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ABSTRACT
Objective In multiple sclerosis (MS), MRI measures 
at the whole brain or regional level are only modestly 
associated with disability, while network- based measures 
are emerging as promising prognostic markers. We 
sought to demonstrate whether data- driven patterns 
of covarying regional grey matter (GM) volumes predict 
future disability in secondary progressive MS (SPMS).
Methods We used cross- sectional structural MRI, and 
baseline and longitudinal data of Expanded Disability 
Status Scale, Nine- Hole Peg Test (9HPT) and Symbol Digit 
Modalities Test (SDMT), from a clinical trial in 988 people 
with SPMS. We processed T1- weighted scans to obtain 
GM probability maps and applied spatial independent 
component analysis (ICA). We repeated ICA on 400 
healthy controls. We used survival models to determine 
whether baseline patterns of covarying GM volume 
measures predict cognitive and motor worsening.
Results We identified 15 patterns of regionally 
covarying GM features. Compared with whole brain GM, 
deep GM and lesion volumes, some ICA components 
correlated more closely with clinical outcomes. A mainly 
basal ganglia component had the highest correlations 
at baseline with the SDMT and was associated with 
cognitive worsening (HR=1.29, 95% CI 1.09 to 1.52, 
p<0.005). Two ICA components were associated with 
9HPT worsening (HR=1.30, 95% CI 1.06 to 1.60, 
p<0.01 and HR=1.21, 95% CI 1.01 to 1.45, p<0.05). 
ICA measures could better predict SDMT and 9HPT 
worsening (C- index=0.69–0.71) compared with models 
including only whole and regional MRI measures (C- 
index=0.65–0.69, p value for all comparison <0.05).
Conclusions The disability progression was better 
predicted by some of the covarying GM regions patterns, 
than by single regional or whole- brain measures. ICA, 
which may represent structural brain networks, can be 
applied to clinical trials and may play a role in stratifying 
participants who have the most potential to show a 
treatment effect.

INTRODUCTION
Multiple sclerosis (MS) is an inflammatory and 
neurodegenerative disease of the central nervous 
system. The most recognised pathological feature of 
MS is an inflammatory demyelinating white matter 
(WM) lesion, whose formation is associated with 

relapses.1–3 However, the principal driver of irre-
versible disability, and progressive MS, is thought to 
be neurodegeneration.4 5 We now have many treat-
ments that reduce the risk of MS relapses, but only 
have two licensed treatments for progressive MS, 
and their efficacy appears to be mainly in people 
who still show evidence of ongoing inflammatory 
lesion activity.6 7

Neurodegeneration manifests as brain atrophy 
and this can be measured with MRI.8 Grey matter 
(GM) volume loss contributes to brain atrophy.5 In 
patients with secondary progressive MS (SPMS), 
GM volume loss is faster in the deep grey matter 
(DGM) than the cortex, and within the cortex, 
it preferentially affects temporal and parietal 
regions.5 9 10 However, regional and global brain 
atrophy, and other conventional MRI measures, 
only partly correlate with and predict disability 
progression in people with progressive MS.11 In 
part, this is explained by pathology being assessed at 
a whole or regional brain level, while the disability 
occurs as a result of impaired connections between 
clinically eloquent regions and brain networks.

Pathology in MS affects some parts of the brain 
more than others, and ideally, we should seek to 
measure pathology where it is most likely to affect 
clinical outcomes. Network- based measures have 
the potential to add value to conventional MRI 
measures, and have already proven promising in 
explaining motor disability.12 Data- driven GM 
network measures are also a good candidate to be 
used as prognostic markers in clinical trials. Data- 
driven measures of brain networks have the poten-
tial to select those more likely to progress to enrich 
clinical trials and so demonstrate treatment effects.

Independent component analysis (ICA) is a robust 
data- driven technique that has been used to iden-
tify brain networks on structural MRI.13 14 Spatial 
ICA can identify separate brain regions whose 
volume covaries, which can be linked by a common 
biological or pathological property.15 16 In a mainly 
relapsing- remitting (RR) MS cohort, in a cross- 
sectional study Steenwijk et al identified covarying 
patterns in cortical thickness associated with clin-
ical outcomes. A previous study in early RRMS 
showed that covarying patterns of GM intensities 
at baseline did not predict confirmed disability 
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progression (CDP) within 10 years, or at 10 years differentiate 
between patients with CDP and without CDP.17 These studies 
were weighted towards RRMS, and while atrophy occurs early 
in MS, it is more prominent, and thought to be more clinically 
relevant,18 19 during the progressive phase. No study so far 
has looked at the predictive value of baseline network- based 
measures of the cortex and DGM.

The overarching goal of our study was to apply network- based 
MRI measures of GM volume changes, seeking to better predict 
disability progression in SPMS when compared with conven-
tional regional or whole brain volumes. We applied spatial ICA 
to identify covarying patterns of GM from structural MRI in 988 
people with SPMS. Our specific aims were to (1) identify clini-
cally relevant measures of covarying GM volume at study entry 
and (2) identify patterns of covarying GM volumes that predict 
future disability progression. We also aimed to assess stability 
and reliability of these patterns.

MATERIALS AND METHODS
Participants
We re- analysed data from the ASCEND trial, an international 
(163 sites across 17 countries), phase III, randomised, double- 
blind, placebo- controlled trial. Baseline and longitudinal clinical 
and baseline MRI data from 1003 subjects aged 18– 58 years, 
who had SPMS, and baseline Expanded Disability Status Scale 
(EDSS) between 3.0 and 6.5, were acquired.20 Clinical data 
were acquired at baseline, every 12 weeks up to week 108 and 
at week 156. Because ASCEND was a negative trial, we included 
data from participants on natalizumab and from those in the 

placebo arm. We included visits that acquired the following 
MRI sequences: (1) T1- weighted without contrast administra-
tion MRI scans and (2) T2- fluid- attenuated inversion recovery 
(FLAIR) and/or (3) T2- weighted. We excluded data from (n=15) 
participants with artefacts on the available scans and re- baselined 
data from subjects (n=57) with artefacts just on their baseline 
scan (eg, ghosting, magnetic susceptibility and motion artefacts).

