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Abstract: Excessive alcohol consumption (EAC) has a generally accepted effect on morbidity and
mortality, outcomes thought to be reflected in measures of epigenetic aging (EA). As the association of
self-reported EAC with EA has not been consistent with these expectations, underscoring the need for
readily employable non-self-report tools for accurately assessing and monitoring the contribution of
EAC to accelerated EA, newly developed alcohol consumption DNA methylation indices, such as the
Alcohol T Score (ATS) and Methyl DetectR (MDR), may be helpful. To test that hypothesis, we used
these new indices along with the carbohydrate deficient transferrin (CDT), concurrent as well as past
self-reports of EAC, and well-established measures of cigarette smoking to examine the relationship
of EAC to both accelerated EA and immune cell counts in a cohort of 437 young Black American
adults. We found that MDR, CDT, and ATS were intercorrelated, even after controlling for gender
and cotinine effects. Correlations between EA and self-reported EAC were low or non-significant,
replicating prior research, whereas correlations with non-self-report indices were significant and
more substantial. Comparing non-self-report indices showed that the ATS predicted more than
four times as much variance in EA, CDT4 cells and B-cells as for both the MDR and CDT, and
better predicted indices of accelerated EA. We conclude that each of the non-self-report indices have
differing predictive capacities with respect to key alcohol-related health outcomes, and that the
ATS may be particularly useful for clinicians seeking to understand and prevent accelerated EA.
The results also underscore the likelihood of substantial underestimates of problematic use when
self-report is used and a reduction in correlations with EA and variance in cell-types.

Keywords: alcohol; epigenetic aging; cg05575921; DNA methylation; immune cell function

1. Introduction

Despite decades of efforts, excessive alcohol consumption (EAC) continues to be one
of the leading causes of morbidity and mortality in the United States and the world [1,2].
Alcohol exerts its effects on morbidity and mortality through two major pathways. First,
chronic EAC leads to chronic medical conditions such liver cirrhosis, cancer, and cardiomy-
opathy that in turn lead to debilitating disease and death [3]. Second, acute EAC combined
with potentially hazardous activities, especially driving, can cause lifelong disability or
death not only for the drinkers, but for those around them [3]. All this excessive morbidity
and mortality secondary to EAC is potentially preventable. For those not yet drinking
heavily, preventive interventions for diminishing the likelihood of developing problem
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drinking are both readily available and effective [4,5]. For those already affected, evidence-
based pharmacologic and psychotherapeutic treatments are also readily available [5,6].
Critically, because both preventive and active treatment inventions heavily rely on intact
psychosocial support networks for the initiation and maintenance of healthy behaviors,
prompt recognition of EAC is essential for obtaining truly effective clinical solutions. Hence,
there is considerable desire from both the medical and public health community to develop
methods to accurately detect and monitor EAC consumption.

For the acute detection of EAC, exhaled breath monitors or “breathalyzers” are both
scalable and effective [7,8]. However, this testing solution is most commonly implemented
in circumstances such as traffic accident and emergency room visits where the impact of
EAC has already been realized and alcohol consumption is presumed to be quite recent.
However, it is less useful in the routine clinical setting where the vast majority of healthcare
encounters occur. As a consequence, the development of other methods through which
EAC, particularly EAC characterized by periodic binge drinking, can be prospectively
detected has been a continuing focus of the biomedical community. Developing methods to
better detect and quantify the impact of binge drinking at the level of individual patient is
a particularly important goal. Three-quarters of the total medical cost of alcohol misuse is
thought to be related to binge drinking [9]. Better understanding of this pattern of excessive
use may be particularly important in examining the impact of EAC for Black Americans,
as EAC may be more stress-responsive among Black Americans, characterized by greater
binge drinking but lower regular alcohol use [10–12]. Nonetheless, EAC among Black
Americans has been associated with increased risk for adverse diseases of aging, such as
CVD [13,14].

Traditionally, one of the most frequently used metrics for detecting any type of EAC
has been changes in serum liver enzymes [7,8]. However, although still often used clinically,
these methods are generally regarded as both insensitive and non-specific. As a result, over
the past four decades, the biomedical research community has developed new purpose-
driven biomarkers to quantify EAC.

