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Abstract: Partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) is a local characteristic tea in
Hainan, the southernmost province of China, and the quality of partridge tea may be affected by the
producing areas. In this study, stable isotope and targeted metabolomics combined chemometrics
were used as potential tools for analyzing and identifying partridge tea from different origins.
Elemental analysis—stable isotope ratio mass spectrometer and liquid chromatography-tandem mass
spectrometrywas used to analyze the characteristics of C/N/O/H stable isotopes and 54 chemical
components, including polyphenols and alkaloids in partridge tea samples from four regions in
Hainan (Wanning, Wenchang, Sanya and Baoting). The results showed that there were significant
differences in the stable isotope ratios and polyphenol and alkaloid contents of partridge tea from
different origins, and both could accurately classify partridge tea from different origins. The correct
separation and clustering of the samples were observed by principal component analysis and the
cross-validated Q2 values by orthogonal partial least squares discriminant analysis (OPLS-DA) were
0.949 (based on stable isotope) and 0.974 (based on polyphenol and alkaloid), respectively. Potential
significance indicators for origin identification were screened out by OPLS-DA and random forest
algorithm, including three stable isotopes (δ13C, δ D, and δ18O) and four polyphenols (luteolin,
protocatechuic acid, astragalin, and naringenin). This study can provide a preliminary guide for the
origin identification of Hainan partridge tea.

Keywords: stable isotope; polyphenols; chemometrics; metabolomics; geographical origin; tea

1. Introduction

Tea is one of the most popular non-alcoholic beverages consumed by more than two-
thirds of the world’s population because of its attractive aroma, refreshing mouth feel,
and multiple health benefits [1]. Planting environments, geographical conditions, and
processing methods are the important factors that directly affect the quality of tea [2,3].
The higher quality and better reputation of tea with a higher price is understandable.
However, because the sensory qualities of the same kind of tea or different kinds of tea are
similar, consumers alone cannot correctly judge the quality of tea. This has enabled some
unscrupulous businesses to make shoddy or adulterated products in their productions
for achieving the purpose of making huge profits. Partridge tea (Mallotus oblongifolius
[Miq.] Müll.Arg.) is a kind of substitute tea beverage with strong local characteristics in
Hainan Province (the southernmost province of China), which has important medicinal
and economic value and has long been known as “glossy ganoderma” [4]. Partridge tea is
distributed all over Hainan island, where Wanning and Wenchang are the most famous
producers [5]. Therefore, merchants may mislabel their products and replace Wanning
and Wenchang partridge tea from other regions so as to obtain higher benefits. Therefore,
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in order to protect consumers from fraud and maintain the reputation of the business, it
is very important to develop a scientific and accurate method to analyze and verify the
authenticity of partridge tea products.

Isotope characteristics are transferred from the growth environment, which produce
different stable isotope characteristics in organisms, and can reflect the information of
biological growth environment and its adaptability to environmental changes. They depend
on variables such as distance from the ocean, climate, temperature, altitude, basic geology,
and soil composition [6]. In recent years, stable isotope ratios have been increasingly
used for geographical traceability and identification of tea, such as the identification of
four kinds of Chongqing tuo tea [7] and the origin tracing of Guizhou green tea, Xihu
Longjing, and green tea in various regions of China [2,8,9]. This technique is primarily
based on the ratio of stable C/N/O/H isotopes relative to the geographic origin and plant
metabolism. The values of δ13C are generally related to plant species due to the different
carbon sequestration in different plants. However, geographical effects (different latitude,
elevation, elevation, rainfall, water stress, and light) and management measures may also
affect the efficiency of carbon dioxide sequestration, even within the same species [10].
The δ15N values reflect the nitrogen sources of plants; while they generally cannot directly
reflect the geographical sources, different δ15N values can reflect the local soil properties
and agricultural practices [11]. The δ D and δ18O values of plants are closely related to the
local rainfall and geographical location, which can reflect the isotopic characteristics and
climatic characteristics of the water consumed locally. Therefore, δ D and δ18O values are
usually used as powerful indicators to distinguish the geographical origin [12,13].

