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With the development of Brain Machine Interface (BMI) systems, people with motor

disabilities are able to control external devices to help them restore movement abilities.

Longitudinal validation of these systems is critical not only to assess long-term

performance reliability but also to investigate adaptations in electrocortical patterns

due to learning to use the BMI system. In this paper, we decode the patterns of

user’s intended gait states (e.g., stop, walk, turn left, and turn right) from scalp

electroencephalography (EEG) signals and simultaneously learn the relative importance

of different brain areas by using the multiple kernel learning (MKL) algorithm. The region

of importance (ROI) is identified during training the MKL for classification. The efficacy

of the proposed method is validated by classifying different movement intentions from

two subjects—an able-bodied and a spinal cord injury (SCI) subject. The preliminary

results demonstrate that frontal and fronto-central regions are the most important

regions for the tested subjects performing gait movements, which is consistent with

the brain regions hypothesized to be involved in the control of lower-limb movements.

However, we observed some regional changes comparing the able-bodied and the

SCI subject. Moreover, in the longitudinal experiments, our findings exhibit the cortical

plasticity triggered by the BMI use, as the classification accuracy and the weights for

important regions—in sensor space—generally increased, as the user learned to control

the exoskeleton for movement over multiple sessions.

Keywords: brain machine interface (BMI), neural classification, electroencephalography (EEG), machine learning,

multiple kernel learning

1. INTRODUCTION

Brain Machine Interface (BMI) systems have attracted extensive attention in the past decade,
because of their potential in improving human life, especially for those who are affected by motor
disabilities. Since gait deficits are commonly associated with spinal cord injuries (SCI), limb loss,
and neurodegenerative diseases, there is a need to investigate innovative therapies to restore gait in
such patients. Exoskeletons have become prominent tools for the rehabilitation of SCI and stroke
patients (Sale et al., 2012; Venkatakrishnan et al., 2014). BMIs have been deployed to infer the
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user’s intent from his/her brain activity to generate output signals
to control powered exoskeletons for upper and lower limb
rehabilitation (Noda et al., 2012; Contreras-Vidal and Grossman,
2013; Kilicarslan et al., 2013; French, 2014; Venkatakrishnan
et al., 2014). In Presacco et al. (2011), Presacco et al. showed
decoding of gait kinematics during treadmill walking from
EEG of able-bodied subjects with accuracies comparable to that
from a similar study in non-human primates with electrodes
implanted in their brains (Fitzsimmons et al., 2009). Further, in
Kilicarslan et al. (2013), a paraplegic subject’s motion intentions
were accurately decoded using Locality Fisher Discriminant
Analysis and a Gaussian Mixture Model (LFDA-GMM) for two
different gait tasks (i.e., repeated walking-turning right-turning
left motions and sit-rest-stand motions). The model enabled
the closed-loop EEG-based BMI system to control a robotic
exoskeleton (NeuroREX) in real-time, resulting in independent
walking for the paraplegic user.

To control a device via BMI, different brain activity patterns
produced by a user need to be accurately identified by a neural
interface system and translated into appropriate commands
(Contreras-Vidal et al., 2015). Discrete decoding (neural
classification) of intent from EEG signals can be considered
as a pattern recognition problem, and advanced machine
learning techniques are needed to accurately translate the brain
electrical activities to meaningful control commands. Many
machine learning methods [e.g., linear discriminant analysis
(LDA), support vector machine (SVM), Bayesian classifiers]
have been applied for classifying EEG signals in different BMI
applications (Kilicarslan et al., 2013; Niazi et al., 2013; Leamy
et al., 2014; Lew et al., 2014; Hortal et al., 2015; Jiang et al.,
2015). However, most of them serve as a “black box” in that
we do not know how the brain activity changes during long-
term BMI use nor how the brain regions contribute to the
classification process while people perform different tasks. The
human brain consists of over 100 billion cells, typically divided
into regions by neuroanatomists. Different regions have their
specific functionalities while coordinating together to accomplish
everyday tasks. Moreover, the specific contributions of brain
regions to classification may change due to learning a BMI.
Therefore, it is important to identify and track these changes
to increase our understanding of brain function, BMI learning
and performance. In that context, the hypothesis of this research
is that different brain regions contribute differentially to BMI
learning and control of robot assisted lower-limb movements—
we are interested in learning the importance of these regions for
neural classification of gait states.