The most successful of these other biomarkers are ethyl glucuronide (EtG), phos-
phatidyl ethanolamine (Peth) and carbohydrate deficient transferrin (CDT) [7,8,15–17]. EtG
is produced as a minor metabolite of alcohol [8,18]. Although it can be assessed in serum,
hair and other substrates, EtG quantification is generally conducted using urine, where it
can be detected for up to 5 days after heavy consumption [19]. PEth is a cell membrane
phospholipid that is produced from phosphatidylcholine by an enzymatically catalyzed
transphosphatidylation reaction in the presence of ethanol [8]. Because the three-carbon
glycerol backbone of the phospholipid accommodates two fatty acids in addition to its
phosphate head to which the ethanolamine group is attached, and these two fatty acids
can be attached to the 1, 2 or 1 and 3 carbons of the glycerol backbone, Peth actually is
a family of phospholipids whose exact composition depends on the type and position
of the fatty acid side chains. Depending on the exact species being detected, the serum
half-life of Peth varies, with the most commonly detected variants having a serum half-life
of 7 days. However, the assessment of PEth requires complex analytical procedures (i.e., gas
or liquid chromatography), and samples must be frozen at −80 ◦C to prevent false positives
and negative outcomes [15]. The third biomarker is carbohydrate-deficient transferrin
(CDT) [16]. Transferrin is a serum iron binding protein that is post-translationally modified
by the addition of two complex carbohydrate chains consisting of n-acetylglucosamine,
mannose, galactose and sialic acid monomers. Increasing alcohol consumption is associated
with lower rates or “deficiency” of sialic acid incorporation. Because sialic acid is a charged
group, this allows for quantification of the amount of CDT by isoelectric electrophoretic
techniques. Notably, the CDT has the longest half-life of the three biomarkers, with levels
decaying back to normal approximately 2–3 weeks after abstinence [16]. Although each of
these three biomarkers has a unique value in assessing EAC, as a result of a more favorable
balance of sensitivity, specificity, half-life and ease of conduct, the CDT is generally consid-
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ered the standard for alcohol testing with sensitivity and specificity of approximately 70%
for heavy alcohol consumption [16].

A challenge to the more effective use of these purpose-driven alcohol tests is their
limited breadth for guiding assessment and treatment. In general, clinical assessment tools
tend to fall into one of two “buckets”. Measures, such as body mass index (BMI) and
C-reactive protein (CRP), broadly predict risk and are usually easily obtained, but they
often lack precision to diagnose or monitor treatment. In contrast, specialty assessments
such as the CDT are specific for a given condition but require clinical suspicion before
they are usually ordered. As a result, for routine medical assessments, clinicians tend to
order broad based tools first, only adding more purpose driven assessments when the need
is indicated.

Over the past several years, DNA methylation epigenetic aging (EA) indices have
emerged as popular metrics for the assessment of chronic medical illness among wellness
practitioners. Based on the original insights of Fraga and Esteller [20], and the more effec-
tive implementation strategies of Hannum and Horvath [21,22], these tools use complex
regression algorithms to interpret the results from epigenome wide methylation arrays
to infer overall health status using a metric termed “accelerated aging”, which is defined
as the residual of EA controlling for the chronological age of the subject. In general, pos-
itive scores indicate that the person’s EA is greater than would be expected given their
chronological age and are associated with the presence of medical disorders. Accelerated
EA for some, but not all, EA indices have been predicted from non-self-report indicators of
substance use [23–27].

With respect to alcohol consumption, the first widely used subscale the 144-probe
based DNAm-Alc tool developed by Lui and colleagues in 2016, was initially reported to
account for 15% of the variance in alcohol consumption. However, follow-up examinations
by others using the DNAm-Alc metric found lower amounts of explained variance with
one group speculating that the initial model developed by Lui and colleagues may have
been overfitted [28,29]. Subsequent improvements in our understanding of best practices
for generating predictive models has recently led to the development of a metric by Hillary
and associates referred to as Methyl DetectR (MDR) [30]. MDR used a machine learning
approach and data from 4450 participants in the Generation Scotland Study [31] to predict
weekly alcohol consumption. However, neither of these two scales have been compared
to established biomarkers of alcohol consumption, such as the CDT, or were tested in
non-European subject populations. Hence, there is a pressing need for DNA methylation-
based tools applicable to patients of all ancestries that exactly define discrete, targetable
conditions for preventative and therapeutic medical interventions.

Using a slightly different, disease-focused approach, we have developed a methylation-
sensitive digital PCR (MSdPCR) method for predicting heavy alcohol consumption (HAC),
which is defined as drinking more than six drinks per day, which may be better for un-
derstanding the role of EAC to accelerated EA in patients and research subjects of all
ancestries [32,33]. In direct head-to-head, blinded testing, this method, which uses the
results from four MSdPCR assays to form an Alcohol T Score (ATS), significantly outper-
formed the CDT in predicting HAC status in a group of 313 subjects (182 controls, 131 HAC
subjects) [33]. Furthermore, we have recently shown that in young Black American adults,
variations of the ATS and another MSdPCR assessment of smoking account for 95% of all
common variance in accelerated aging [34]. However, the relationship of the CDT to the
ATS in non-treatment populations and their relative merits in predicting accelerated aging
has not been established.

To better understand the utility of the MDR, ATS and CDT in the explication of
accelerated EA in Black Americans, we now directly compare these measures to each
other and to self-report with respect to accelerated aging as assessed by seven commonly
used EA indices. In addition, we examine changes in self-report across two waves to
better understand the impact of age-related reductions in self-reported problematic alcohol
use and the impact on correlations with non-self-report indices of EAC. We also examine
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changes in correlations for smoking and drinking as a window on likely changes in the
validity of self-report across waves.