If the geochemical or soil information between different regions is too similar, other
parameters of the sample molecular composition level may also help to further distinguish
geographical sources [14]. In particular, for tea, polyphenols and alkaloids are the most
important bioactive components [15], which are closely related to various health functions,
such as anti-cancer, cardiovascular protection, weight loss, anti-diabetes, and other bene-
fits [16], and have always been the focus of tea research. In the chemical composition of
tea, polyphenolic compounds account for the dominant part, accounting for approximately
25% to 35% of the dry weight [17]. The relative polyphenol and alkaloid components and
contents of tea are closely related to the degree of fermentation, growth conditions, and
geographical location [15,18], so we can identify the tea according to the differences among
different teas. Related studies have also shown that polyphenols and alkaloids in tea has
great potential in the identification and traceability. For example, Ning et al. successfully
distinguished six kinds of tea from different origins (green tea, black tea, white tea, oolong
tea, yellow tea, and black tea) by detecting caffeine, theanine, and six kinds of polyphenols
in tea. The total identification rates of the training set and the prediction set were 94.13%
and 92.31%, respectively [19]. Wang et al. used six kinds of tea polyphenols and an alkaloid
to identify the geographical sources of oolong tea from three main producing areas in
China (Fujian, Taiwan and Guangdong Province) [20]; Wu et al. identified four kinds of
Chinese tea with different fermentation degrees (green tea, white tea, oolong tea, and black
tea) by detecting tea polyphenols and alkaloids in fermented tea, and the correct rate of
discrimination was as high as 97.8% [21]; Xin et al. used the differences of 75 chemical
components (tea polyphenols, alkaloids, and theanine) in green tea to identify green tea
from Yunnan and Hunan Provinces. The partial least squares model established by Xin
et al. has a high accuracy rate of 98.61% [22]. Therefore, it was highly feasible to identify
and trace the origin of tea based on the differences of its main chemical components.

At present, methods based on stable isotope ratio mass spectrometry (IRMS) and
metabolomics have not been used to determine the correct geographic origin of partridge
tea from different origins in Hainan. In this study, IRMS and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) were used to analyze the stable isotope ratios
and the contents of polyphenols and alkaloids in partridge tea, and in combination with
chemometrics, to analyze the differences and identify the partridge tea from different
geographical origins. The isotope characteristics and major metabolite information of



Foods 2021, 10, 2130 3 of 15

partridge tea from different origins were preliminarily explored, and the orthogonal partial
least squares discriminant analysis (OPLS-DA) models were established for geographical
origin prediction. The effective indicators for distinguishing partridge tea from different
origins were screened out through OPLS-DA and random forest. This study provided a
theoretical basis for the origin traceability of Hainan partridge tea and helped to promote
the development of Hainan partridge tea.

2. Materials and Methods
2.1. Samples Preparation

The partridge tea samples used in the current study were collected from the major
producing areas of partridge tea in Hainan Province (longitude 108°37′–111°03′, latitude
18°10′–20°10′). A total of 24 samples were separated into four groups, including Tonggu
Mountain of Wenchang (WC, n = 6), Dongshan Mountain of Wanning (WN, n = 6), Qixian
Mountain of Baoting (BT, n = 6), and Licai Farm of Sanya (SY, n = 6). All tea samples were
randomly collected from tea gardens in the corresponding producing areas in May 2020,
the collected samples were the fresh leaves of partridge tea tree, and the average age of
the partridge tea trees was above 3 years. To ensure sample collection uniformity and
repeatability, all tea leaves from each experimental group were obtained from five different
regional parcels. The specific sampling locations are shown in Figure 1. After picking, the
partridge tea was dried in the shade for 36 h, then crushed, sieved with 60 mesh sieves,
packed in sealed bags, and dried in a dryer for later use. In addition, quality control
(QC) samples were prepared by mixing all samples according to identical steps as the
actual samples.
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Figure 1. The specific producing areas of partridge tea samples in the southernmost province of
China, Hainan, and the green dots in the figure are the sampling places.