Kernel learning methods have been effectively applied for
many machine learning problems, including feature selection,
data regression and classification for EEG signals (Garrett et al.,
2003; Lal et al., 2004; Lotte et al., 2007). SVM is one of the
most popular kernel methods for pattern recognition. However, a
problem with using the standard SVM in BMI applications is that
it provides no insight about the importance of distinct features,
and thus has little knowledge about the biophysical properties of
relevant features used in decoding/classification. Multiple kernel
learning (MKL), which makes use of a combination of basis
kernels to represent different types of features or data, have

been shown to outperform traditional single-kernel machines in
different aspects (Sonnenburg et al., 2006; Tian et al., 2012; Samek
et al., 2013; Li et al., 2014). The main advantage of using MKL
over SVM is that MKL can simultaneously learn the classifier and
the optimal weights for basis kernels. In this paper, we investigate
and make use of this property to simultaneously decode gait
states from multi-channel EEG signals and learn the relative
importance of different scalp brain areas. Particularly, we build a
composite kernel based on a linear combination of basis kernels,
in which each basis kernel can be represented by a group of
electrodes corresponding to selected regions of interest (ROIs),
and consequently contribute unique biophysical information.

The primary goal of this research is to show the feasibility
of simultaneously classifying the pattern of user’s internal gait
states (e.g., stop, walk, turn left, turn right) from the EEG signals
and learning the relative importance of different scalp brain
areas. Previous studies have shown that low delta band (0.1–
2Hz) EEG contains intended movement-related information for
decoding the kinematics of lower limb or gait states (Presacco
et al., 2011, 2012; Jorquera et al., 2013; Kilicarslan et al., 2013;
Bulea et al., 2014; Luu et al., 2016). For example, in Presacco
et al. (2011), Presacco et al. (2012), and Luu et al. (2016), it
was shown that delta band EEG contains information about
gait movement kinematics that can be decoded using Wiener or
Kalman filters. In Kilicarslan et al. (2013), Jorquera et al. (2013),
and Bulea et al. (2014), it was shown that movement-type (e.g.,
“stop,” “go,” etc.) classifiers can be designed based on delta band
EEG signals. Another study (Velu and de Sa, 2013) showed that
features corresponding to frequencies less than 2 Hz were the
most heavily weighted during single trial classification of walking
and pointing direction. Inspired by the above findings, in this
study, we utilize delta band (0.1–2Hz) EEG to build our basis
kernels (feature matrices) for neural classification of gait states.

The other goal of the research is to compare the brain
regions employed for classifying movement intents from able-
bodied subjects and individuals with spinal cord injury (SCI)
given differences in neural activity across these populations.
Studies have shown that SCI can cause widespread and sustained
brain inflammation that leads to progressive loss of brain cells
in key brain regions with associated cognitive problems (Wu
et al., 2014a,b). Cramer et al. have found that in patients with
complete SCI, many features of normal motor system function
are preserved, however, the volume and patterns of activation and
the modulation of function with change in task are abnormal and
absent, respectively, in patients with SCI (Cramer et al., 2005).
In this preliminary study, we collected EEG data from a SCI
volunteer over multiple sessions to compare the classification
results with an able-bodied subject on the important brain
regions during learning.

The remainder of the paper is organized as follows.
Section 2 introduces our methodology for region importance
learning, including experimental protocol, data acquisition,
processing and analysis. In particular, we introduce the MKL
algorithm and how we apply it to learn the importance
of different brain regions. In section 3, we validate the
efficacy of the proposed work via experiments using four-
class single session and two-class longitudinal EEG data.
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Section 4 presents our discussions from analyzing the
experimental results. Finally, concluding remarks are provided in
Section 5.

