0004 (5)	-0.0031 (5)	0.0007 (6)
C11A	0.0204 (6)	0.0353 (8)	0.0268 (7)	0.0071 (5)	-0.0003 (5)	-0.0043 (6)
C12A	0.0311 (7)	0.0250 (7)	0.0198 (6)	0.0099 (5)	0.0036 (5)	0.0014 (5)
C13A	0.0229 (6)	0.0200 (7)	0.0170 (6)	0.0023 (5)	0.0043 (5)	0.0011 (5)
C14A	0.0200 (6)	0.0190 (6)	0.0115 (5)	0.0017 (4)	-0.0003 (4)	0.0007 (4)
C15A	0.0216 (6)	0.0156 (6)	0.0197 (6)	0.0008 (5)	0.0048 (5)	0.0028 (5)
C16A	0.0187 (6)	0.0174 (6)	0.0196 (6)	0.0006 (4)	0.0024 (5)	0.0009 (5)
C17A	0.0186 (6)	0.0208 (6)	0.0188 (6)	0.0058 (5)	0.0007 (5)	0.0010 (5)
C18A	0.0209 (6)	0.0325 (8)	0.0274 (7)	0.0048 (5)	0.0054 (5)	0.0055 (6)
C19A	0.0344 (7)	0.0273 (7)	0.0156 (6)	0.0134 (6)	-0.0047 (5)	-0.0041 (5)
Cl2	0.0620 (3)	0.0449 (2)	0.01714 (16)	0.02406 (19)	-0.00841 (16)	-0.00375 (15)
N1B	0.0146 (4)	0.0161 (5)	0.0179 (5)	0.0004 (4)	0.0016 (4)	0.0033 (4)
N2B	0.0232 (5)	0.0235 (6)	0.0120 (5)	0.0056 (4)	-0.0003 (4)	0.0028 (4)
C1B	0.0195 (6)	0.0161 (6)	0.0194 (6)	0.0061 (4)	0.0060 (5)	0.0030 (5)
C2B	0.0233 (6)	0.0197 (6)	0.0180 (6)	0.0090 (5)	0.0051 (5)	0.0027 (5)
C3B	0.0352 (7)	0.0300 (8)	0.0170 (6)	0.0187 (6)	0.0037 (5)	0.0016 (5)
C4B	0.0474 (9)	0.0335 (8)	0.0230 (7)	0.0240 (7)	0.0169 (7)	0.0138 (6)
C5B	0.0317 (7)	0.0229 (7)	0.0403 (9)	0.0096 (6)	0.0197 (7)	0.0139 (6)
C6B	0.0230 (6)	0.0173 (7)	0.0336 (8)	0.0052 (5)	0.0100 (6)	0.0055 (6)
C7B	0.0254 (7)	0.0231 (8)	0.0546 (10)	-0.0053 (6)	0.0054 (7)	0.0073 (7)

C8B	0.0202 (6)	0.0238 (8)	0.0424 (9)	-0.0036 (5)	0.0005 (6)	-0.0068 (6)
C9B	0.0183 (6)	0.0244 (7)	0.0235 (7)	0.0012 (5)	0.0000 (5)	-0.0034 (5)
C10B	0.0185 (6)	0.0394 (9)	0.0258 (7)	0.0027 (5)	-0.0026 (5)	-0.0026 (6)
C11B	0.0208 (6)	0.0433 (9)	0.0234 (7)	0.0107 (6)	-0.0020 (5)	0.0014 (6)
C12B	0.0300 (7)	0.0271 (7)	0.0161 (6)	0.0115 (5)	0.0018 (5)	0.0034 (5)
C13B	0.0199 (6)	0.0218 (7)	0.0127 (5)	0.0037 (5)	0.0005 (4)	0.0022 (5)
C14B	0.0165 (5)	0.0216 (6)	0.0146 (5)	0.0028 (4)	0.0003 (4)	0.0002 (5)
C15B	0.0146 (5)	0.0160 (6)	0.0163 (6)	-0.0003 (4)	-0.0001 (4)	0.0005 (4)
C16B	0.0192 (6)	0.0208 (7)	0.0179 (6)	0.0043 (5)	0.0026 (5)	0.0052 (5)
C17B	0.0185 (6)	0.0280 (7)	0.0147 (6)	0.0067 (5)	-0.0012 (5)	0.0026 (5)