2. Materials and Methods

The methods used to collect the clinical data and biomaterials from Wave 5 of the
Family and Community Health Study, Target cohort (FACHS-T) were approved by the
University of Iowa (IRB 201901770), Georgia and Connecticut Institutional Review Boards
(IRB). These Wave 7 clinical interviews and blood draws were timed to occur within one
week of one another in 2015 through 2016. We also utilize clinical interview data from
Wave 6, which occurred in 2008–2009.

2.1. Clinical Data

The design and procedures used in this longitudinal study of health behaviors in
Black American families have been described previously [35]. In brief, at Waves 6 and 7,
after obtaining consent, each subject was interviewed over the phone with a structured
interview that reviews key stressors and health variables. At Wave 7, research subjects were
phlebotomized to provide biomaterial for laboratory analyses. During the clinical interview,
smoking status was determined by asking the question “how many cigarettes have you
smoked in the last 3 months?”. Those answering none were coded as non-smokers. HAC
was determined by asking the question “During the past 12 months, how often have you
had a lot to drink—that is 3 or more drinks at one time?”. Those answering 1 or more times
per week were classified as unhealthy drinkers.

As part of our efforts to provide a non-coercive interviewing experience, subjects were
not required to answer all questions and were instructed to skip questions that they did
not feel comfortable answering. In addition, DNA or serum specimens may have been
unavailable for certain subjects. As result, the total number of responses or assessments for
any given question or assay may be less than the total number of subjects.

2.2. Molecular Data

Within one week of their clinical interview, each of the subjects was phlebotomized to
provide biomaterial for these studies. After processing into DNA and serum via our usual
methods, the samples were stored at −20 and −80 ◦C, respectively [36].

DNA Methylation: Genome-wide DNA methylation assessments using the Infinium
MethylationEpic Beadchip (Illumina, San Diego, CA, USA) were conducted by the Uni-
versity of Minnesota Genome Center (http://genomics.umn.edu/ (accessed on 14 Octo-
ber 2022)) according to the manufacturer’s protocol. The resulting data were DASEN-
normalized using the MethyLumi [37], WateRmelon [38], and IlluminaHumanMethyla-
tionEPICanno.ilm10b2.hg19 [39] R packages as per our previous descriptions [40]. Sample
and probe level quality control of the data were then conducted as previously described [40].
In brief, samples were removed if more than 1% of their probes had detection p values
of >0.05. After all processes were complete, values from 858,924 of the 866,091 probes in
the array were retained.

β values for each site were calculated using the standard formula where U and
M are the values of the unmethylated and methylated intensity probes (averaged over
bead replicates), and α = 100 is a correction term to regularize probes with low total
signal intensity [41,42]. CpG values were background-corrected using the “noob” method
β = M/(U + M + α) [43].

This study features the use of 7 Epigenetic Aging indices developed over the past
decade. The Hannum index was described in 2013 and consists of 71 CpG probes [21]. The
Horvath Index, which like the Hannum index, was designed to calculate chronological
age, was also first described in 2013 and consists of 353 CpG markers [22]. The PhenoAge
index was initially described in 2018 and contains 513 markers. As opposed to the prior
indices, it was developed using both clinical measures and age in an attempt to better
predict individual differences in morbidity [44]. In 2019, another Horvath-led group

http://genomics.umn.edu/
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introduced GrimAge, which uses the input from 1030 CpG probes to forecast all-cause
mortality [45]. In a separate work published in 2019, the Horvath group also introduced
the Telomere algorithm, which uses the input from 140 CpG sites to estimate telomere
length in kilobases (Kb), which, in turn, is associated with aging [46]. Finally, using
data from the Dunedin Multidisciplinary Health and Development Study, a group of
investigators introduced first the DunedinPOAM (2020), and then the DunedinPACE
(2022) algorithms [47,48]. The DunedinPOAM, which consists of 46 CpG probes, and
DunedinPACE, which includes 173 CpG sites, reportedly provide a “speedometer” of
aging designed to reflect physiological change over the past year, with values greater
than one indicating accelerated biological aging. The values for the Hannum, Horvath,
Levine, GrimAge, and Telomere metrics were calculated using the publicly available online
tool hosted by the Horvath Lab (https://dnamage.genetics.ucla.edu/ (accessed on 1 July
2022)). The values for the DunedinPOAM and the DunedinPACE indices were calculated
using the code supplied by the developers of the indices that is freely available at https:
//github.com/danbelsky (accessed on 1 July 2022). Epigenetic age acceleration for Horvath,
Hannum, PhenoAge and GrimAge indices was calculated by using the unstandardized
residual scores from the regression of epigenetic age on chronological age.

Cell-type composition was estimated using the “EstimateCellCounts” function in the
“minfi” Bioconductor package, which is based on the method developed by Houseman and
colleagues [49]. Using this approach, the white blood cell-type proportions (CD4+ T cells,
Natural Killer cells and B cells) in whole blood specimens used to prepare the DNA for
were estimated. Methyl DetectR values for alcohol consumption per week were calculated
using the code supplied by the University of Edinburgh website (https://www.ed.ac.uk/
centre-genomic-medicine/research-groups/marioni-group/methyldetectr (accessed on
1 July 2022)) [30].