2.2. C/N/O/H Stable Isotope Amount Ratio Analysis

The C/N/O/H stable isotope ratio in partridge tea samples was determined by Vario
Pyro Cube element analyzer (EA, ELEMENTAR, Langenselbold, Germany) combined with
IRMS (Isoprime precision, ELEMENTAR, Langenselbold, Germany). The samples were



Foods 2021, 10, 2130 4 of 15

dried at 70 ◦C for at least 24 h before the H/O measurement. Approximately 2.0 mg of
partridge tea fine powder was weighed into a 6 × 4 mm tin box for δ13C and δ15N analysis,
and approximately 1.2 mg of partridge tea fine powder was weighed into a 6 × 4 mm
silver box for δ D and δ18O analysis. The environment was equilibrate to laboratory
atmospheric conditions prior to δ D and δ18O analysis. The tin/silver box was folded and
compressed out of air, then put into EA and connected with IRMS using an automatic
sampler. Analytical conditions were as follows: high temperature furnace temperature of
the EA was set at 1120 ◦C for δ13C analysis and 850 ◦C for δ15N analysis with a carrier gas
flow of 230 mL/min; the pyrolysis furnace (for δ D and δ18O analyses) was set to 1450 ◦C
with a carrier gas flow of 125 mL/min. The carrier gas was helium.

The final stable isotope ratio is calculated according to the following equation, which
is represented by δ:

δ = [(Rsample/Rstandard) − 1] (1)

where Rsample indicates the heavy/light isotope ratio (i.e., 13C/12C, 15N/14N, 2H/1H and
18O/16O) of the sample to be tested (partridge tea in this study), and Rstandard expresses
the heavy/light isotope ratio based on the national standard (Vienna Pee Dee Belimnite
(VPDB) for carbon, atmospheric nitrogen (AIR) for nitrogen, and Vienna Standard Mean
Ocean Water (VSMOW) for hydrogen and oxygen). The δ values are expressed in parts per
thousand, in units of “per mil” (%).

Main materials for multi-point calibration of stable isotopes (EMA, Elemental Micro-
analysis, Okehampton, UK): B2155 (Protein, δ13CVPDB = −26.98‰, δ15NAIR = 5.94‰), B2174
(Urea, δ13CVPDB = −36.59‰, δ15NAIR = −2.20‰, B2203(EMA P1, δ18OVSMOW = 20.99‰,
δ2HVSMOW = −25.30‰, B2205(EMA P2, δ18OVSMOW = 26.88‰, δ2HVSMOW = −87.80‰).
Based on the instrument accuracy of stable isotope ratio measurement of reference substance,
δ13C ≤ 0.13‰, δ15N value ≤ 0.12‰, δ D value ≤ 5.10‰, and δ18O value ≤ 1.88‰.

2.3. Polyphenols and Alkaloids Analysis
2.3.1. Reagents and Instruments

Water was purified using an ultrapure water preparation system; HPLC grade ace-
tonitrile and methanol were purchased from Fisher (Hampton, NH, USA); HPLC grade
formic acid, acetic acid, and butylated hydroxytoluene were obtained from Sigma (Roeder-
mark, Germany). Internal standard reference [2H3]-3-O-Methyl quercetin was purchased
from IsoReag (Shanghai, China).

The used instruments included hundred thousandth electronic analytical balance
(Sartorius Practum, SQP, Sartorius scientific instruments (Beijing) Co., Ltd., Beijing, China),
Milli-Q Plus machine (Millipore, Brussels, Belgium); vortex mixers (Vortex-Genie2, Sci-
entific Industries, Bohemia, NY, USA); SpeedVac (Genevac miVac, Tegent Scientific Ltd.,
Oxford, UK).

2.3.2. Metabolite Extraction

The extraction method was referenced in [23]. Briefly, 20 mg of sample was added with
0.8 mL of 90% methanol containing 0.5% acetic acid and 0.05% butylated hydroxytoluene,
and incubated for 30 min at 1500 rpm and 4 ◦C; then, it was centrifuged for 10 min at
12,000 rpm and 4 ◦C. The supernatant was removed, placed into a clean 1.5 mL centrifuge
tube, and dried using the SpeedVac; the dried extracts were redissolved in 0.5 mL 2%
acetonitrile in water, 50 µL upper layer liquids mixed with 10 µL 0.5 µg/mL internal
standard reference [2H3]-3-O-Methyl quercetin were obtained for LC-MS/MS analysis.