To determine whether similar patterns were present in 
healthy controls, we randomly selected 400 participants from 
the Human Connectome Project (males=171, females=229, 
mean age 28.89±3.74) and downloaded the available three- 
dimensional (3D) T1 and T2 scans.

MRI acquisition and processing
Image acquisition
Brain scans were acquired at either 1.5 or 3.0 T with two- 
dimensional (2D) T1- weighted sequences with voxel 
size=0.98×0.98×3 mm3; (2) fast FLAIR with voxel 
size=0.98×0.98×3 mm3 and (3) T2- weighted sequences with 
voxel size=0.98×0.98×3 mm3. Details on MRI acquisition from 
a representative centre are provided in the online supplemental 
materials.

Image processing
The aim of image processing was to extract GM probability 
maps which are the input to ICA from T1- weighted MRI. We 
followed the steps as shown in figure 1.

Figure 1 Visual representation of our image- analysis pipeline. Aiming to identify data- driven network- based measures of covarying GM volumes, we 
initially preprocessed our data as in Eshaghi et al (N4 bias field correction, lesion filling, brain segmentation and parcellation). We created a customised 
template from all the available scans from 39 randomly selected subjects. After having resampled those scans to an isotropic space, we created 39 single 
subject templates, and from those an average study- specific template. We registered the T1 lesion filled scans to the template and diffeomorphically 
transformed the GM segmentation maps to the template using the warping matrix generated from the previous step. We modulated the GM segmentation 
maps by the Jacobian determinants in order to account for possible deformations to the original volumes occurred after the non- linear transformation. We 
applied an 8 mm smoothing kernel to account for intersubject variability and applied a whole brain mask to constrain the following analysis at the level of 
the brain. Aiming to prove the stability of our results, we randomly divided our cohort into four folds. For each fold and for the entire cohort, we generated 
a 4D image by concatenating the available GM maps and ran fast ICA on each of those inputs allowing for 20 components to be identified. For each fold 
and for the entire cohort, we generated a 4D image by concatenating the 20 generated ICA components and ran cross- sectional correlations between those 
inputs to identify which components were stable and could be implemented for statistical analysis. 4D, four- dimensional; ANTs, advanced normalisation 
tools; GM, grey matter; ICA, independent component analysis.
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We used an established pipeline as described elsewhere.21 
Briefly, this pipeline included N4 bias field correction,22 lesion 
filling23 (to reduce the effects of hypointense lesions in T1 scans 
during segmentation), and used the Geodesic Information Flows 
(GIF) V.3.024 to segment the lesion filled T1- weighted images 
into GM, WM and cerebrospinal fluid (CSF) probability maps, 
as well as to divide the brain into 120 parcellations according to 
the Neuromorphometrics atlas.25 We used GIF because it allows 
the inclusion of 2D- MRI data and does not require additional 
manual editing, which for a cohort of this size would have been 
unfeasible. EC visually inspected these outputs to check for erro-
neous segmentation or segmentation outputs.

Voxel-based analysis of GM probability maps
We randomly selected 39 participants to create a study- specific 
template (as described in online supplemental materials), to 
improve the accuracy of the registration and minimise bias.26

For each participant, we registered the baseline T1 lesion filled 
scans to the study- specific template using rigid, affine and diffeo-
morphic non- linear registrations.27 We calculated the cortical 
and deep GM volumes from GM probability maps in the native 
space. We transformed GM probability maps to the template by 
applying the warping matrices obtained from the previous step. 
We modulated the GM probabilistic maps by the Jacobian deter-
minants estimated in Advanced Normalisation tools V.2.3.1 to 
adjust for deformations that occurred to the original volumes 
after the non- linear registration.17 26 28 We used an 8 mm full 
width at half maximum smoothing kernel to account for inter-
subject variability. We created a whole brain parcellation mask 
(as described in online supplemental materials) to constrain the 
ICA to the brain, and to identify and label brain regions in each 
ICA component.

Analysis of covarying GM volumes with ICA
We used the FastICA algorithm29 implemented in scikit- learn 
0.23.1 to identify the independent components representing 
spatial maps of GM covariation (GM patterns). We concatenated 
the GM probability maps from the ASCEND cohort into a 4D 
volume and fitted the ICA model allowing for 20 components 
to be identified.14 30 To assess the stability and repeatability of 
the identified components, we randomly divided our cohort into 
four folds (247 subjects each) and repeated the analysis for each 
fold. We generated a 4D image by concatenating the 20 identi-
fied components and assessed pairwise spatial cross- correlations 
with ‘fslcc’ in FSL31 to select components that were spatially 
stable for each fold (see figure 1). We defined components with 
statistically significant correlations (p<0.05) across folds and 
entire cohort as stable.

To account for heterogeneity of MRI protocols, we split the 
cohort based on the manufacturer used to acquire the MRI 
images, and repeated ICA for each subsample. We assessed pair-
wise spatial cross- correlations between the entire cohort and each 
cross- validation fold using ‘fslcc’ to determine whether compo-
nents were stable across manufacturers. To account for between- 
site variability, we split the cohort based on their geographical 
region, and repeated ICA for each cross- validation fold. We 
applied spatial cross- correlations to determine whether the ICA 
components identified from the entire cohort were stable regard-
less of the geographical region in which they were acquired and 
investigate the reliability of data- driven GM networks.

We overlaid the stable components obtained from the entire 
cohort with our whole- brain mask (obtained as described in 
online supplemental materials) to label brain areas involved in 

each component. To infer potential functional relevance, we 
visually compared the identified GM patterns with functional 
networks previously reported in the literature.32 33

We repeated ICA for healthy controls as described in online 
supplemental materials.