Reference-free methylation sensitive digital PCR (MSdPCR) assessments of cg05575921
methylation, a generally accepted biomarker of smoking intensity, and Alcohol T Score
(ATS), a recently introduced measure of Heavy Alcohol Consumption (HAC) were con-
ducted using the same samples of DNA used in the conduct of genome-wide DNA methyla-
tion analyses [32,33,50,51]. The determination of methylation status at cg05575921 and the
four loci (cg02583484, cg04987734, cg09935388 and cg04583842) used to form the Alcohol T
Score (ATS) was conducted using fluorescent primer probe sets from Behavioral Diagnostics
(Coralville, IA, USA) and both droplet digital PCR equipment and reagents from Bio-Rad
(Hercules, CA, USA) as previously described [36,51]. The ATS is the sum of z-scores of four
loci named above and is a zero-centered metric in abstinent populations [32,33]. Increasing
amounts of alcohol consumption are positively associated with ATS levels with ATS values
of 3.5 and 5 being suggestive and predictive of HAC (6 or more drinks per day) [33,52].
In contrast, the methylation assessments of cg05575921 are expressed as “% methylation”.
Lifetime non-smokers have an average cg05575921 value of 86.6% ± 2.9 with levels of <80%
being strongly predictive of smoking [51]. Increasing values of the ATS are predictive
of increasing alcohol consumption with ATS values of 3.5 and 5 being suggestive and
predictive of HAC (6 or more drinks per day) [33,52].

Data were analyzed using IBM SPSS statistics for Windows, Version 27.0. All reported
R2 values are adjusted for the number of predictors and sample size. The descriptive
statistics and frequency were used to describe the demographic and physiologic of self-
report data by gender (see Table 1) and to depict the indices of epigenetic aging and alcohol
use at Wave 7 (see Table 2). We then examined simple correlations and characterized the
data in terms of mean and SD for study variables (see Table 3). In addition, the partial
correlation was used to examine each of the metrics for alcohol consumption risk while
controlling for gender and nicotine (see Table 4). Moreover, we used Pearson’s correlation
analysis to examine the correlation between each of the metrics for alcohol consumption
risk and the seven indices of epigenetic aging (See Table 5) and to assess the correlation
between each of the metrics for alcohol consumption risk and cell types (see Table 6).

https://dnamage.genetics.ucla.edu/
https://github.com/danbelsky
https://github.com/danbelsky
https://www.ed.ac.uk/centre-genomic-medicine/research-groups/marioni-group/methyldetectr
https://www.ed.ac.uk/centre-genomic-medicine/research-groups/marioni-group/methyldetectr
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Furthermore, a histogram was used to illustrate the normal distribution of CDT, MDR, and
ATS (see Figure 1).

Table 1. Wave 6 and Wave 7 demographic, physiologic and self-report data.

Variable
Wave 6 (2008–2009;
n = 437)

Wave 7 (2015–2016;
n = 437)

Male Female Male Female

N 167 270 167 270
Mean Age 23.46 ± 0.9 23.5 ± 0.8 28.6 ± 0.8 28.7 ± 0.8
Self-reported Smoking

Yes 55 81 38 51
No 102 185 110 202
No Answer 10 4 19 17

Self-reported non-combustible nicotine
use

None N/A N/A 163 267
1–5 times N/A N/A 2 3
>5 times N/A N/A 2 0

Self-reported Unhealthy Alcohol Use
Never 47 115 75 150
1–2 times 32 60 35 68
About 3–11 times 19 28 20 27
A few times per month 26 35 9 12
About 1–2 times per week 14 15 6 4
Several times per week 9 8 5 3
Don’t know 3 2 8 1
Refused 17 7 9 5

Table 2. Indices of Epigenetic Aging and Alcohol Use at Wave 7.

Male Female

N 167 270
Smoking

Cg05575921 66% ± 19 75% ± 16
<80% 106 111
≥80% 59 158

ELISA
Cotinine > 2 ng/ml

Yes 98 115
No 54 142

Cotinine (ng/mL) 57 ± 63 41 ± 58
Drinking

ATS 1.04 ± 3.3 0.60 ± 2.7
MDR −12.17 ± 0.4 −12.38 ± 0.3
CDT 1.22% ± 1.40 0.77% ± 0.37

Accelerated Aging
Dunedin PACE7 0.97 ± 0.11 1.03 ± 0.13
Dunedin POAM7 1.08 ± 0.09 1.08 ± 0.09
Horvath 0.88 ± 4.33 −0.54 ± 4.13
Hannum 0.92 ± 4.13 −0.56 ± 3.59
PhenoAge −1.20 ± 5.89 0.74 ± 6.75
GrimAge 1.12 ± 4.65 −0.68 ± 4.12
Telomere Age 7.57 ± 0.21 7.66 ± 0.16

Note: ATS, Alcohol T Score; CDT, carbohydrate deficient transferrin; MDR = Methyl DetectR.
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Table 3. Pearson correlation coefficients of each of the metrics for tobacco or alcohol consumption
risk to themselves.