2. METHODOLOGY

2.1. Experimental Protocols and Tasks
The experimental protocols were approved by the Institutional
Review Board of the University of Houston. After giving
written informed consent, an able-bodied subject and an SCI
subject (both male) were fitted with a wearable powered
exoskeleton (REX, REX Bionics Ltd, New Zealand) and an
EEG-based BMI (Kilicarslan et al., 2013). For data collection,
users were asked to perform motor imagery of locomotive
movements while following and completing a path marked
on the ground with the robot controlled by an operator
remotely. This allowed synchronized motion and EEG data
while securing user engagement. There were two tasks in
this research. Task 1 was a four-class, single session task in
which the subjects performed different movements, i.e., walking
forward, turning right, turning left and stop, following the
marked path on the ground. In Task 2, subjects only executed
walking and stopmotions according to audible beep instructions.
Each trial contained at least 10 stop-to-walk or walk-to-stop
transitions. The subjects were trained over multiple sessions in
a 30 days period to control the exoskeleton to perform these
motions.

2.2. Data Acquisition and Processing
Multichannel active-electrode EEG (64 channels) was recorded
by combining two 32-channel amplifiers (actiCap system, Brain
Products GmbH, Germany). The electrodes were placed and
labeled in accordance with the extended 10–20 international
system. A wireless interface (MOVE system, Brain Products
GmbH, Germany) was used to transmit data (sampled at 100 Hz)
to the host PC. Figure 1 shows a volunteer controlling NeuroRex
via the EEG BMI system.

We took a careful approach in regard to potential motion
artifacts aiding decoding. First, we used good engineering
measurement practices (Nathan and Contreras-Vidal, 2015),
including EEG cap set-up and medical-grade mesh to fixate
individual electrode wirings that can induce motion artifacts;
second, we deployed a wireless active-electrode EEG system to
increase the signal to noise ratio (signals are amplified directly
at the electrode location) and help mitigate motion artifacts;
third, we have shown that the delta band EEG contains negligible
motion artifacts at the gait speeds tested in the study (Nathan and
Contreras-Vidal, 2015); fourth, we applied the Artifact Subspace
Reduction (ASR, an automated artifact rejection method Mullen
et al., 2013; Bulea et al., 2014) and compared classification
accuracies with and without ASR, to assess the potential effects
of motion artifacts but did not find significant changes on
classification accuracies suggesting that motion artifacts, if
any, did not affect decoding. The acquired data were then
filtered in the 0.1–2Hz range using a second order Butterworth
filter and standardized (z-score) in a data preprocessing
step.

FIGURE 1 | A volunteer controlling NeuroRex via the EEG BMI system.

2.3. Region Importance Learning
Framework
We conducted separate experiments of the above two tasks to
interpret the use of kernel weights in MKL as an indicator
of the region importance in classification of user’s movement
intention from EEG signals. After the signals were pre-processed,
64 channels were divided into 13 ROIs as described in Section
2.4.1. The features were then extracted by applying a 400 ms
sliding window on each channel with 1 shift (10 ms) each time to
acquire the amplitude modulations and concatenated as a feature
matrix. To better meet the data process in real world, we divided
the labeled samples into two halves for supervised learning. We
randomly select 500 samples from the first half of the labeled
samples for training, and the remaining half were used for testing
and evaluation. The testing process was repeated 10 times and
the metric for evaluating the classification results is the average
overall accuracy (OA). The flowchart of the proposed framework
is shown in Figure 2.

2.4. Learning and Classification Methods
2.4.1. Brain Scalp Regions
The analysis and interpretation of EEG measurements depend
upon the correspondence of electrode scalp coordinates to
structural and functional regions of the brain (Giacometti et al.,
2014; Gentili et al., 2015). For example, Giacometti et al.
(2014) showed that EEG electrode proximity maps intersect with
EEG sensitivity maps of the human brain, allowing the use of
proximity maps to inform the cortical origin of scalp recordings.
Furthermore, intersection of structural and functional regions of
the brain with cortical proximity parcellations can be used to
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FIGURE 2 | Flowchart of the region importance learning framework.

show the correspondences between scalp electrode coordinates
and potential regions of interest in the human cortex (Giacometti
et al., 2014).