C18B	0.0202 (6)	0.0338 (8)	0.0209 (6)	0.0079 (5)	0.0033 (5)	0.0085 (6)
C19B	0.0419 (8)	0.0279 (8)	0.0187 (6)	0.0086 (6)	-0.0052 (6)	-0.0038 (5)
O1C	0.0265 (5)	0.0232 (5)	0.0175 (4)	0.0002 (4)	-0.0041 (4)	0.0073 (4)
O21C	0.0333 (5)	0.0177 (5)	0.0361 (6)	-0.0010 (4)	-0.0094 (4)	0.0087 (4)
O22C	0.0277 (5)	0.0283 (6)	0.0505 (7)	-0.0049 (4)	-0.0219 (5)	0.0079 (5)
O41C	0.0491 (6)	0.0320 (6)	0.0153 (5)	0.0098 (5)	-0.0084 (4)	0.0002 (4)
O42C	0.0370 (6)	0.0373 (6)	0.0268 (5)	-0.0023 (5)	0.0037 (4)	0.0141 (5)
O61C	0.0588 (7)	0.0406 (7)	0.0383 (7)	-0.0310 (6)	-0.0217 (6)	0.0118 (6)
O62C	0.0384 (6)	0.0463 (7)	0.0242 (5)	-0.0086 (5)	-0.0122 (5)	0.0095 (5)
N2C	0.0214 (5)	0.0155 (5)	0.0260 (6)	0.0004 (4)	-0.0055 (4)	0.0011 (4)
N4C	0.0302 (6)	0.0240 (6)	0.0162 (5)	0.0088 (5)	0.0026 (4)	0.0034 (4)
N6C	0.0234 (5)	0.0232 (6)	0.0186 (5)	-0.0008 (4)	-0.0040 (4)	-0.0011 (4)
C1C	0.0176 (5)	0.0139 (6)	0.0155 (6)	0.0035 (4)	-0.0023 (4)	0.0005 (4)
C2C	0.0165 (5)	0.0124 (6)	0.0191 (6)	0.0019 (4)	-0.0026 (4)	0.0002 (4)
C3C	0.0199 (6)	0.0164 (6)	0.0168 (6)	0.0070 (4)	-0.0050 (5)	-0.0025 (5)
C4C	0.0219 (6)	0.0176 (6)	0.0129 (5)	0.0066 (5)	0.0006 (4)	0.0023 (4)
C5C	0.0174 (5)	0.0161 (6)	0.0186 (6)	0.0019 (4)	0.0009 (5)	0.0006 (5)
C6C	0.0177 (5)	0.0166 (6)	0.0158 (6)	0.0026 (4)	-0.0039 (4)	-0.0011 (4)
O1D	0.0234 (4)	0.0242 (5)	0.0174 (4)	-0.0037 (4)	-0.0030 (4)	0.0060 (4)
O21D	0.0484 (6)	0.0392 (7)	0.0202 (5)	-0.0180 (5)	-0.0144 (5)	0.0097 (5)
O22D	0.0331 (5)	0.0403 (6)	0.0244 (5)	-0.0216 (4)	-0.0022 (4)	-0.0009 (5)
O41D	0.0382 (6)	0.0271 (6)	0.0280 (5)	0.0007 (4)	0.0044 (4)	0.0116 (4)
O42D	0.0480 (6)	0.0337 (6)	0.0167 (5)	0.0121 (5)	-0.0057 (4)	0.0041 (4)
O61D	0.0492 (7)	0.0487 (8)	0.0557 (8)	-0.0222 (6)	-0.0348 (6)	0.0102 (6)
O62D	0.0456 (6)	0.0176 (5)	0.0339 (6)	-0.0047 (4)	-0.0033 (5)	0.0010 (4)
N2D	0.0169 (5)	0.0190 (5)	0.0158 (5)	0.0004 (4)	-0.0005 (4)	-0.0022 (4)
N4D	0.0316 (6)	0.0240 (6)	0.0163 (5)	0.0104 (5)	0.0027 (5)	0.0046 (4)
N6D	0.0288 (6)	0.0232 (6)	0.0230 (6)	-0.0071 (5)	-0.0044 (5)	-0.0022 (5)
C1D	0.0153 (5)	0.0146 (6)	0.0150 (5)	0.0034 (4)	-0.0020 (4)	0.0001 (4)
C2D	0.0167 (5)	0.0147 (6)	0.0139 (5)	0.0022 (4)	-0.0019 (4)	-0.0020 (4)