2.3.3. LC-MS/MS Analysis

The LC-MS/MS analysis was carried out by Lipidall Technologies Company Limited,
Changzhou, China. Multiple-reaction-monitoring (MRM) method was used for analyses of the
metabolites. All instrumentation conditions and MRM parameters used for method validation
were based on [23]. The column ACQUITY UPLC HSS T3 1.8 µm, 2.1 × 100 mm columns
and a guard column (Waters, Dublin, Ireland) were equipped in the present research. High-
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performance liquid chromatography (Jasper, AB Sciex, Singapore) coupled to TripleQuad
MS (4500 TripleQuad, AB Sciex, Singapore) was utilized to acquire metabolites data. The
injector volume was 5 L. The flow rate was 0.40 mL/min. Mobile phase A was water
containing 0.1% FA (v/v), and mobile phase B was ACN. The following linear gradient was
used: 0–1.0 min with 2% B, 1.0–6.0 min with 2–42% B, 6.0–8.0 min with 42–65% B, 8.0–10.0 min
with 65–76% B, 10.0–11.0 min with 76–100% B, 11.0–14.0 min with 100–100% B.

The temperatures of the column and auto-sampler were maintained at 40 ◦C and 4 ◦C,
respectively. The injection volume was 5 µL per run, and the flow rate was 0.4 mL/min.
The MS parameters for detection were: ESI (−) source voltage −4.5 kV, and +5.5 KV for
ESI (+); vaporizer temperature, 500 ◦C; drying gas (N2) pressure, 50 psi; nebulizer gas (N2)
pressure, 50 psi; curtain gas (N2) pressure, 35 psi.

2.4. Statistical Analysis

Data acquisition and processing were performed using MultiQuant 3.0.2 (AB Sciex).
SIMCA (version 14.1, Umetrics, Umea, Sweden) and SPSS (version 26.0, SPSS Inc., Chicago,
IL, USA) are used for multivariate statistical analysis (principal component analysis (PCA)
and OPLS-DA). An analysis of variance (ANOVA) was used to assess the significance of dif-
ferences in stable isotope ratios and polyphenols and alkaloids content of partridge tea from
different geographical sources at a p = 0.05 confidence level. The data were pre-processed
using unit variance scaling (UV) before modeling. The characteristics of polyphenols and
alkaloids in partridge tea from different regions were analyzed by heat map analysis and
hierarchical cluster analysis (HCA), in order to find the relatively homogeneous clusters
in samples and explain the changes of metabolites in different groups of samples. For
OPLS-DA models, R2 and Q2 are typically used to evaluate the quality and reliability of
these models. Generally speaking, their values close to 1.0 indicate that the model has
good adaptability and prediction ability [24].

The VIP score reflects the importance of the X variable relative to the Y variable in the
model (the predictive part of the model) and can be used as a potential variable selection
method to select the most differential geographically derived dependent metabolites. In
general, the variable with VIP value greater than 1 is usually selected as an important index
of the model [3,7,25,26]. So, according to VIP value in OPLS-DA analysis (VIP > 1), the
meaningful compounds were screened out. For polyphenols and alkaloids, the random forest
model was also established to study in depth the importance of the arrangement accuracy
of these differential metabolic characteristics and further refine the marker compounds that
could distinguish partridge tea from the four origins. In OPLS-DA analyses, SIMCA’s default
analysis of variance based on 7-fold cross-validation prediction residuals were used to assess
the statistical significance of the model. The random forest model is implemented by Python
machine learning library Scikit-learn, and the parameters are set by default.

3. Results and Discussion
3.1. C/N/O/H Stable Isotope Analysis

The stable isotope ratios of C/N/O/H in SY, WN, WC, and BT regions were deter-
mined by EA-IRMS, and the results are summarized in Table 1. According to the ANOVA,
it was judged whether there were significant differences (p < 0.05) in the C/N/O/H stable
isotope ratios of partridge tea from four different geographical origins, which was indicated
by the superscripts with different letters in Table 1. The distribution and variation of δ13C,
δ15N, δ D, and δ18O of partridge tea from different geographical origins were also shown
in the box plots (Figure 2).