We used the loading factors of the stable components for 
further statistical analysis. Loading factors quantify the contri-
bution of a given subject to a particular component.

Statistical analysis
We computed z- scores from the loading factors for each ICA 
component, whole brain GM, DGM and other brain regions 
volumes with R V.3.6.1. To identify components that represent 
overall brain preservation and brain volume loss, we correlated 
the loading factors of the ICA components with baseline whole 
brain GM volume. We correlated ICA factors with whole brain 
GM volumes, rather than with the volumes of brain regions 
involved in each component, because we aimed to determine 
the direction of ICA- brain volume associations, not their true 
magnitude (correlations are likely to be smaller than they 
would otherwise have been considering just brain volumes 
comprised in each network). To further identify which brain 
areas in each ICA component presented volume loss and which 
were preserved, we obtained parcellation maps for each partic-
ipant from the preprocessing stage, estimated the baseline 
volume of each region and by correlating the baseline volume 
of each region involved in each ICA component, we deter-
mined whether the corresponding regions in the ICA patterns 
were preserved (positive correlation) or represented volume 
loss (negative correlation) (see online supplemental materials 
for additional details). We calculated Pearson’s correlation 
coefficients across z- scores of ICA components and baseline 
average (dominant and non- dominant hands) inverse 9HPT 
(1/9HPT) and SDMT, and Spearman’s correlations between 
these z- scores and the baseline EDSS, to determine the asso-
ciation between the GM patterns measures and the current 
clinical status. We calculated correlation coefficients for EDSS, 
inverse 9HPT and SDMT with the z- scores of lesion load, 
whole brain GM volume, DGM and thalamus volume.34 35 To 
account for the number of comparisons performed, correla-
tions were corrected for multiple comparisons using Bonfer-
roni correction (a=0.05).

To calculate time to worsening of physical and cognitive 
disability, we estimated the EDSS progression as an increase of 
1 point from a baseline EDSS score of 5.5 or below, or of 0.5 
points from baseline EDSS score >5.5, and these scores were 
confirmed at least at 3 months.36 We excluded from this estima-
tion all the clinical visits within 30 days of an MS relapse. We 
also estimated the 9HPT and SDMT worsening as respectively 
a 20% increase36 37 and 10% decrease38 39 with respect to the 
baseline score.

We performed Cox regression analysis to determine 
whether the standardised loading of GM patterns at baseline 
could predict the clinical disability. We built one model for 
each independent variable (ie, ICA components, whole brain 
atrophy, DGM atrophy, lesion load and atrophy in smaller 
regions), adjusting for age, gender, trial arm and centre, and 
having the event and the time- to- event as dependent variables. 
We used the date of the baseline clinical visit, and the date of 
the clinical visit at which participants had an event or the last 
available clinical visit (in case no event was detected), to esti-
mate the time- to- event.
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To determine whether data- driven patterns provide added 
value above to regional MRI volumes and lesion loads, we 
performed post hoc analysis with multivariate Cox propor-
tional regression analysis. To identify the best predictive 
model for 9HPT and SDMT progression, we defined the 
following three models and obtained their concordance 
indexes (C- index):
1. 15 stable ICA components;
2. 15 ICA components together with conventionally used MRI 

measures (whole brain GM, DGM and lesion load);
3. conventionally used MRI measures

We estimated the C- index, which is a measure of the discrim-
ination power of survival models, and represents the propor-
tion of subjects with a progression on the clinical test and a 
worse outcome predicted by the model (concordant pairs) 
divided by the total number of possible evaluation pairs.40 A 
C- index of 1 represents a perfect model prediction, while a 
value of 0.5 denotes random prediction. Age, gender, trial arm 
and centre were used as covariates for each model.

Data availability
Processed data and codes used in this study are available on 
request from qualified investigators.

RESULTS
Participants
For 15 subjects, their scans did not meet our inclusion criteria. 
Therefore, our final cohort comprised 988 patients with SPMS 
(366 men and 622 women with mean age of 46.71±7.70). 
Table 1 reports the demographic characteristics of these 
patients.

We performed a two- sample test for equality of proportion to 
determine whether the randomly selected subcohort was repre-
sentative of the entire cohort for the strength of the acquisition 
field and gender. The proportion of participants scanned at 1.5 
and 3 T did not differ in the two samples (respectively, χ2=0.86, 
df=1, p=0.35, 95% CI −0.19 to 0.77 and χ2=0.30, df=1, 
p=0.59, 95% CI −0.10 to 0.17). The proportion of females and 
males in the two samples did not differ (respectively, χ2=2.10, 

df=1, p=0.15, 95% CI −0.03 to 0.25 and χ2=2.10, df=1, 
p=0.15, 95% CI −0.25 to 0.03]).

Spatial maps of ICA components overlap with previously 
known networks
While allowing for up to 20 components, spatial cross- correlation 
showed that 15 (figure 2) were stable (online supplemental table 
s1). As reported in online supplemental table S2 and S3, compo-
nents were stable regardless of the geographical region or the 
scanner vendor.

Nine of the identified structural GM patterns partially over-
lapped well- known functional systems, however ICA compo-
nents spanned more areas compared with the functional 
networks. For example, component 5 is a sensorimotor- like 
network, encompassing the precentral gyrus, postcentral gyrus 
and supramarginal gyrus (action- execution network). Compo-
nent 8 is a cortico- basal ganglia- like network, spanning the brain 
stem, pons, thalamus, nucleus accumbens, insula, putamen, 
caudate, pallidum, frontal and temporal lobe. Component 20 
resamples a default mode- like network (DMN- like), spanning 
mainly the precuneus, posterior cingulate and middle frontal 
gyrus. For a detailed description of the remaining networks and 
of regions associated with each component, see figure 2, online 
supplemental table S4 and table 2.