C3D	0.0185 (5)	0.0131 (6)	0.0183 (6)	0.0022 (4)	0.0026 (5)	0.0007 (5)
C4D	0.0229 (6)	0.0170 (6)	0.0140 (5)	0.0061 (5)	0.0010 (5)	0.0036 (5)
C5D	0.0221 (6)	0.0217 (7)	0.0160 (6)	0.0055 (5)	-0.0047 (5)	-0.0023 (5)
C6D	0.0188 (5)	0.0149 (6)	0.0174 (6)	-0.0005 (4)	-0.0025 (5)	-0.0006 (5)

Geometric parameters (Å, °)

Cl1—C3A	1.7427 (13)	C7B—C8B	1.528 (2)
N1A—C1A	1.4329 (15)	С7В—Н7ВА	0.9900

N1A—C14A	1.4441 (15)	C7B—H7BB	0.9900
N1A—C15A	1.4656 (15)	C8B—C9B	1.496 (2)
N2A—C19A	1.4879 (16)	C8B—H8BA	0.9900
N2A—C18A	1.4879 (16)	C8B—H8BB	0.9900
N2A—C17A	1.4940 (15)	C9B—C10B	1.3979 (18)
N2A—H2AB	0.9300	C9B—C14B	1.3985 (17)
C1A—C2A	1.3912 (17)	C10B—C11B	1.387 (2)
C1A—C6A	1.4050 (17)	C10B—H10B	0.9500
C2A—C3A	1.3870 (17)	C11B—C12B	1.381 (2)
C2A—H2AA	0.9500	C11B—H11B	0.9500
C3A—C4A	1.3841 (18)	C12B—C13B	1.3935 (17)
C4A—C5A	1.3950 (18)	C12B—H12B	0.9500
С4А—Н4АА	0.9500	C13B—C14B	1.3959 (18)
C5A—C6A	1.3890 (17)	C13B—H13B	0.9500
С5А—Н5АА	0.9500	C15B—C16B	1.5238 (17)
C6A—C7A	1.5019 (17)	C15B—H15C	0.9900
C7A—C8A	1.5214 (19)	C15B—H15D	0.9900
С7А—Н7АА	0.9900	C16B—C17B	1.5117 (19)
С7А—Н7АВ	0.9900	C16B—H16C	0.9900
C8A—C9A	1.5145 (19)	C16B—H16D	0.9900
C8A—H8AA	0.9900	C17B—H17C	0.9900
C8A—H8AB	0.9900	C17B—H17D	0.9900
C9A—C10A	1.3983 (19)	C18B—H18D	0.9800
C9A—C14A	1.4043 (17)	C18B—H18E	0.9800
C10A—C11A	1.387 (2)	C18B—H18F	0.9800
C10A—H10A	0.9500	C19B—H19D	0.9800
C11A—C12A	1.3765 (19)	С19В—Н19Е	0.9800
C11A—H11A	0.9500	C19B—H19F	0.9800
C12A—C13A	1.3887 (18)	O1C—C1C	1.2474 (14)
C12A—H12A	0.9500	O21C—N2C	1.2265 (13)
C13A—C14A	1.3984 (18)	O22C—N2C	1.2316 (13)
C13A—H13A	0.9500	O41C—N4C	1.2343 (14)
C15A—C16A	1.5273 (17)	O42C—N4C	1.2326 (14)
C15A—H15A	0.9900	O61C—N6C	1.2221 (14)
C15A—H15B	0.9900	O62C—N6C	1.2248 (14)
C16A—C17A	1.5182 (18)	N2C—C2C	1.4606 (15)
C16A—H16A	0.9900	N4C—C4C	1.4447 (15)
C16A—H16B	0.9900	N6C—C6C	1.4501 (15)
C17A—H17A	0.9900	C1C—C2C	1.4540 (16)
C17A—H17B	0.9900	C1C—C6C	1.4558 (16)
C18A—H18A	0.9800	C2C—C3C	1.3678 (17)
C18A—H18B	0.9800	C3C—C4C	1.3917 (17)
C18A—H18C	0.9800	C3C—H3CA	0.9500
C19A—H19A	0.9800	C4C—C5C	1.3836 (16)
C19A—H19B	0.9800	C5C—C6C	1.3773 (16)
С19А—Н19С	0.9800	C5C—H5CA	0.9500
Cl2—C3B	1.7459 (15)	O1D—C1D	1.2429 (14)