1 2 3 4 5 6 7 8 9

1. SR Smoking6 —
2. SR Smoking7 0.59 ** —
3. SR6 Alcohol 0.23 ** 0.20 ** —
4. SR7 Alcohol 0.14 ** 0.17 ** 0.39 ** —
5. Cotinine 0.51 ** 0.54 ** 0.23 ** 0.14 ** —
6. cg05575921 −0.51 ** −0.45 ** −0.21 ** −0.15 ** −0.63 ** —
7. ATS 0.33 ** 0.19 ** 0.20 ** 0.02 0.36 ** −0.58 ** —
8. CDT 0.16 ** 0.15 ** 0.16 ** 0.08 † 0.16 ** −0.31 ** 0.37 ** —
9. MDR 0.24 ** 0.16 ** 0.17 ** 0.12 * 0.24 ** −0.39 ** 0.37 ** 0.41 ** —
Mean 0.32 0.22 10.45 0.93 0.52 710.78 0.77 0.94 −120.30
SD 0.46 0.42 10.58 10.37 0.50 170.71 20.92 0.94 0.36

p < 0.1, * p < 0.05, ** p < 0.01, † p < 0.1. Note: ATS, Alcohol T Score; CDT, carbohydrate-deficient transferrin;
MDR = Methyl DetectR.

Table 4. Partial correlation coefficients of each of the metrics for alcohol consumption risk to them-
selves after controlling sex and nicotine.

SR6 Alcohol SR7 Alcohol ATS CDT MDR

SR6 Alcohol —
SR7 Alcohol 0.367 ** —
ATS 0.189 ** 0.006 —
CDT 0.124 * 0.044 0.364 ** —
MDR 0.131 ** 0.070 0.363 ** 0.365 ** —
Mean 10.452 0.931 0.767 0.939 −120.298
SD 10.578 10.374 20.923 0.939 0.364

* p < 0.05, ** p < 0.01. Note: ATS, Alcohol T Score; CDT, carbohydrate-deficient transferrin; MDR, Methyl DetectR;
SD, standard deviation.

Table 5. Pearson correlation coefficients and average variance explained for each of five metrics of
alcohol consumption with respect to each of the seven indices of EA.

PACE POAM Telomere ∆Horvath ∆Hannum ∆PhenoAge ∆GrimAge Avg R2 Overall

SR6 Alcohol 0.03 0.17 ** −0.11 * 0.02 0.05 −0.02 0.16 ** 0.01
SR7 Alcohol −0.13 ** −0.01 0.04 −0.04 −0.05 −0.10 0.02 0.00
ATS 0.35 ** 0.58 ** −0.49 ** 0.03 0.26 ** 0.33 ** 0.64 ** 0.18
CDT 0.09 0.26 ** −0.14 ** −0.11 * 0.15 ** 0.08 0.32 ** 0.03
MDR −0.12 * 0.19 ** −0.29 ** 0.00 0.07 0.01 0.31 ** 0.04

* p < 0.05, ** p < 0.01. Note: ATS, Alcohol T Score; CDT, carbohydrate-deficient transferrin; MDR, Methyl DetectR.

Table 6. Pearson correlation coefficients of alcohol consumption markers with predicted cell counts.

CD4T NK B Cell

SR6 Alcohol 0.02 −0.02 −0.08
SR7 Alcohol 0.16 ** −0.08 0.07
ATS −0.31 ** −0.00 −0.37 **
CDT −0.09 † 0.11 * −0.14 **
MDR −0.06 0.16 ** −0.16 **

* p < 0.05, ** p < 0.01, † p < 0.1.
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Figure 1. The distribution of the ATS, CDT and the MDR in the FACHS T population. Both the ATS
and the MDR are unitless. The CDT is expressed as percent of total transferrin.

3. Results

The demographic and substance use data relevant to the current investigation are
given in Table 1. In brief, the cohort comprised Black Americans, majority female (62%),
who averaged 28.7 ± 0.8 years of age at Wave 7 when all blood samples were drawn.
They averaged 23.5 ± 0.8 years of age when clinical interviews were conducted at Wave 6.
Overall, 31% of the cohort at Wave 6 and 20% of the cohort at Wave 7 (23% of males and
19% of females) self-reported smoking at least one cigarette in the three months prior to
the interview. Unhealthy alcohol consumption was quantified by asking how many times
an individual had consumed three or more drinks in one sitting. Only 37% of the cohort
used in the current analyses (45% of male and 56% females) denied binge drinking at any
time in the prior year at Wave 6, whereas 51.5% did so at Wave 7. Notably, at Wave 6,
46 participants (23 males and 23 females) reported unhealthy drinking one or more times
per week, but at Wave 7, 18 participants reported unhealthy drinking one or more times per
week. Accordingly, there was substantial self-reported desistence from Wave 6 to Wave 7,
with many who reported heavy drinking at Wave 6 reporting little or no drinking at Wave 7.