Patterns represent brain volume loss or preservation
We identified ICA components representing a mixture of relative 
brain preservation and brain volume loss. Two representative 
examples are:

 ► Component 20 was positively correlated with whole brain 
GM volumes (r=0.28, 95% CI 0.22 to 0.33, p<0.001). 
Higher component loading was associated with higher GM 
volume, therefore this component represents a pattern of 
relatively greater regional volume at baseline.

 ► Component 13, instead, was inversely correlated with whole 
brain GM (r=−0.38, 95% CI −0.43 to −0.33, p<0.001). 
Higher loading on component 13 was associated with lower 
whole brain GM volumes, thus this pattern represents brain 
volume loss. Online supplemental table S5 shows corre-
lations between the loading of each ICA component and 
whole brain GM volumes.

We identified which brain region in each GM pattern had 
brain volume loss and which was preserved (see table 2 and 
online supplemental table S4).

Baseline GM patterns correlate with clinical measures
Among all ICA components, component 8 (in which higher 
values corresponded to lower basal ganglia volumes) was signifi-
cantly correlated with the SDMT and inverse 9HPT (respectively, 
r=−0.44, 95% CI −0.52 to −0.36], p<0.001 and r=−0.32, 
95% CI −0.38 to −0.25, p<0.001). Component 6 (in which 
higher values corresponded to higher cerebellar volumes) was 
correlated with EDSS (rho=−0.11, p<0.05) (figure 3). Overall, 
SDMT and 9HPT showed higher correlation coefficients with 
some ICA component (especially component 8) than with 
conventional MRI measures (online supplemental table S5 and 
S6).

Predicting disability progression with survival modelling
Predicting the risk of 12-week confirmed EDSS progression
Data were available for 840 participants (317 males, 523 females, 
419 patients under disease- modifying treatment (DMT), 421 
patients in the placebo group, mean time- to- event of 1.98 years). 

Table 1 Characteristics of participants

N=988

Gender (M/F) 366/622

Age (mean±SD) 46.71±7.70

Trial arm (DMT/placebo) 420/422

EDSS (median, range) 6 (3–7.5)

SDMT (mean±SD) 39.86±14.20

9HPT (mean±SD) 35.81±19.62

EDSS progression confirmed at 3 months
(no. progressed/not progressed)

197/643

9HPT worsening
(no. worsened/not worsened)

177/244

SDMT worsening
(no. worsened/not worsened)

173/187

EDSS progression was defined as 1 point increase from a baseline EDSS score 
≤5.5, or as 0.5 points from a baseline EDSS score >5.5, excluding all clinical visits 
within 30 days from an attack, and these scores were confirmed at 3 months.36 We 
estimated the 9HPT worsening as a 20% increase with respect to the baseline score 
(Lublin et al37; Tur et al36). We calculated the SDMT worsening as a 10% decrease 
with respect to the baseline score.38 39

DMT, disease- modifying treatment; EDSS, Expanded Disability Status Scale; F, 
females; 9HPT, Nine- Hole Peg Test; M, males; SDMT, Symbol Digit Modalities Test.
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Figure 2 Stable independent component analysis (ICA) components. To determine the stability of the ICA components, we randomly split the sample into 
four folds and ran the ICA on each of them, as well as on the entire sample. While allowing for 20 components to be identified, cross- sectional correlations 
proved that only 15 out of the 20 ICA components were stable (emerged in all of the four folds and from the entire sample). The colour bar represents the 
loading of each component. Most of the identified networks resampled well- known functional systems. Component 3 represents an auditory- like network, 
spanning mainly the superior temporal gyrus, posterior insular and Heschl’s gyrus (cognition- language- speech network). Component 5 is a sensorimotor- like 
network, encompassing the precentral gyrus, postcentral gyrus and supramarginal gyrus (action- execution network). Component 6 resamples a cerebellum- 
like network, involving mainly the cerebellum and fusiform gyrus, temporal and parietal lobe. Component 8 is a cortico- basal ganglia- like network, spanning 
the brain stem, pons, thalamus, nucleus accumbens, insula, putamen, caudate, pallidum, frontal and temporal lobe. Component 9 represents an executive 
control- like network, involving mainly medial frontal areas (action planning and inhibition). Component 11 is a visuo- like network, encompassing mainly 
several regions of the occipital pole and supramarginal, temporal and parietal areas. Component 15 resamples a salience- like network, involving the 
insula, thalamus and striatus (autonomic reaction to salient stimuli; goal- directed behaviour). Component 17 represents an affective and reward network, 
encompassing mainly the anterior cingulate, medial orbitofrontal cortex and prefrontal cortex. Component 20 resamples a default mode- like network 
(DMN- like), spanning mainly the precuneus, posterior cingulate and middle frontal gyrus. The remaining identified networks did not correspond to any major 
brain functional network, but can be labelled by their predominantly involved brain areas. Component 1 is a superior frontal network, encompassing mainly 
superior and medial frontal brain areas. Component 2 is a temporal- like network, involving mainly temporal brain regions. Component 7 is a precuneus- like 
network. Component 12 is an occipito- temporal- like network, spanning mainly the temporal and occipital pole. Component 13 represented a prefrontal 
cortex- like network, involving mainly frontal and orbitofrontal brain areas. Component 18 is a parieto- temporal- like network, involving mainly temporal and 
parietal brain areas.
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A total of 28.5% of subjects had 12- week confirmed EDSS 
progression (figure 1). None of the ICA patterns predicted EDSS 
progression.

GM patterns predicted 9HPT worsening
Data for 361 subjects were available (134 males, 227 females, 
191 patients under DMT, 170 patients in the placebo group). 
By the last available visit, 42% of participants experienced a 
worsening in the 9HPT after a mean time- to- conversion of 1.76 
years (online supplemental figure S2). Component 2 (HR=1.30, 
95% CI 1.06 to 1.60, p<0.01), component 20 (HR=1.21, 
95% CI 1.01 to 1.45, p<0.05) and DGM (HR=0.72, 95% CI 

0.52 to 0.99, p=0.05) predicted the worsening of the 9HPT 
(figure 4 and online supplemental table S7).