The average δ13C values of all the samples were within the range of −29.75 to
−33.04‰, with little fluctuation in each group of samples. The average δ13C value of
the sample from WC was the highest (−29.75‰), followed by that of WN, SY and BT.
According to the results of ANOVA based on δ13C values, there were significant differences
(p < 0.05) among the four samples from different origins, indicating that δ13C values were
effective indicators for distinguishing the samples of partridge tea from four different



Foods 2021, 10, 2130 6 of 15

origins. The main factors affecting δ13C value were plant type and environmental factors
(temperature, humidity, altitude, etc.), and the former had the most significant effect on
δ13C value. Tea was a typical C3 plant (δ13C values from −25.0 to −35.0‰) [27], which
was consistent with the δ13C values (−29.75 to −33.04‰) obtained in the present study.
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The average δ15N value of all samples were within that range of 1.02–4.29‰, which
was relatively consistent with the previously report δ15N range of Chinese green tea
(1.8–4.6‰) [9]. δ15N values from BT samples showed the largest change, ranging from 1.03
to 3.27‰. δ15N values of SY samples were the highest, significantly higher than that of WC
sample (the lowest). The δ15N values of SY and WN samples were close, and that of WC
and BT samples were close. By ANOVA, there were significant differences among the four
sample origins (p < 0.05), which confirmed the possibility of using δ15N value to test the
geographical origin of partridge tea samples. This difference was greatly affected by the
local planting pattern, fertilizer source, and application amount. In general, the range of
δ15N value of synthetic or inorganic fertilizers was very narrow, close to 0‰, which was
much lower than that of organic fertilizers [28].

In addition, the geographical and climatic conditions (such as precipitation, temperature,
humidity, geographical location, and distance from the coast) are closely related to the changes
in δ D and δ18O, and higher values of δ D and δ18O are reported in the rainfall near the coastal
areas [29,30]. The average δ18O values of partridge tea from different origins in Hainan
Province ranged from 20.88 to 22.22‰, the δ D value ranged from −17.54 to 3.16‰, and
δ D values between the four origins fluctuated greatly. Compared with partridge tea from
other regions, the samples from WN and SY showed the higher δ18O and δ D values, which
might be due to the high annual precipitation, followed by BT and WC. There were significant
differences (p < 0.05) in δ18O values of partridge tea from four origins. For δ D, the δ D values
of SY is significantly higher than other regions, and the δ D values of WC and BT were close.
There was no significant difference (p > 0.05) between the WC and BT regions, while there
was significant difference (p < 0.05) between SY, WN and other two regions.
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Table 1. The δ13C, δ15N, δ18O, and δ D values of Hainan partridge tea samples from four origins (SY, WN, WC, and BT). Superscripts on different letters indicate significant differences
between variables.

Geographical Origin
δ15N (‰) δ13C (‰) δ18O (‰) δ D (‰)

Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD

SY 4.21–4.36 4.29 ± 0.063 a −31.40–(−31.26) −31.33 ± 0.044 c 21.24–21.85 21.62 ± 0.24 b 2.19–3.96 3.16 ± 0.66 a

WN 3.48–3.90 3.65 ± 0.16 b −30.23–(−30.13) −30.18 ± 0.033 b 22.04–22.42 22.22 ± 0.14 a −12.18–(−10.83) −11.73 ± 0.48 b

WC 0.34–1.68 1.02 ± 0.43 d −29.80–(−29.72) −29.75 ± 0.034 a 20.41–21.30 20.88 ± 0.32 d −18.41–(−16.82) −17.54 ± 0.56 c

BT 1.03–3.27 2.05 ± 0.74 c −33.09–(−32.94) −33.04 ± 0.056 d 20.98–21.31 21.16 ± 0.11 c −17.81–(−16.12) −17.11 ± 0.56 c
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According to the results of ANOVA, the C/N/O/H stable isotopes of partridge tea
from different origins had significant differences. In order to preliminarily explore that data
characteristics of C/N/O/H stable isotopes, an exploratory PCA was used [31]. Figure 3A
shows the PCA 2D scores plot of the stable isotope ratios of partridge tea. The samples were
clustered mainly based on their biological repetitions in the PCA scores plot, representing
the partridge tea samples from SY, WN, WC, and BT, respectively. It could be seen that the
samples were divided into four independent clusters. The first two principal components
accounted for most of the variables (83.8%), and PC1 and PC2 accounted for 57.4% and
26.5%, respectively. The differentiation between the four samples was significant, indicating
that partridge tea from four origins could be clustered based on the C/N/O/H stable
isotope without considering the geographical origin.
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Figure 3. Principal component analysis (PCA) and orthogonal partial least squares discriminant
analysis (OPLS-DA) results of stable isotope ratios of partridge tea from four origins (SY, WN, WC,
and BT): (A) 2D scores plot of PCA; (B) 2D scores plot of OPLS-DA; (C) result map of 200 cross-
validation of OPLS-DA model; (D) VIP map of contribution of each variable to sample classification.