Table 2 lists the biological markers of EA and substance consumption. Combustible
tobacco consumption was assessed using DNA methylation at cg05575921. Overall, 41% of
females (111 of 270) and 63% of males (106 of 167) had cg05575921 methylation levels of
80% or less indicative of current or recent daily smoking prior to assessment. In addition,
tobacco consumption was further assessed using serum cotinine measures. Serum cotinine
levels tended to be higher in males than females (p < 0.008 ANOVA). Alcohol consumption
was assessed using the ATS, MDR and the CDT. CDT and MDR (p < 0.0001 ANOVA)
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but not ATS levels (N.S) were higher in male subjects than in female subjects. Figure 1
illustrates the overall distributions of CDT, MDR and ATS levels in the subjects. The CDT
ranges from 0.1 to 11.7% with a marked right skew. The MDR ranges from −10.8 to −13.3
with no noticeable skewing. The ATS, which has a zero-centered distribution in abstinent
individuals, ranges from −5.7 to 16.5 with a right skewing of the distribution.

Table 3 illustrates the relationship of the nine assessments of either smoking or alcohol
consumption to one another. Self-reported smoking and drinking at Wave 6 were correlated
with both self-reported smoking and drinking at Waves 7, as well as objective markers
of smoking and drinking at Waves 7. Self-reported cigarette consumption at Wave 7 was
correlated with objective markers of smoking and drinking, but self-reported drinking at
Wave 7 was only correlated with objective indices of smoking, and MDR, not with other
non-self-report indices of EAC, and observed significant correlations were attenuated from
those observed with self-reported drinking from Wave 6. The correlation of cotinine with
self-reported smoking was constant across Waves 6 and Wave 7 (r = 0.51, p < 0.001; and
r = 0.54, p < 0.001 respectively). However, the correlation of cotinine with self-reported
drinking at Wave 6 was r = 0.23, p < 0.001, but dropped to r = 0.14, p < 0.006, at Wave 7.
The objective markers of smoking, cotinine and cg05575921, were strongly correlated with
each other (r = −0.63, p < 0.001), and significantly correlated with all three non-self-report
measures of alcohol use (absolute r’s from 0.16 to 0.58, all p’s < 0.01, overall mean absolute
correlation = 0.34), and more strongly correlated with the non-self-report indices of EAC
than they were with self-reported EAC at Wave 7 (absolute r’s = 0.14 and 0.15, overall mean
absolute correlation = 0.145). The three objective alcohol markers were also moderately
correlated with one another with correlations ranging from 0.37 to 0.41 (all p < 0.001).

Table 4 shows the effect of controlling for sex and presence of nicotine (yes vs. no) on
the correlations between self-report and non-self-report indicators of alcohol use. As can be
seen, the correlation of self-report at Wave 6 with non-self-report indicators (r’s = 0.124 to
0.189), as well as the intercorrelation of the non-self-report indicators (r’s = 0.363 to 0.365),
are significant and robust with regard to these controls. Wave 7 self-reported EAC is not a
significant predictor of any of the non-self-report indicators of EAC after controlling for
potential confounding by sex and nicotine status.

Table 5 lists the correlations between the measure of EAC and EA. Self-reported
problematic alcohol use is correlated poorly with EA across the board, although there is
a positive correlation of SR6 with DunedinPOAM (r = 0.17, p < 0.001) and with GrimAge
(r = 0.16, p < 0.001), as well as a negative correlation with telomere length (r = −0.11,
p < 0.022), all in the expected direction. The CDT correlated modestly well with EA, in
particular with POAM (r = 0.26, p < 0.001) and GrimAge (r = 0.32, p < 0.001), but also
with telomere length (r = −0.14, p < 0.004), Horvath (r = −0.11, p < 0.002), and Hannum
(r = 0.15, p < 0.002), with the average variance (R2) explained with respect to the seven
indices being 3%. The array based MDR methylation metric performed similarly, with
the moderate relationships observed with POAM (r = 0.19, p < 0.001), telomere length
(r = −0.29, p < 0.001), and GrimAge (r = 0.31, p < 0.001), also explaining an average of 4% of
the variance in EA. Finally, the digital methylation ATS measure had stronger relationships
with EA indices, again particularly with respect to POAM (r = 0.58, p < 0.001) and GrimAge
(r = 0.64, p < 0.001), but also with all other EA indices except Horvath, and overall explained
an average of 18% of the variance in EA.