N1B—C1B	1.4240 (15)	O21D—N2D	1.2234 (13)
N1B—C14B	1.4435 (15)	O22D—N2D	1.2218 (13)

N1B—C15B	1.4692 (14)	O41D—N4D	1.2377 (14)
N2B—C18B	1.4920 (16)	O42D—N4D	1.2323 (14)
N2B—C19B	1.4950 (17)	O61D—N6D	1.2244 (14)
N2B—C17B	1.5016 (16)	O62D—N6D	1.2236 (15)
N2B—H2BB	0.9300	N2D—C2D	1.4474 (14)
C1B—C2B	1.4004 (17)	N4D—C4D	1.4491 (15)
C1B—C6B	1.4150 (17)	N6D—C6D	1.4602 (16)
C2B—C3B	1.3864 (17)	C1D—C6D	1.4534 (16)
C2B—H2BA	0.9500	C1D—C2D	1.4552 (16)
C3B—C4B	1.381 (2)	C2D—C3D	1.3789 (16)
C4B—C5B	1.379 (2)	C3D—C4D	1.3800 (17)
C4B—H4BA	0.9500	C3D—H3DA	0.9500
C5B—C6B	1.402 (2)	C4D—C5D	1.3913 (18)
C5B—H5BA	0.9500	C5D—C6D	1.3703 (17)
C6B—C7B	1.515 (2)	C5D—H5DA	0.9500
C1A—N1A—C14A	114.64 (10)	C6B—C7B—C8B	118.55 (11)
C1A—N1A—C15A	116.51 (10)	C6B—C7B—H7BA	107.7
C14A—N1A—C15A	116.45 (10)	С8В—С7В—Н7ВА	107.7
C19A—N2A—C18A	110.55 (10)	C6B—C7B—H7BB	107.7
C19A—N2A—C17A	110.57 (9)	C8B—C7B—H7BB	107.7
C18A—N2A—C17A	112.47 (10)	Н7ВА—С7В—Н7ВВ	107.1
C19A—N2A—H2AB	107.7	C9B—C8B—C7B	110.77 (13)
C18A—N2A—H2AB	107.7	C9B—C8B—H8BA	109.5
C17A—N2A—H2AB	107.7	C7B—C8B—H8BA	109.5
C2A—C1A—C6A	120.33 (11)	C9B—C8B—H8BB	109.5
C2A—C1A—N1A	122.10 (11)	C7B—C8B—H8BB	109.5
C6A—C1A—N1A	117.57 (11)	H8BA—C8B—H8BB	108.1
C3A—C2A—C1A	119.05 (11)	C10B—C9B—C14B	118.76 (13)
СЗА—С2А—Н2АА	120.5	C10B—C9B—C8B	122.75 (12)
C1A—C2A—H2AA	120.5	C14B—C9B—C8B	118.35 (11)
C4A—C3A—C2A	122.16 (11)	C11B—C10B—C9B	120.80 (13)
C4A—C3A—C11	118.28 (10)	C11B—C10B—H10B	119.6
C2A—C3A—Cl1	119.53 (10)	C9B—C10B—H10B	119.6
C3A—C4A—C5A	117.92 (11)	C12B-C11B-C10B	119.94 (12)
СЗА—С4А—Н4АА	121.0	C12B—C11B—H11B	120.0
С5А—С4А—Н4АА	121.0	C10B—C11B—H11B	120.0
C6A—C5A—C4A	121.75 (12)	C11B—C12B—C13B	120.47 (13)
С6А—С5А—Н5АА	119.1	C11B—C12B—H12B	119.8
С4А—С5А—Н5АА	119.1	C13B—C12B—H12B	119.8
C5A—C6A—C1A	118.74 (11)	C12B—C13B—C14B	119.50 (12)
C5A—C6A—C7A	122.46 (11)	C12B—C13B—H13B	120.2
C1A—C6A—C7A	118.80 (11)	C14B—C13B—H13B	120.2
C6A—C7A—C8A	112.37 (12)	C13B—C14B—C9B	120.51 (11)
С6А—С7А—Н7АА	109.1	C13B—C14B—N1B	122.00 (11)
С8А—С7А—Н7АА	109.1	C9B—C14B—N1B	117.48 (11)
С6А—С7А—Н7АВ	109.1	N1B—C15B—C16B	111.24 (9)
С8А—С7А—Н7АВ	109.1	N1B—C15B—H15C	109.4
Н7АА—С7А—Н7АВ	107.9	C16B—C15B—H15C	109.4