In this research, we investigate the importance of brain
areas for the lower-limb movement neural classification task
for both able-bodied and SCI subjects. Specifically, the brain
scalp is divided into 13 topographical regions of interest (ROIs)
(Kranczioch et al., 2008; Gobel et al., 2011), which are anterior
frontal (AF), left fronto-central (LFC), midline fronto-central
(MFC), right fronto-central (RFC), left centro-parietal (LCP),
midline centro-parietal (MCP), right centro-parietal (RCP), left
parieto-occipital (LPO), middle parieto-occipital (MPO), right
parieto-occipital (RPO), left temporal (LT), right temporal (RT)
and Occipital (O). Figure 3 and Table 1 show the partition of the
scalp and the name for each ROI.

2.4.2. Kernel-Based Learning Methods Foundation
Kernel-based learning methods have been widely applied for
various machine learning tasks. The reason for its popularity is
that it easily extends the linear classifier to nonlinear decision
surfaces using the “kernel trick.” All the kernel methods make
use of the “kernel trick” to map the data X = {x1, x2, ..., xN} from
the input space to a higher dimensional feature space H (i.e.,
Reproducing Kernel Hilbert Space (RKHS)) as8 :R

d → H, x→
8(x), so that the original non-linear data are linear separable in
such feature space. The kernel mapping is defined as:

K(xi, xj) =
〈

8(xi),8(xj)
〉

, (1)

where 〈·, ·〉 is the inner product of two vectors.

SVM is one of the most popular kernel-based classifier
(Vapnik and Vapnik, 1998). The underlying principle of SVM is
to simultaneously minimize the empirical classification error and
maximize the geometric margin of the linear separation surface.
The optimization problem for SVM classification is formulated
as:

min
w,ξi ,b

J(w, ξi, b) =
1
2‖w‖

2 + C
N
∑

i = 1
ξi

s.t.

{

yi
(〈

w,8(xi)
〉

+ b
)

≥ 1− ξi
ξi ≥ 0,∀i = 1, 2, · · · ,N

,
(2)

where C is a constant which controls the balance between the
margin and empirical loss, ξi are slack variables which measure
the degree of misclassification, and ‖w‖2 is inversely related to
the margin to the hyperplane.

In most kernel-based learning methods, performance is
greatly affected by the choice of kernel function and related
kernel hyper-parameters. The standard SVM only utilizes a single
kernel function with fixed parameters, which necessitates model
selection for good classification performance. Besides, using a
fixed kernel may be suboptimal, since different sources of data
may have different representations of the phenomena of interest,
and hence the similarity should not be measured via the same
kernel function.

2.4.3. Multiple Kernel Learning (MKL)
In recent works, MKL has been shown to outperform traditional
single-kernel SVMs in many cases, especially for classification
and feature fusion problems (Sonnenburg et al., 2006; Tian
et al., 2012; Samek et al., 2013; Li et al., 2014; Zhang et al.,
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FIGURE 3 | Scalp regions of interest (ROIs).

TABLE 1 | Scalp ROI names.

Index ROI name Index ROI name

1 Anterior Frontal (AF) 8 Left Parieto-Occipital (LPO)

2 Left Fronto-Central (LFC) 9 Middle Parieto-Occipital (MPO)

3 Midline Fronto-Central (MFC) 10 Right Parieto-Occipital (RPO)

4 Right Fronto-Central (RFC) 11 Left Temporal (LT)

5 Left Centro-Parietal (LCP) 12 Right Temporal (RT)

6 Midline Centro-Parietal (MCP) 13 Occipital (O)

7 Right Centro-Parietal (RCP)

2015). In this paper, we employ MKL to infer information about
electrode relevance by observing the kernel weights learned from
training the machine for classification. Each “group” of features
is assigned a basis kernel, and the linear combination of all
basis kernels is optimized through gradient descent on the SVM
objective function. The optimization of multiple kernels works as
a feature selector providing a weighted ranking of the importance
of its components.