Finally, since alcohol is well known to have effects on the cells of the adaptive immune
system [53], we examined the relationship of each of the measures of alcohol use on CD4T,
natural killer (NK) and B lymphocyte levels, as quantified by the methylation array (see
Table 6). Both the CDT and MDR were modestly positively correlated with NK (r’s = 0.11
and 0.16) but negatively correlated with B cell levels (r’s = −0.14 and −0.16). Finally, the
ATS had a strong negative relationship with both CD4T (r = −0.31, p < 0.001) and B cell
levels (r = −0.37, p < 0.001), but no relationship with NK cell count. Self-reported EAC at
Wave 6 was unrelated to cells counts. Self-reported EAC at Wave 7 was associated with
CD4T levels (r = 0.16, p < 0.001), but in the opposite direction expected.
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4. Discussion

Longitudinal studies are critical resources for formulating a comprehensive chrono-
logically informed understanding of the role of healthcare behaviors on the development
of aging-associated diseases such as diabetes and cardiovascular disease. However, to
be useful, the information derived from these studies must be both relevant and reliable.
In this communication, we compare and contrast the association of three non-self-report
metrics of alcohol consumption with epigenetic aging to the association observed using
self-reported alcohol consumption. We found that while all three non-self-report indices of
Excessive Alcohol Consumption (EAC): CDT, MDR, and ATS, correlated well with each
other, with current and past wave indices of smoking, and with Wave 6 self-reported EAC,
none of them correlated well with Wave 7 self-reported EAC. This is particularly interest-
ing given that between Wave 6 and Wave 7, there was a marked shift toward decreased
self-reported EAC among both males and females, a pattern typically taken as indicating
“maturing out”. In addition, although non-self-reported indices of smoking correlated
robustly with non-self-reported indices of EAC, as expected, given the well-known co-
morbidity of cigarette use and EAC, and they were correlated with Wave 6 self-reported
alcohol use, their association with Wave 7 self-reported EAC was attenuated. Together,
these observations suggest either that there are strong lingering effects of Wave 6 EAC on
the blood-based, non-self-report measures collected at Wave 7—a result that is biologically
unlikely—or that the rapid decrease in self-reported EAC between Waves 6 and 7 reflects a
greater change in self-report than in actual behavior. That is, “aging out” may be, in part, a
function of changes in willingness to report problematic patterns of alcohol use.

We also explored the utility of non-self-report indices of EAC in the prediction of EA
and key immune cell levels likely to be affected by EAC. Although self-reported alcohol
use was unrelated to indices of EA, replicating prior findings showing modest to no
effects of self-reported smoking and drinking on accelerated aging and mortality [54], we
found correlations between non-self-report indices of EAC and EA, with all non-self-report
indices of EAC predicting some measures of EA, and ATS outperforming CDT and MDR on
average. Limitations of these findings include that this a single time point examination of an
all Black American, young-adult cohort. It is possible that there are developmental changes
in this group occurring between ages 23 and 29 that resulted in decreased validity of their
self-reported substance use. For example, it may be that the transition into adulthood
increased their concern about stigma associated with EAC. It is also possible that non-self-
report indices may be responsive to a variety of contextual variables, perhaps functioning
somewhat differently in different subpopulations. Nonetheless, the results help underscore
the importance of incorporating non-self-report indices of EAC in the examination of health
effects of elevated alcohol use.

Given the differences in the manner through which each of these measures of alcohol
consumption were derived, some differences in their predictive capacities were to be
expected. First, it is important to remember that the CDT and the two methylation metrics
tap differing biological pathways. Alterations in serum CDT levels reflect changes in
sialyltransferase activity in the liver [16,55]. In contrast, both the MDR and ATS measure
methylation of DNA of cells from the hematopoietic system. Second, both measures with
hypothesized detection windows, the CDT and the ATS, have differing half-lives. The CDT
is expected to capture alcohol consumption over the prior three weeks [16]. In contrast, the
half-life of the ATS appears to be at least several months [32]. Finally, the MDR can best be
conceptualized as a continuous marker of alcohol consumption in the general population
rather than an index of problematic use, as it was developed using average weekly alcohol
consumption of Scottish subjects “who reported that their intake was representative of a
normal week” [30]. In contrast, both the CDT and ATS were developed to detect those
with alcohol use disorders. The CDT was initially developed during the last century using
samples of cerebrospinal fluid from heavy drinkers affected by delirium tremens [56].
The ATS was developed quite recently using a case and control paradigm that contrasted
the methylation of abstinent individuals with that of subjects who were hospitalized for



Genes 2022, 13, 1888 11 of 15

alcohol intoxication in the context of at least 8 weeks of drinking at least 8 drinks per
day [32]. As a consequence of all of these differences, it not surprising to find that the
intercorrelations among the non-self-report indicators are relatively modest (0.36 to 0.41)
and that they showed somewhat different distributions and patterns of association with
indices of EA and blood-cell types. In contrast, the association of self-reported EAC with
EA and white blood cell counts is extremely modest and quite different than that observed
for the non-self-report indices of EAC.