C9A—C8A—C7A	118.47 (11)	N1B—C15B—H15D	109.4

С9А—С8А—Н8АА	107.7	C16B—C15B—H15D	109.4
С7А—С8А—Н8АА	107.7	H15C-C15B-H15D	108.0
С9А—С8А—Н8АВ	107.7	C17B—C16B—C15B	115.30 (10)
С7А—С8А—Н8АВ	107.7	C17B—C16B—H16C	108.4
Н8АА—С8А—Н8АВ	107.1	C15B—C16B—H16C	108.5
C10A—C9A—C14A	117.66 (12)	C17B—C16B—H16D	108.5
C10A—C9A—C8A	115.25 (12)	C15B—C16B—H16D	108.4
C14A—C9A—C8A	127.09 (12)	H16C—C16B—H16D	107.5
C11A—C10A—C9A	122.66 (13)	N2B—C17B—C16B	114.80 (10)
C11A—C10A—H10A	118.7	N2B—C17B—H17C	108.6
C9A—C10A—H10A	118.7	C16B—C17B—H17C	108.6
C12A—C11A—C10A	119.06 (12)	N2B—C17B—H17D	108.6
C12A—C11A—H11A	120.5	C16B—C17B—H17D	108.6
C10A—C11A—H11A	120.5	H17C—C17B—H17D	107.5
C11A—C12A—C13A	119.82 (13)	N2B—C18B—H18D	109.5
C11A—C12A—H12A	120.1	N2B—C18B—H18E	109.5
C13A—C12A—H12A	120.1	H18D—C18B—H18E	109.5
C12A—C13A—C14A	121.31 (12)	N2B—C18B—H18F	109.5
C12A—C13A—H13A	119.3	H18D—C18B—H18F	109.5
C14A—C13A—H13A	119.3	H18E—C18B—H18F	109.5
C13A—C14A—C9A	119.45 (11)	N2B—C19B—H19D	109.5
C13A— $C14A$ — $N1A$	119.22 (11)	N2B—C19B—H19E	109 5
C9A—C14A—N1A	121.33 (11)	H19D—C19B—H19E	109.5
N1A—C15A—C16A	111.90 (10)	N2B—C19B—H19F	109.5
N1A—C15A—H15A	109.2	H19D—C19B—H19F	109.5
C16A - C15A - H15A	109.2	H19E—C19B—H19F	109.5
N1A—C15A—H15B	109.2	021C - N2C - 022C	123.02 (10)
C16A—C15A—H15B	109.2	021C - N2C - C2C	118 88 (10)
H15A—C15A—H15B	107.9	022C - N2C - C2C	118.01 (10)
C17A— $C16A$ — $C15A$	110 88 (10)	042C - N4C - 041C	123.09(11)
C17A— $C16A$ — $H16A$	109.5	042C N4C C4C	118 58 (11)
C15A - C16A - H16A	109.5	O41C - N4C - C4C	118.33 (11)
C17A - C16A - H16B	109.5	061C - N6C - 062C	121 82 (11)
C15A - C16A - H16B	109.5	O61C - N6C - C6C	118 33 (11)
H_{16A} C_{16A} H_{16B}	109.5	O62C - N6C - C6C	119.83 (10)
N2A - C17A - C16A	113 17 (10)	012 - 012 - 020	119.03(10) 122.71(10)
N2A = C17A = H17A	108.9	010 - 010 - 020	122.71(10) 125.28(11)
C_{16A} C_{17A} H_{17A}	108.9	$C_{1}^{2}C$	111.96 (10)
N2A_C17A_H17B	108.9	$C_{2}C_{-}C_{1$	111.90(10) 124.71(11)
C_{16A} C_{17A} H_{17B}	108.9	$C_{3}C_{-}C_{2}C_{-}N_{2}C_{-}$	116 39 (10)
H17A_C17A_H17B	107.8	C1C - C2C - N2C	118.89 (10)
N24 - C184 - H184	109.5	$C^2C - C^3C - C^4C$	118.03(10) 118.73(11)
N2A = C18A = H18B	109.5	$C_{2}C_{-}C_{3}C_{-}H_{3}C_{4}$	120.6