GM patterns predicted SDMT worsening
SDMT was available for 360 (140 males, 220 females; 185 under 
DMT, 175 in the placebo group) subjects. By the last available 
visit, 51% of participants had a 10% worsening39 in SDMT score 
after a mean time- to- conversion of 1.36 years (online supple-
mental figure S3). SDMT worsening could be predicted by six of 
ICA components (component 7, component 8, component 13, 
component 15, component 17, component 18), lesion load and 
thalamus (figure 5 and online supplemental table S7).

Table 2 List of the clinically significant components with their corresponding involved brain regions

Components Regions

1 ▴Superior frontal gyrus, ▴Middle frontal gyrus, ▴Superior frontal gyrus medial segment, ▴Anterior cingulate gyrus, ▴Opercular part of the inferior 
frontal gyrus

2 ▾Temporal pole, ▾Inferior temporal gyrus, ▾Middle temporal gyrus, ▾Middle cingulate gyrus, ▾Parahippocampal gyrus, ▾Precentral gyrus medial 
segment, ▾Posterior cingulate gyrus, ▾Entorhinal area, ▾Parietal lobule, ▾Fusiform gyrus

6 ▴Cerebellum, ▴Brain stem, ▴Pons, ▾Lingual gyrus, ▾Fusiform gyrus, ▾Temporal lobe ▾Parietal lobe

7 ▾Superior occipital gyrus, ▾Occipital lobe, ▾Lingual gyrus, ▾Calcalcarine cortex, ▾Precuneus, ▾Parietal lobe, ▾Temporal lobe, ▴Middle temporal gyrus, 
▾Frontal lobe, ▴Precentral gyrus, ▾Supramarginal gyrus

8 ▾Brain stem, ▾Pons, ▾Ventral DC, ▾Thalamus, ▾Insula, ▾Accumbens, ▾Caudate, ▾Putamen, ▾Pallidum, ▾Frontal lobe ▴Temporal lobe

11 ▴Occipital pole, ▴Calcarine cortex, ▴Cuneus, ▾Middle temporal gyrus, ▾Inferior temporal gyrus, ▴Inferior occipital gyrus, ▾Angular gyrus, ▾Superior 
parietal lobule, ▾Supramarginal gyrus

13 ▾Lateral orbital gyrus, ▾Middle frontal gyrus, ▾Superior frontal gyrus, ▾Superior frontal gyrus medial segment, ▾Anterior orbital gyrus, ▾Medial frontal 
cortex, ▾Gyrus rectus, ▾Frontal pole, ▾Medial orbital gyrus, ▾Anterior cingulate gyrus, ▾Brain stem, ▾Lingual gyrus, ▾Temporal pole

15 ▴Thalamus, ▴Caudate, ▾Anterior insula, ▾Posterior insula, ▾Planum polare, ▴Putamen, ▾Frontal operculum, ▾Planum temporale, ▾Claustrum, 
▾Triangular part of the inferior frontal gyrus, ▾Opercular part of the inferior frontal gyrus, ▴Precentral gyrus, ▾Central operculum, ▾Parietal operculum, 
▾Frontal lobe ▾Temporal pole

17 ▴Hippocampus, ▴Pons, ▴Middle temporal gyrus, ▴Superior temporal gyrus, ▴Postcentral gyrus, ▴Triangular part of the inferior frontal gyrus, 
▴Temporal pole, ▴Posterior orbital gyrus, ▴Medial orbital gyrus, ▴Anterior insula, Claustrum, ▴Basal forebrain, ▴Putamen, ▴Subcallosal area, ▴Medial 
orbital gyrus, ▴Gyrus rectus, ▴Medial frontal cortex, ▴Lateral orbital gyrus, ▴Orbital part of the inferior frontal gyrus, ▴Medial frontal cortex, ▴Anterior 
cingulate gyrus, ▴Anterior orbital gyrus, ▴Posterior cingulate gyrus, ▴Postcentral gyrus, ▴Frontal operculum, ▴Inferior temporal gyrus

18 ▾Middle occipital gyrus, ▾Postcentral gyrus, ▾Precentral gyrus, ▾Opercular part of the inferior frontal gyrus, ▾Fusiform gyrus, ▾Parahippocampal gyrus, 
▾Frontal, ▾Occipital lobe ▾Parietal lobe, ▾Inferior temporal gyrus, ▾Middle temporal gyrus, ▾Superior temporal gyrus, ▾Supramarginal gyrus, ▾Middle 
temporal gyrus

20 ▴Superior occipital gyrus, ▴Superior parietal lobule, ▴Precuneus, ▴Posterior cingulate gyrus, ▴Superior frontal gyrus, ▴Middle frontal gyrus, ▴Angular 
gyrus, ▴Occipital lobule

We overlaid a whole brain parcellation mask with the identified ICA components in order to retrieve and label brain regions involved in each network. We correlated the loading 
of ICA components with the baseline volume of the areas involved in each network to identify which brain area in each network was atrophic (negative correlation between 
network loading and baseline volume) and which represented relative brain preservation (negative correlation between those volumes and ICA loadings).
▴Relative preserved brain region.
▾Atrophic brain region.
ICA, independent component analysis.