We consider the above 13 ROIs as generating a 13-source
input. For a specific source p, the combined kernel function K
between two samples x

p
i and x

p
j can be represented as

K(x
p
i , x

p
j ) =

M
∑

m = 1
dmKm(x

p
i , x

p
j )

s.t. dm ≥ 0, and
M
∑

m = 1
dm = 1 ,

(3)

where M is the number of candidate basis kernels representing
different kernel parameters, Km is the m-th basis kernel and
dm is the weight for it. Weights can be estimated through
cross-validation, which is computationally demanding when the
number of basis kernels (i.e., feature sets or data sources) is
large. An alternative strategy, which we adopt in this work,
is based on the SimpleMKL algorithm (Rakotomamonjy et al.,
2008). It optimizes the weights automatically in a learning
problem by utilizing the gradient descent approach. Based on the
SVM optimization problem, the SimpleMKL learning problem is
expressed as:

min
d

J(d), s.t.dm ≥ 0, and
M
∑

m = 1
dm = 1

J(d) =























min
w,b,ξ

1
2

M
∑

m = 1

1
dm
‖wm‖

2 + C
N
∑

i = 1
ξi

s.t. yi

(

M
∑

m = 1

〈

wm,8m(x
p
i )

〉

+ b

)

≥ 1− ξi

ξi ≥ 0,∀i = 1, 2, · · · ,N ,

(4)

where 8m(x
p
i ) is the kernel mapping function of x

p
i , wm

is the weight vector of the mth decision hyperplane, C is
the regularization parameter controlling the generalization
capabilities of the classifier, and ξi is a positive slack variable.

The objective function is a constrained optimization problem,
which can be transformed into a dual form L(αi,αj) using
Lagrange multipliers αi, αj. Then the kernel weight dm can be
optimized by updating it along the gradient descent direction of
L(αi,αj) as d ← d + γD, where γ is the step length, D is the
descent direction of L(αi,αj), and d = [d1, d2, · · · , dM]T is the
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kernel weight vector. Following this optimization procedure and
after several iterations, SimpleMKL provides the optimal kernel
weight for each basis kernel that indicates the importance of a
particular brain region in classification of gait states.

2.5. Parameter Settings
In the experiments, RBF kernels defined as K(xi, xj) =

exp(−
‖xi − xj‖

2

2σ 2 ) were used with relative width parameter σ .
In the multiple kernel setting, we did not select a specific
kernel parameter; instead, we defined a set of different values as
candidate input parameters. We can build several basis kernels
with different values of σ for each source of input, however,
the number of parameters should be kept small to reduce
the computational complexity and memory requirements. In
particular, four basis kernels with σ = [0.1, 0.5, 1, 1.5] were
considered for all sources. This range of values was found to be
reasonable after applying kernel alignment (Shawe-Taylor and
Kandola, 2002) using cross-validation. The penalty parameter
was then selected by cross-validation in the range of [2−1, ..., 215].
For further information of MKL experimental settings, we
refer readers to Zhang et al. (2015). All the experiments were
implemented in Matlab R2014a using the SimpleMKL toolbox
(Rakotomamonjy, 2008).

3. RESULTS

3.1. Four-Class, Single Session
Classification Results
First, we compare the kernel weights optimized by SimpleMKL
algorithm for defined ROIs from the able-bodied subject and
the SCI subject in a four-class task. Four motion classes for
classification are walking forward, turning left, turning right and
stop. The boxplots and topoplots of optimized kernel weights for
different ROIs are shown in Figure 4. The average classification
accuracies were 74.5% and 68.4% for the able-bodied and the SCI
subject, respectively.

From the results, it is observed that the fronto-central scalp
regions (MFC, RFC) have the highest weights among all ROIs,
which included scalp areas associated with the motor planning
and the lower-limb neural representation (Leeb et al., 2013).
Interestingly, for the able-bodied subject, the MFC ROI showed
the highest relevance to gait decoding with RFC being the closest
area in importance. In contrast, in the case of the SCI subject,
the order of importance was reversed, with RFC showing the
highest relevance followed byMFC.We also note that for the SCI
subject, ROIs LFC, LCP, MCP, and RCP also showed relatively
higher weights than for the healthy control subject, while the
remaining ROIs have low weights for both subjects. Clearly, the
cortical representation for the gait movements wasmore compact
and strong for the able-bodied subject than the SCI user. These
results demonstrate that MKL can be efficiently used to infer
the importance of different groups of features and thus suggest
different roles in the representation of gait for different scalp
brain areas.