H18A - C18A - H18B	109.5	C4C - C3C - H3CA	120.6
N2A—C18A—H18C	109.5	C5C - C4C - C3C	121 31 (11)
H18A - C18A - H18C	109.5	$C_{5}C_{-}C_{4}C_{-}N_{4}C$	119 49 (11)
H18B-C18A-H18C	109.5	C3C - C4C - N4C	119 14 (11)
N2A = C19A = H19A	109.5	C6C - C5C - C4C	119.64 (11)
N2A - C19A - H19R	109.5	C6C - C5C - H5CA	120.2
112/1 U1//1 111/D	107.5	Coc Coc moch	120.2

H19A—C19A—H19B	109.5	С4С—С5С—Н5СА	120.2
N2A—C19A—H19C	109.5	C5C—C6C—N6C	116.65 (10)
H19A—C19A—H19C	109.5	C5C—C6C—C1C	123.51 (11)
H19B—C19A—H19C	109.5	N6C—C6C—C1C	119.84 (10)
C1B—N1B—C14B	113.91 (9)	O22D—N2D—O21D	121.40 (10)
C1B—N1B—C15B	116.48 (9)	O22D—N2D—C2D	118.52 (10)
C14B—N1B—C15B	116.06 (9)	O21D—N2D—C2D	120.08 (10)
C18B—N2B—C19B	110.68 (11)	O42D-N4D-O41D	123.15 (11)
C18B—N2B—C17B	112.88 (10)	O42D-N4D-C4D	118.23 (11)
C19B—N2B—C17B	109.41 (10)	O41D—N4D—C4D	118.62 (11)
C18B—N2B—H2BB	107.9	O62D—N6D—O61D	123.40 (12)
C19B—N2B—H2BB	107.9	O62D—N6D—C6D	118.39 (11)
C17B—N2B—H2BB	107.9	O61D—N6D—C6D	118.16 (11)
C2B—C1B—C6B	119.35 (11)	O1D-C1D-C6D	122.60 (11)
C2B—C1B—N1B	119.55 (10)	O1D—C1D—C2D	126.13 (11)
C6B—C1B—N1B	121.08 (11)	C6D-C1D-C2D	111.22 (10)
C3B—C2B—C1B	120.54 (12)	C3D—C2D—N2D	116.41 (10)
C3B—C2B—H2BA	119.7	C3D—C2D—C1D	123.81 (10)
C1B—C2B—H2BA	119.7	N2D—C2D—C1D	119.79 (10)
C4B—C3B—C2B	121.28 (13)	C2D—C3D—C4D	119.71 (11)
C4B—C3B—C12	119.96 (11)	C2D—C3D—H3DA	120.1
C2B—C3B—C12	118.74 (11)	C4D—C3D—H3DA	120.1
C5B—C4B—C3B	117.97 (13)	C3D—C4D—C5D	121.16 (11)
C5B—C4B—H4BA	121.0	C3D—C4D—N4D	119.45 (11)
C3B—C4B—H4BA	121.0	C5D—C4D—N4D	119.37 (11)
C4B—C5B—C6B	123.43 (13)	C6D—C5D—C4D	118.51 (11)
C4B—C5B—H5BA	118.3	C6D—C5D—H5DA	120.7
C6B—C5B—H5BA	118.3	C4D—C5D—H5DA	120.7
C5B—C6B—C1B	117.41 (13)	C5D-C6D-C1D	125.15 (11)
C5B—C6B—C7B	116.14 (12)	C5D—C6D—N6D	117.09 (11)
C1B—C6B—C7B	126.43 (12)	C1D—C6D—N6D	117.76 (10)
C14A—N1A—C1A—C2A	-107.63 (13)	C12B—C13B—C14B—N1B	-177.79 (11)
C15A—N1A—C1A—C2A	33.30 (16)	C10B—C9B—C14B—C13B	-1.22 (19)
C14A—N1A—C1A—C6A	72.36 (14)	C8B—C9B—C14B—C13B	-176.97 (12)
C15A—N1A—C1A—C6A	-146.71 (11)	C10B—C9B—C14B—N1B	178.02 (11)
C6A—C1A—C2A—C3A	-1.34 (18)	C8B—C9B—C14B—N1B	2.26 (18)
N1A—C1A—C2A—C3A	178.65 (11)	C1B—N1B—C14B—C13B	102.50 (13)