Figure 3 Correlations between baseline ICA components and baseline EDSS, 9HPT and SDM. Among the 15 stable ICA component, baseline SDMT score 
was more strongly associated with a mainly basal ganglia component (component 8). Among the three clinical tests, (A) SDMT had the highest correlations 
with ICA networks (mainly with component 8). (B) 9HPT was associated with the factor loading of component 8. 9HPT and SDMT correlated better with 
some ICA networks rather than with any other regional or whole brain MRI measure. (C) Among all the 15 networks, component 6 (ie, cerebellum, brain 
stem, pons) had the highest correlation with EDSS. We used the Bonferroni correction to correct for multiple comparisons. CI band is added to the figure. 
EDSS, Expanded Disability Status Scale; ICA. independent component analysis; SDMT, Symbol Digit Modalities Test; 9HPT, Nine- Hole Peg Test.

https://dx.doi.org/10.1136/jnnp-2020-325610
https://dx.doi.org/10.1136/jnnp-2020-325610
https://dx.doi.org/10.1136/jnnp-2020-325610
https://dx.doi.org/10.1136/jnnp-2020-325610
https://dx.doi.org/10.1136/jnnp-2020-325610
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Figure 4 Cox regression models predictive of 9HPT worsening. HR of the statistically significant predictors of 9HPT worsening. The figure shows that two 
GM networks and the volume of the DGM can predict the 9HPT progression. HR >1 indicates that for each SD increase in the corresponding variable there is 
a higher risk of developing the event. HR <1 indicates that for each SD decrease in the corresponding variable, there is a higher risk of progressing on 9HPT. 
Error bars represent the CI. P values <0.05 represent a statistically significant relative risk of developing a 9HPT progression comparing subjects for each 
independent variable shown on the vertical axis. Component 2 encompasses the temporal lobe, middle cingulate gyrus, precentral gyrus medial segment, 
posterior cingulate gyrus, parietal lobule, inferior and middle temporal gyrus, parahippocampal gyrus, fusiform gyrus and entorhinal area. Component 20 
consisted of precuneus, posterior cingulate gyrus, middle and superior frontal gyrus, angular gyrus, superior occipital and superior parietal lobule. 9HPT, Nine- 
Hole Peg Test; GM, grey matter.

Figure 5 Cox regression models predictive of SDMT worsening. HR of the statistically significant predictors of SDMT worsening in separate Cox regression 
models. The figure shows that six ICA components, lesion load and the volumes of the thalamus could predict the SDMT progression. HR >1 indicates 
that for each SD increase in the corresponding variable, there is a higher risk of developing the event. HR >1 indicates that for each SD decrease in the 
corresponding variable, there is a higher risk of progressing on SDMT. For each SD increase in component 8 (encompassing mainly basal ganglia regions), 
which is inversely related to GM volumes, there was a 29% higher risk of developing SDMT progression. For each SD decrease in the volume of the 
thalamus, there is a 18% increased risk of worsening in SDMT. Error bars represent the CI of HR. P values <0.05 represent a statistically significant relative 
risk of developing an SDMT progression for each independent variable shown on the vertical axis. GM, grey matter; ICA. independent component analysis; 
SDMT, Symbol Digit Modalities Test.
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GM patterns add value to conventional MRI measures: Cox 
proportional regression analysis
Models with ICA components had a higher C- index 
(C- index=0.69 (SE=0.025) compared with models including 
only conventional MRI measures (C- index=0.65, SE=0.025) 
(table 3).

The highest C- index belonged to a model with all ICA compo-
nents (C- index=0.72, SE=0.021). When compared with models 
including just conventional MRI measures (C- index=0.69, 
SE=0.022), models that also include ICA components had 
higher C- index >0.71 (SE=0.021) (table 3).

DISCUSSION
Our main finding is that data- driven patterns of GM volume 
change predict physical and cognitive disability in a large cohort 
of people with SPMS. Furthermore, some of the GM ICA compo-
nents correlated more closely with concurrent disability than 
regional or whole brain GM volumes, and some pattern- derived 
measures better predicted disability progression: two of these 
patterns predicted the 9HPT worsening and six components 
predicted cognitive disability better than any other assessed MRI 
measures. Post hoc analysis showed that pattern- based measures 
added value to conventional MRI measures. Interestingly, the 
components that correlated with concurrent disability were not 
necessarily the same as those associated with progression.

We found that some ICA components showed higher correla-
tion coefficients with disability than regional and whole brain 
measures. For each disability measure, different ICA compo-
nents dominated, encompassing both cortical and subcortical 
areas. For EDSS, it was component 6, which included regions 
in the cerebellum, brain stem, pons, lingual gyrus, fusiform 
gyrus, temporal and parietal lobe. For 9HPT, components 6 
and 8 (thalamus, brain stem, pons, ventral diencephalon, insula, 
accumbens, caudate, putamen, pallidum, frontal and temporal 
lobe) were significant, and for the cognitive dysfunction (SDMT) 
five components spanning mainly the precuneus, posterior 
cingulate, temporal and frontal brain regions dominated. While 
the highest correlation coefficient for SDMT and 9HPT were 
reported with ICA component 8 (respectively, r=−0.44, 95% CI 
−0.52 to −0.36, p<0.001 and r=−0.32, 95% CI −0.38 to 
−0.25, p<0.001), lesion load and thalamus volume had higher 
correlation coefficients than other GM patterns. EDSS at base-
line was more strongly associated with component 6 than DGM, 
whole GM atrophy and lesion load measures, but the volume of 
the thalamus in isolation had a higher correlation with EDSS. 
While whole brain GM and DGM measures span the whole 
brain, considering several regions not associated with the lower 
limb functions, component 6 comprised primarily (but not only) 

areas related to motor functions. Nonetheless, the involvement 
in this pattern of brain regions not related to motor functions 
might have decrease the strength of the correlation with EDSS 
score when compared with the volume of the thalamus taken in 
isolation. Thalamus is a neuralgic site for motor control, which 
has already been reported to be associated with EDSS.41

We found baseline ICA components correlated with baseline 
and longitudinal 9HPT and SDMT measures, and baseline EDSS, 
but did not predict EDSS progression. Correlation coefficients 
for EDSS and ICA components were mild to negligible and may 
not be clinically relevant. While correlations were statistically 
significant after applying Bonferroni correction and these values 
are in line with previous reports,9 42–44 the statistical significance 
might have emerged because of the large sample size. We used 
correlations as a starting point to determine whether the identi-
fied components were associated with the current clinical status 
of patients with SPMS. We then applied survival models to deter-
mine the clinical relevance of GM patterns measures. Moreover, 
while ICA components may have greater relative clinical effects 
earlier and later in the course of MS, the limitations of disability 
measures, which are well- recognised for EDSS, might play a 
role. The EDSS was designed as a composite score, but is heavily 
weighted towards walking impairment, particularly affecting mid 
to higher score ranges (such as patients with progressive MS in 
our cohort, in which lower limb functions were already heavily 
impaired).45 In contrast, the 9HPT and SDMT were designed as 
more specific measures and are more likely to reflect the effects 
of pathology. Finally, in patients with SPMS the preservation of 
upper limbs and cognitive functions—poorly represented by the 
EDSS score—are paramount. Thus, we can conclude that ICA 
components are marker of disease worsening in SPMS, but only 
as reflected by 9HPT and SDMT.