The ATS has markedly stronger associations with EA and blood cell types than other
non-self-report indicators of EAC. Because the ATS correlates better with EA indices and
can be calculated from whole blood or saliva DNA, it may be a better tool, in many cases,
than the CDT for those seeking to identify predictors of EA indices. However, because
the array-based assessments of methylation at the four loci used in the ATS have poor
precision, it would be necessary to conduct reference-free MSdPCR assessments as we
did in the current investigation in order to use the ATS [32]. That is, computing the ATS
from array-based assessments will not yield the same value as the reference free MSdPCR
assessment, and cannot be used as a substitute. The MDR has the advantage over both the
ATS and the CDT that it can be derived from existing array-based datasets without any
additional assessment.

Despite the fact that the metrics used the same biological material, the ATS predicts EA
much better than the MDR (i.e., over four times as much variance). This appears to reflect
the fact that the ATS was designed to predict a damaging level of alcohol consumption
(i.e., HAC), whereas the MDR was designed to predict weekly alcohol consumption. Since
POAM and GrimAge were designed to predict morbidity and mortality, it seems logical
that the ATS would predict EA better. Whether that extends to predicting lower levels
of daily consumption in non-binge drinkers remains to be tested, and we note that only
MethDectectR has been calibrated to accomplish this task.

Although we routinely use the ATS for both academic and commercial purposes,
and believe we have a good understanding of its clinical predictive properties, we did
not anticipate the strong relationship of the ATS, and the more modest correlation of
the CDT and MDR, with both CDT T4 and B lymphocytes. In a prior analysis using
these data, we have shown that the cell counts do not significantly affect the correlation
between the EA indices or the ability of the ATS and cg05575921 to predict the common
variance of these indices [34]. Nevertheless, since EAC has well-known effects on immune
system function [53], we conducted the exploratory analyses detailed in Table 5. Increasing
levels of alcohol consumption were strongly negatively correlated with levels of CDT4
and B lymphocytes. These findings agree well with our prior understanding of alcohol
consumption on immune function [53,57]. In contrast, it is difficult to reconcile the positive
associations of the CDT and MDR with natural killer (NK) cells, or the positive association
of self-reported alcohol use with CDT4. Most studies of alcohol consumption show that
increasing amounts of alcohol consumption are associated with decreasing levels of NK
cells [58–60]. Still, we note that correlations of the CDT4 and MDR with NK cell count
are modest. Nevertheless, whether any of these metrics predict future disease associated
with impaired immune cell function, such as chronic bronchitis, in this population, is
unknown, and alcohol consumption has both pro- and anti-inflammatory effects whose
exact impact is disease- and dose-dependent [57,61,62]. However, we believe that these
data support the future use of ATS and these cell count measures for developing a more
granular understanding of the relationship of alcohol consumption to inflammatory-related
illness in longitudinal populations with DNA biobanks.

Of particular note is the poor predictive value of self-reported drinking at Wave 7
when the participants were 29 years of age. Because of the work of ourselves and others
demonstrating the often-poor reliability of self-reported smoking in high risk and under-
served populations, as well as in White, non-high risk populations [52], and the generally
acknowledged stigma against being a chronic abuser of alcohol, we are not overly sur-
prised [34,63–65]. It is quite possible that as young adults assume greater responsibility,
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they become more responsive to alcohol-related stigma, perhaps decreasing EAC some-
what, but perhaps decreasing their self-report more. Regardless of the various sets of
reasons for underreporting that may emerge in different groups, these results add further
emphasis for the need to incorporate biomarkers of smoking and drinking in all studies of
accelerated aging and diseases of aging when possible. Furthermore, we believe that the
strong relationships of the ATS and cg05575921—now shown in three populations [52,66]—
may suggest the need to revisit prior findings that suggested a low correlation between
tobacco use and drinking [67].

At the same time, the current results suggest an opportunity provided by the use of
non-self-report indices of EAC to identify subjects who are likely providing unreliable
self-report, or who have recently changed from providing more accurate to less accurate
self-report information about their EAC. Using this opportunity to better characterize such
individuals and better understand the likely pressures leading to substantial underreporting
could lead to opportunities to make substantial improvements in both research and clinical
care. To a certain extent, no matter what we do, social stigma against excessive alcoholism
and other similar behaviors will continue to exist, and we are not in favor of policies that
lead to unwanted intrusions into privacy. Still, by better defining the characteristics of those
likely to provide unreliable self-report, we may be able to formulate effective adjustments
to our approaches for gathering the necessary information from these individuals for
both research and clinical purposes thus creating a societal benefit. In addition, through
careful analyses of these and other datasets, it may be possible to identify the scope of
associated unreliable self-reporting and mitigate its effects on analyses of similar health
related outcomes.

5. Conclusions

In summary, we conclude that the ATS better predicts EA and alcohol-related cell
count changes than either the MDR or CDT. However, the three non-self-report indices all
had unique strengths and represent very different windows on EAC. Greater attention to
the use of some non-self-report index of EAC seems important in future research on the
health impact of EAC, and the use of any of these biomarkers in studies of aging-associated
disease may improve the strength and reliability of any subsequent findings.
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