C1A—C2A—C3A—C4A	-0.64 (19)	C15B—N1B—C14B—C13B	-36.93 (16)
C1A—C2A—C3A—Cl1	-178.58 (9)	C1B—N1B—C14B—C9B	-76.72 (14)
C2A—C3A—C4A—C5A	1.07 (18)	C15B—N1B—C14B—C9B	143.84 (12)
Cl1—C3A—C4A—C5A	179.03 (9)	C1B—N1B—C15B—C16B	165.18 (10)
C3A—C4A—C5A—C6A	0.48 (19)	C14B—N1B—C15B—C16B	-56.43 (14)
C4A—C5A—C6A—C1A	-2.38 (19)	N1B-C15B-C16B-C17B	-53.28 (14)
C4A—C5A—C6A—C7A	177.53 (12)	C18B—N2B—C17B—C16B	-54.25 (14)
C2A—C1A—C6A—C5A	2.80 (18)	C19B—N2B—C17B—C16B	-177.97 (11)
N1A—C1A—C6A—C5A	-177.19 (11)	C15B—C16B—C17B—N2B	-59.81 (14)
C2A—C1A—C6A—C7A	-177.11 (11)	01C—C1C—C2C—C3C	-172.94 (12)
N1A—C1A—C6A—C7A	2.90 (17)	C6C—C1C—C2C—C3C	4.51 (17)
C5A—C6A—C7A—C8A	108.32 (14)	01C—C1C—C2C—N2C	8.32 (18)

C1A—C6A—C7A—C8A	-71.77 (15)	C6C—C1C—C2C—N2C	-174.22 (10)
C6A—C7A—C8A—C9A	53.41 (17)	O21C—N2C—C2C—C3C	-146.36 (12)
C7A—C8A—C9A—C10A	-178.17 (13)	O22C—N2C—C2C—C3C	30.17 (17)
C7A—C8A—C9A—C14A	1.9 (2)	O21C—N2C—C2C—C1C	32.47 (17)
C14A—C9A—C10A—C11A	1.1 (2)	O22C—N2C—C2C—C1C	-151.00 (12)
C8A—C9A—C10A—C11A	-178.89 (13)	C1C—C2C—C3C—C4C	-2.84 (19)
C9A—C10A—C11A—C12A	-1.9 (2)	N2C—C2C—C3C—C4C	175.92 (11)
C10A—C11A—C12A—C13A	0.9 (2)	C2C—C3C—C4C—C5C	0.02 (18)
C11A—C12A—C13A—C14A	0.7 (2)	C2C—C3C—C4C—N4C	-177.33 (11)
C12A—C13A—C14A—C9A	-1.53 (19)	O42C—N4C—C4C—C5C	4.18 (18)
C12A—C13A—C14A—N1A	179.06 (11)	O41C—N4C—C4C—C5C	-176.14 (11)
C10A—C9A—C14A—C13A	0.63 (18)	O42C—N4C—C4C—C3C	-178.43 (11)
C8A—C9A—C14A—C13A	-179.43 (13)	O41C—N4C—C4C—C3C	1.26 (17)
C10A—C9A—C14A—N1A	-179.98 (12)	C3C—C4C—C5C—C6C	0.60 (18)
C8A—C9A—C14A—N1A	0.0 (2)	N4C—C4C—C5C—C6C	177.94 (11)
C1A—N1A—C14A—C13A	119.29 (12)	C4C—C5C—C6C—N6C	-178.20 (11)
C15A—N1A—C14A—C13A	-21.67 (16)	C4C—C5C—C6C—C1C	1.51 (19)
C1A—N1A—C14A—C9A	-60.10 (15)	O61C—N6C—C6C—C5C	-10.99 (18)
C15A—N1A—C14A—C9A	158.94 (11)	O62C—N6C—C6C—C5C	167.41 (12)
C1A—N1A—C15A—C16A	59.19 (14)	O61C—N6C—C6C—C1C	169.29 (13)
C14A—N1A—C15A—C16A	-160.59(10)	O62C—N6C—C6C—C1C	-12.31 (18)
N1A—C15A—C16A—C17A	63.99 (13)	01C-C1C-C6C-C5C	173.58 (12)
C19A—N2A—C17A—C16A	-178.29(10)	C2C—C1C—C6C—C5C	-3.79 (17)
C18A—N2A—C17A—C16A	-54.17 (13)	01C—C1C—C6C—N6C	-6.71 (19)
C15A—C16A—C17A—N2A	-168.79 (10)	C2C—C1C—C6C—N6C	175.92 (10)