While the ICA components were identified without prior 
knowledge of functionally relevant brain regions, their correla-
tions with disability reinforce their usage in predictive models. 
These components include regions linked with specific neuro-
logical and cognitive functions and also those that were both 
functionally and structurally related. Component 8, which was 
mainly a basal ganglia- fronto- temporal pattern, correlated with 
9HPT and SDMT at baseline. It includes regions of DGM and 
cortical areas known to be involved in motor control, memory 
and learning.46 These regions are also part of the cortico- thalamic, 
cortico- basal ganglia- thalamo- cortical and thalamo- cortical 
pathways that control both sensory and motor information 
coming from and going to the cortex.47 Basal ganglia represent 
a series of interconnected subcortical nuclei which are known to 
be involved in selecting and implementing purposeful actions, 
facilitating voluntary movements and inhibiting the competing 

Table 3 Comparison between different predictive models for 9HPT and SDMT progression

Predictors

20% 9HPT worsening 10% SDMT worsening

C- index SE
Likelihood ratio test
(p value) C- index SE

Likelihood ratio test (p 
value)

15 ICA components+DGM+whole brain 
DGM+lesion load

0.69 0.025 9e-05 0.71 0.021 4e-06

15 ICA components 0.68 0.025 2e-04 0.72 0.021 5e-06

Whole GM+DGM+lesion load 0.65 0.025 8e-05 0.69 0.022 3e-05

Models including ICA components and conventionally assessed MRI measures, or considering both DGM and the predictive ICA components identified by Cox models, have 
a stronger predictive value when compared with models including just measures of whole brain and DGM volumes and lesion load. Models including ICA components and 
conventionally assessed MRI measures have a stronger predictive value when compared with models including just measures of whole brain and DGM volumes and lesion load. 
C- index is generally used to validate the predictive ability of survival models. The likelihood ratio test represents the predictive statistically significance value of each model.
*Sex, age, trial arm and centre were used as covariates in each model.
C- index, concordance index; DGM, deep grey matter; GM, grey matter; 9HPT, Nine- Hole Peg Test; ICA, independent component analysis; SDMT, Symbol Digit Modalities Test.
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or interfering ones, and controlling non- motor behaviours (eg, 
working memory, procedural learning, decision making, higher- 
order process of movement initiation).47 48 Moreover, atrophy 
in the cortex, caudate, putamen, globus pallidus, thalamus and 
nucleus accumbens have been reported to be associated with 
lower performance in the SDMT.49 Component six was mainly 
a cerebellar pattern. It encompassed brain regions in close prox-
imity and functionally related (cerebellum, brain stem, pons, 
parietal lobe), already known to be involved in motor functions.

Consistent with previous work in predominantly RRMS 
populations, we found covarying and clinically relevant patterns 
of GM atrophy. Previous studies using ICA have identified 817 
and 109 GM components. In the present study, we looked for 
20 components, a practical maximum given available compu-
tational power, but found 15 could be consistently identified. 
Our ICA components only partially overlapped with previously 
reported GM patterns. For instance, component 5 resembled 
pattern 2 in the study by Steenwijk et al (they both include the 
middle temporal gyrus, superior temporal gyrus, supramarginal 
gyrus, postcentral gyrus and parietal lobule). However, in addi-
tion our ICA component includes other brain regions (cuneus 
and frontal gyrus) not reported by the previous study. Pattern 8 
reported by Bergsland et al encompasses similar brain areas as 
in the ICA component 7 presented here (eg, calcarine cortex, 
precuneus, occipital and frontal lobe). However, a perfect 
match is never present and overall GM patterns presented 
in this study encompass a higher number of brain regions 
when compared with the above- mentioned studies. Most 
patterns identified in other studies were not replicated here, 
nor between studies. There are several potential reasons for 
this. First, cohort difference: when compared with the study 
by Bergsland et al, differences in our results may be related 
to more severe atrophy in SPMS compared with RRMS. Then 
there are methodological differences, for example, we used 
GM volumes as input to the ICA instead of cortical thickness, 
and we allowed for more components to be extracted. Further 
work is required to resolve these inconsistencies, but a clear 
overarching finding is that ICA- based analyses identify overlap-
ping components which could otherwise be lost in whole brain 
and regional atrophy measures, and that these components are 
clinically relevant.

ICA components represent brain GM volumes that covary, 
not necessarily in the same direction. Six components showed 
both positive and negative loading values. This is consistent with 
previously reported studies on structural ICA where authors 
identified 5 components out of 10 that encompassed both rela-
tively preserved and relatively atrophied brain regions.9

We can speculate that the interplay of several factors and mech-
anisms might explain the observed patterns.15 50 For instance, 
DGM (in particular the putamen and caudate) is known to 
present several connections with motor and associative cortices, 
but appear to be susceptible sites for extensive demyelination 
and iron deposition.51 Other brain regions involved in ICA 
components are known to be more susceptible to neurodegen-
eration due to CSF exposure (deep sulci in the temporal pole) 
and hypoxia (pallidum, precuneus and posterior cingulate). For 
example, the precuneus and posterior cingulate present exten-
sive connections with several other brain regions and are part 
of the default brain functional system, known to present under 
normal condition the highest level of energy consumption.52 
Because neurons require a higher amount of energy to adapt to 
demyelination,53 this could make highly connected brain regions 
more susceptible to neurodegeneration. Therefore, several 
mechanisms can cause the observed patterns of volume changes. 