In order to exclude intra-group differences, highlight inter-group differences, and identify
the stable isotope differences of partridge tea caused by different origins, the OPLS-DA model
based on the stable isotope ratio was further established. It could be clearly seen from the
2D scores plot of OPLS-DA (Figure 3B) that the partridge tea samples were divided into four
clusters, with the high mutation explanation rate (R2X = 1, R2Y = 0.971) and high prediction
ability (Q2 = 0.949), and the cross-validation classification accuracy rate was 100%. This
indicated that the stable isotope ratio could be used as an effective index to distinguish
partridge tea from different origins. In order to avoid over-fitting of the model, the OPLS-DA
model was cross-validated with 200 permutation tests [32]. The results showed that the
intercept of R2 and Q2 are−0.0215 and −0.449, respectively, which indicated that the model
has good robustness (Figure 3C). The intercept of R2 and Q2 should be less than 0.30 and 0.05,
respectively [33]. To assess the overall impact of the variables on the sample set differences, a
projected VIP score plot for each variable was also generated. It can be seen from Figure 3D
that the VIP value of δ13C, δ D, and δ18O is greater than 1, indicating that δ13C, δ D and δ18O
have a significant contribution to the sample classification.

3.2. Targeted Metabolomics Fingerprinting Analysis

A total of 55 metabolites (Including 49 polyphenols and six alkaloids) in partridge tea
were detected by LC-MS/MS. The total ion chromatography (TIC) was shown in Figure S1.
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The data of 55 metabolites were standardized by SPSS using Z-score method, and the
standardized data were plotted into heat map and HCA, in order to visualize the rela-
tionship between the metabolites of partridge tea from four regions (Figure 4). The heat
map represented the rows of data for each metabolite in each column variable as a color
block, with red boxes for higher levels and blue boxes for metabolites at lower levels. HCA
is a clustering method that explores the grouping of samples through subsequent data
aggregation or partitioning [34]. Catechins are the most important bioactive components
in tea polyphenols; generally speaking, catechins are the main components of tea polyphe-
nols [20]. However, in this study, gallic acid and ellagic acid in partridge tea polyphenols
account for a large proportion, while catechins are relatively low; this is also consistent
with previous reports that partridge tea is rich in ellagic acid and gallic acid [35]. The good
aroma of partridge tea may be due to its high phenolic acid content, because phenolic acids
are considered to be related to the aroma quality of tea [36,37].
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contents of Hainan partridge tea from four origins (SY, WN, WC, and BT). According to the HCA
diagram, the metabolites can be divided into two categories: (A,B).

Through heat map and HCA (Figure 4), 55 species metabolites were divided into
two categories: Group A (40 species) and Group B (15 species). Group A represented
the majority of polyphenols (36 species) and alkaloids (four species) in partridge tea,
including all detected catechins, most phenolic acids, and most alkaloids. It could be seen
from Figure 4 that the contents of WC, WN, and SY metabolites were all at high levels,
which was significantly distinguished from BT. Among them, the contents of WN and WC
were the highest, which might be the main reason for the good quality of WN and WC
partridge tea, because higher polyphenol and alkaloid contents often represented higher tea
quality. Among the metabolites belonging to Group B, the samples of BT were significantly
higher than those of the other three regions. Group B included 15 metabolites, such as
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L-Carnitine, eugenol, trans-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, Betain,
quercitrin, Quercetin 3-glucoside-7-acetate, scopoletin, ellagic acid, phlorizin, 5-Hydroxy-
3,3,4,7,8-pentamethoxyflavone, 2,6-Dimethoxy-4-propylphenol, methyl gallate, salicylic
acid, and 3,5-dimethoxy-4-hydroxycinnamic acid. These metabolites can be used as the
main components to distinguish BT from the other three geographic origins of partridge
tea. Ellagic acid was the highest content detected, and the ellagic acid content of BT sample
was significantly higher than that in other regions. Ellagic acid has strong antioxidant and
anticancer effects on human health [38].