Further, we give some insights of the class-wise results
regarding differentmovement intentions.We show the confusion

matrices in terms of class-wise accuracies and misclassification
rates in Figure 5. Generally, the stop intention is the most
difficult to decode—it was misclassified as walking forward in
many situations. Turning right always has a high accuracy for
both able-bodied and SCI subjects compared to the other classes.
We note that all class-wise accuracies are above channel level—
which is 25% for this problem.

3.2. Two-Class, Multiple Sessions
Classification Results
Second, we conducted a longitudinal experiment for the two-
class (i.e., walk and stop) classification problem. We quantified
electrode relevance changes across sessions to examine neural
signatures that may indicate the cortical plasticity triggered by
BMI use. We first plot the weight changes along 9 sessions over
a period of 30 days for the able-bodied (a different subject as
in task 1) and the SCI subjects (the same subject as in task 1)
in Figures 6, 7, respectively. As depicted in the scalp maps, the
weights change dramatically in the first several daily sessions,
while becoming more stable in the later sessions. Similar to the
previous results, the frontal scalp regions get the highest weights
among all ROIs after training the user to control the exoskeleton
for several sessions. Specially, for the SCI subject, RFC (ROI 4)
has the highest weight, while LCP (ROI 5) also has relative high
weight. For the able-bodied subject, the final important region is
determined as MFC (ROI 3). Thus, the SCI subject used different
brain regions to operate the BMI systemwhen compared with the
able-bodied user.

Since ROIs 4, 5 and ROI 3 were determined as the most
significant regions for the SCI subject and the able-bodied
subject, respectively, for classification of gait states, we further
evaluated the overall accuracy and kernel weight for these ROIs
as a function of session. The linear fit of the relations between
overall accuracy (or weights for the selected ROI) and daily BMI
sessions are shown in Figures 8, 9 for the SCI subject and the
able-bodied subject, respectively. From the results, we can see the
classification accuracy generally increases as a function of session.
At the same time, the weight for ROI 4, 5 (ROI 3) also showed a
trend of increasing along the session over a period of 30 days. We
calculated the R2 and p-value as a indicator of how well the data
fitted to the regression line and the significance of the results to
the hypothesis, respectively.

4. DISCUSSION

Previous study (Kilicarslan et al., 2013) has shown the feasibility
of classifying user movement intentions using EEG signals in the
delta band (0.1–2Hz) based on a GMM classifier and achieved
a high offline evaluation accuracies for the 3-class tasks. In this
study, we extend the study of intendedmotions from three classes
to four classes and set the research as a longitudinal study. The
experimental results demonstrate that by properly weighting the
importance of the features, MKL can be used as an efficient
decoder to predict user’s movement intentions. For the tested
subjects, the overall accuracies reached above 90% for the two-
class classification task and above 65% for the more complicated
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FIGURE 4 | Comparison of kernel weights for different ROIs from (A) able-bodied subject and (B) SCI subject in Task 1.

FIGURE 5 | Confusion matrices (%) for (A) able-bodied subject and (B) SCI subject in Task 1.

four-class classification task. Compared to some commonly used
machine learning approaches (i.e., Bayesian classifiers, LDA,
SVM) in BMI, MKL has the following advantages (1) Unlike
the LDA and Bayesian classifiers, MKL does not need to make
assumptions on the data distribution. MKL is a member of kernel
learning methods, which utilizes a linear combination of kernels
and transforms the original data into an appropriate (kernel)
feature space. Thus, all beneficial properties (e.g., optimality) of
linear classifiers are maintained, while MKL is also efficient when

the data are non-linear in the input space. (2) MKL is a robust
learning method in the high dimensional space (Bach, 2008). In
Kilicarslan et al. (2013), a sliding window was used on all 64
channels to extract features, it resulted in a 1,280 dimensional
space, and a dimensionality reduction technique was required
to reduce the dimension of the data decoding by GMM. Similar
to the feature extraction step in Kilicarslan et al. (2013), we
applied a 400 ms sliding window to extract the EEG delta band
amplitude as input to the classifier. Differently, we divided the
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FIGURE 6 | Scalp maps of weights along 9 sessions for the able-bodied subject in Task 2.