Future work with longitudinal ICA studies will investigate this 
further.

Our study has some limitations. In this study, we re- analysed 
data from a large, negative, multicentre study, where MRI data 
were acquired with different scanners. External validation was 
not performed because data from another SPMS cohort were 
not available. However, we performed cross- validation for the 
different vendors and acquisition regions to determine whether 
they could affect the identified patterns. We found that compo-
nents were stable among cross- validation folds. To take into 
account the effect of centre had on the association and predic-
tive ability of MRI measures on clinical outputs, we used the 
centre as covariate in our regression models. Non- isotropic 2D 
T1- weighted scans were acquired, and while we were still able to 
measure cortical volumes, and identify multiple ICA components, 
isotropic 3D scans may enable future studies to identify addi-
tional components. Although high- resolution 3D T1- weighted 
scans would enable cortical thickness rather than volumes to 
be measured, and so may reveal different ICA patterns that we 
have been unable to detect and may improve on the predictive 
power of ICA measures, with baseline 2D T1- weighted scans we 
detected patterns of GM that predicted both motor and cogni-
tive disability. Considering the broader availability of low resolu-
tion 2D scans in phase III clinical trials,54 these findings reinforce 
the applicability of ICA patterns to both 2D and 3D images, and 
underline that 2D MRI can be analysed in retrospective imaging 
studies.

We preferred GM volumes over cortical thickness measures 
as input for ICA because we were also interested in changes 
of subcortical brain regions. Similar to previous works, we 
smoothed the probability maps to account for intersubject vari-
ability, but this will have reduced sensitivity to small regional 
effects, although offset by the large size of the cohort.

This study focused on GM patterns, however MS is a gener-
alised disorder, and so while our ICA components often comple-
mented whole or regional brain GM measures, future work will 
determine whether WM regions could increase the predictive 
accuracy of pattern- based measures. Because we used data from 
a phase III clinical trial, no data for healthy controls were avail-
able thus we cannot exclude whether the same patterns would 
be identified and how they would differ among healthy controls. 
Using MRI for healthy controls from the HCP, nine GM patterns 
identified from patients with SPMS were uniquely correlated 
and present also in healthy controls, suggesting that they are not 
disease specific. Two GM patterns identified from participants 
with SPMS (component 5 and 9) were spatially correlated with 
and represented respectively the sensorimotor element and the 
frontal element of a single GM pattern detected from HC. The 
same was true for components 7 and 11 identified from subjects 
with SPMS that represented different regions and correlated 
with a single HC GM pattern. A disconnection might explain 
the inability of ICA to detect component 5 and 9, and 7 and 11 
as single GM patterns in participants with SPMS. However, data 
from HC and patients with MS acquired with the same protocol 
are needed to clarify this further. Although slightly overlapping 
with HC patterns, two SPMS ICA components (component 12 
and 18) were detected in patients with MS but not from HCs, 
which might be disease specific. These GM patterns spanned 
mainly temporal regions that are known to be affected in patients 
with SPMS.9 These regions are subserved by WM tracts impaired 
in SPMS. Particularly, a previous ICA study, based on DTI data 
from people with SPMS, has shown that among all WM tracts, 
the anterior commissure and corpus callosum show the most 
extensive WM abnormalities and the strongest correlations 
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with cognitive deficits.55 While our analysis of HCs allows us to 
assess whether or not patterns are more or less MS- specific, we 
cannot directly compare ICA measures between the MS and HCs 
because the MRI scans were acquired with different protocols. 
While these components provide predictive value, further work 
is required to determine which components represent general 
structural variability that may be seen in general population, and 
those more specific to MS.

Because of the cross- sectional nature of this study, baseline 
MRI were used to predict longitudinal clinical disability. This 
represents a limitation of the study because it does not allow 
to determine causal relationships in brain network changes nor 
the dynamics of networks. Previous longitudinal studies have 
determined longitudinal evolution of structural GM networks 
in RRMS.56 Similarly, a longitudinal study on structural brain 
networks obtained from cortical thickness in patients with 
primary progressive MS reported changes in network dynamics 
(increased connectivity and efficiency) from baseline to year 5 
of follow- up mainly in patients with a fast disease progression.57 
Nonetheless, the cross- sectional nature of the study does not 
undermine the ability of baseline MRI data to predict cognitive 
and motor worsening and their relevance for clinical applica-
bility. Recognising the importance and compelling utility of 
longitudinal studies, future longitudinal studies should investi-
gate longitudinal changes and reorganisation of GM patterns.

C- indexes were close, but all statistical models were statisti-
cally significant and models that considered ICA components 
had higher accuracy and smaller SE. It therefore means that 
by adding ICA, we were able to predict outcomes with higher 
accuracy but the effect sizes were small. ICA can identify clin-
ically relevant relationships in covarying brain regions and 
might provide new insights into the disease pathomechanisms. 
Therefore, although the accuracy of predictions is good but not 
excellent, the little improvement provided by ICA components 
is rewarding.

We used conventional norms and a raw score change of 4 point 
(10% change in magnitude) as a clinically meaningful measure39 
to define SDMT progression. However, future studies should 
investigate whether regression- based norms for SDMT might 
better detect abnormal performance in patients with MS58–60 and 
therefore improve the performance of ICA components.

In conclusion, we have shown that ICA identifies regional 
patterns of GM volume loss, several of which are relevant to 
concurrent disability and some predict future progression. 
Several of the ICA- derived GM patterns were more closely 
linked with disability, and better able to predict disability 
progression, than simple MRI measures. Since the source data 
for this study was a phase III clinical trial, the ICA pipeline 
we have developed can readily be deployed in future clinical 
trials. Given the ability of some components to predict future 
progression, they could be used to stratify those who are more 
likely to progress.
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