C14B—N1B—C1B—C2B	-122.02 (12)	O22D—N2D—C2D—C3D	0.77 (16)
C15B—N1B—C1B—C2B	17.24 (16)	O21D—N2D—C2D—C3D	-179.14 (12)
C14B—N1B—C1B—C6B	56.77 (16)	O22D—N2D—C2D—C1D	-179.04 (11)
C15B—N1B—C1B—C6B	-163.97 (11)	O21D—N2D—C2D—C1D	1.04 (17)
C6B—C1B—C2B—C3B	-1.29 (18)	O1D—C1D—C2D—C3D	171.41 (12)
N1B—C1B—C2B—C3B	177.51 (11)	C6D—C1D—C2D—C3D	-6.16 (16)
C1B—C2B—C3B—C4B	0.2 (2)	01D—C1D—C2D—N2D	-8.79 (18)
C1B—C2B—C3B—Cl2	-178.11 (9)	C6D—C1D—C2D—N2D	173.63 (10)
C2B—C3B—C4B—C5B	0.6 (2)	N2D—C2D—C3D—C4D	-178.30 (11)
Cl2—C3B—C4B—C5B	178.84 (10)	C1D—C2D—C3D—C4D	1.50 (18)
C3B—C4B—C5B—C6B	-0.2 (2)	C2D—C3D—C4D—C5D	2.70 (18)
C4B—C5B—C6B—C1B	-0.9(2)	C2D—C3D—C4D—N4D	-178.33 (11)
C4B—C5B—C6B—C7B	177.65 (13)	O42D—N4D—C4D—C3D	174.21 (11)
C2B—C1B—C6B—C5B	1.62 (18)	O41D—N4D—C4D—C3D	-5.20 (17)
N1B—C1B—C6B—C5B	-177.17 (11)	O42D—N4D—C4D—C5D	-6.80 (17)
C2B—C1B—C6B—C7B	-176.77 (13)	O41D—N4D—C4D—C5D	173.79 (12)
N1B—C1B—C6B—C7B	4.4 (2)	C3D—C4D—C5D—C6D	-1.40 (19)
C5B—C6B—C7B—C8B	179.37 (13)	N4D—C4D—C5D—C6D	179.63 (11)
C1B—C6B—C7B—C8B	-2.2 (2)	C4D—C5D—C6D—C1D	-4.27 (19)
C6B—C7B—C8B—C9B	-56.27 (17)	C4D	176.05 (11)
C7B—C8B—C9B—C10B	-105.22 (15)	01D—C1D—C6D—C5D	-170.03 (12)
C7B—C8B—C9B—C14B	70.35 (16)	C2D-C1D-C6D-C5D	7.64 (17)
C14B—C9B—C10B—C11B	0.6 (2)	O1D-C1D-C6D-N6D	9.64 (18)
C8B—C9B—C10B—C11B	176.18 (14)	C2D-C1D-C6D-N6D	-172.68 (10)

C9B—C10B—C11B—C12B C10B—C11B—C12B—C13B C11B—C12B—C13B—C14B C12B—C13B—C14B—C9B	-0.2 (2) 0.4 (2) -0.99 (19) 1.41 (19)		O62D—N6D—C6 O61D—N6D—C6 O62D—N6D—C6 O61D—N6D—C6	D—C5D 5D—C5D 5D—C1D 5D—C1D	-146.57 (13) 31.08 (19) 33.73 (18) -148.62 (14)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2A—H2AB…O1D		0.93	1.85	2.7000 (13)	151.
N2A—H2AB···O21D		0.93	2.23	2.8982 (14)	128.
N2B—H2BB···O1C		0.93	1.92	2.6970 (13)	140.
N2B—H2BB···O62C		0.93	2.36	3.0657 (15)	133.
C12A—H12A····Cg7 ⁱ		0.95	2.83	3.656 (4)	145
Symmetry codes: (i) $x, y=1, z$.					
Table 2 π - π hydrogen-bond geometry (Å)					
Cg···Cg			D····A		
Cg1…Cg14 ⁱ			3.838 (8)		
Cg7…Cg13 ⁱⁱ			3.473 (5)		
Cg13…Cg14 ⁱ			3.590 (5)		

Symmetry codes: (i) x, y, z; (ii) 1-x, y, z; Cg1, Cg7, Cg13, Cg14 are the centroids of the C1A–C6A, C1B–C6B, C1C–C6C and C1D–C6D rings.

Fig. 1