FIGURE 7 | Scalp maps of weights along 9 sessions for the SCI subject in Task 2.

channels into different groups and extract features from each
group. Thus, the resulting dimension for each group of data is at
most 240, which is much lower than 1,280, and a dimensionality
reduction method is not necessary for classification by MKL.
(3) MKL can also be used to infer the importance of different
groups of features, which is not feasible in othermachine learning
methods. The weight for each group is initialized uniformly at
the beginning and optimized during the gradient descent in the
MKL algorithm. MKL ranks sets of features corresponding to
the meaningful features for solving the classification problem,
and the results indicate importance in the representation of
movement for different scalp brain areas.

Comparing the results from the SCI subject and the able-
bodied subject, we observe the most important brain region

changing from the midline fronto-central to the right fronto-
central in both tasks. This could be due to the loss of
brain cells and degraded cerebral cortex dynamics or lack of
afferent input after spinal cord injury. For example, changes
in movement-related cortical potentials have been noted after
SCI and correlated with the severity of the injury (Boord et al.,
2008; Gourab and Schmit, 2010). Moreover, altered spontaneous
neuronal activity following SCI has been characterized by a shift
in the dominant spectral power peak toward lower frequencies,
including in primary and secondary somatosensory cortices
(Tran et al., 2004; Sarnthein et al., 2006). Noted that the number
of subjects participated in the study was limited, there might be
individual variations on the classification results. However, as
the classification results were based on standard cross-validation
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FIGURE 8 | Plots of overall accuracy and kernel weight for ROI 3 as a function of session for the able-bodied subject in Task 2. (A) Overall accuracy as a

function of session. (B) Kernel weight for ROI 3 as a function of session.

FIGURE 9 | Plots of overall accuracy and kernel weight for ROI 4 and ROI 5 as a function of session for the SCI subject in Task 2. (A) Overall accuracy as

a function of session. (B) Kernel weight for ROI 4 as a function of session. (C) Kernel weight for ROI 5 as a function of session.
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procedure, we believe the proposed approach and model can be
generalized to other subjects.

In the longitudinal experiments, we found that the subjects
were adapting to the BMI gait task in the first several sessions,
so that the brain regions used for neural classification were
not stable, which was reflected in the moderate classification
performance. After several sessions of training, as the subjects
learned to control the exoskeleton for movement, we observed
the channels employed for movement classification converged to
specific regions—the midline fronto-central areas for the able-
bodied subject and the right fronto-central/left centro-parietal
areas for the SCI user. In addition, the classification accuracy
generally increased along session, and interestingly the weights
for the important regions also increased. This demonstrates the
cortical plasticity triggered by the BMI use, as the user gradually
learns to control the exoskeleton for movement.

5. CONCLUSION

In this paper, we presented the feasibility of simultaneously
classifying the pattern of user’s internal gait states from
the EEG signals and learning the relative importance of
different scalp brain areas based on the MKL algorithm.
The MKL has the advantages of learning the classifier and
the optimal kernel weights simultaneously. We investigated
these properties and applied the MKL classifier to infer the
relative importance of different groups of features (different
sources of information) in a BMI application to classify one’s
motion intention from the EEG signals. The experimental

results demonstrated that the frontal/fronto-central regions
were the most important regions for classifying gait states
of the tested subjects, which is consistent with the brain
regions hypothesized to be involved in the control of lower-
limb movements. By comparing the results from the SCI
subject and the able-bodied subject, the important regions
were observed to change, which could be due to the loss
of brain cells and degraded cerebral cortex dynamics or lack
of afferent input after spinal cord injury. In the longitudinal
experiment, while the user learned to control the exoskeleton
for movement over multiple sessions, the classification accuracy
increased and the weights for important regions stabilized.
These findings suggest the cortical plasticity triggered by the
BMI use, which will be investigated further in the future
study.
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