In addition, as can be seen from the HCA figure at the top of Figure 4, partridge
tea from different origins can be accurately divided into four categories by HCA, ac-
cording to the metabolic maps of polyphenols and alkaloids. This indicated that the
differences of polyphenols and alkaloids in partridge tea from different origins were sig-
nificant. Further, the unsupervised PCA method was used to summarize the phenotypic
differences of metabolites and the supervised OPLS-DA method was used to establish the
prediction model.

In order to evaluate the differences between polyphenols and alkaloids of partridge
tea from different origins, the PCA based on polyphenols and alkaloids data was used.
Figure 5 shows the 2D scores plot generated after PCA analysis, with the first two prin-
cipal components accounting for most of the variables, and PC1 and PC2 accounting for
61.1% and 15.5%, respectively. The interpretation rate (R2X (cumulative) = 0.888) were
satisfactory. It could be observed that the 2D scores plot of PCA divided the samples
into four independent clusters, representing the partridge tea samples derived from SY,
WN, WC, and BT, indicating that there were significant differences in the polyphenol and
alkaloid metabolism spectra of partridge tea from different origins, and the samples could
be naturally grouped according to their metabolite characteristics, which was consistent
with the result obtained by HCA before. In addition, QC samples were used to verify
the reliability of the data. The PCA scores plot showed tight clustering between the QC
samples, with the QC samples positioned near the origin of the coordinates, which clearly
demonstrated the stability and repeatability of the analytical method.
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Figure 5. 2D scores plot of the first two principal components based on PCA of polyphenols and
alkaloids content, used for identifying partridge tea from four origins (SY, WN, WC and BT).

Although HCA and PCA could visually show how the samples were clustered, indi-
cating a strong trend for identification of partridge tea from different origins by polyphenol
and alkaloid contents, they could not provide information on clustering quality and cluster-
ing confidence [7]. Therefore, OPLS-DA analysis was further performed to help understand
inter-class separation and identify potential categorical variables.

Figure 6 is the OPLS-DA analysis result based on polyphenols and alkaloids of par-
tridge tea. It can be seen from the OPLS-DA 2D scores plot that the samples were divided
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into four categories, and the differences were significant (Figure 6A). The model can ex-
plain 86.3% of the variation (R2X = 0.863, R2Y = 0.985) and has high prediction ability
(Q2 = 0.974). Cross-validation with 200 permutation tests showed that the OPLS-DA model
has good robustness (intercept of R2 and Q2 are 0.123 and −0.488, respectively) (Figure 6B).
Furthermore, in order to identify variables that contribute significantly to sample classifi-
cation, a variable importance map in the predicted values was generated (Figure 6C) to
evaluate the overall effect of the variables on the differences in sample set. The variables
were screened according to VIP > 1 and p < 0.05, and 23 differential metabolites were finally
screened out, as shown in Table 2. Five alkaloids were all included, indicating that the
alkaloids of partridge tea might have significant potential for distinguishing partridge tea
from different origins.
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Table 2. Differential metabolites of partridge tea from four origins (SY, WN, WC, and BT) (based on VIP > 1 and p < 0.05).

NO. Compound Classification VIP p

1 Proline betaine alkaloid 1.29654 <0.01
2 Choline alkaloid 1.24792 <0.01
3 6,7-dihydroxycoumarin Polyphenol 1.24765 <0.01
4 apigenin Polyphenol 1.18786 <0.01
5 Betaine alkaloid 1.17243 <0.01
6 Trigonelline alkaloid 1.16975 <0.01
7 salicylic acid Polyphenol 1.15381 <0.01
8 luteolin Polyphenol 1.12937 <0.01
9 Glycerophosphocholine alkaloid 1.12302 <0.01

10 kaempferol-3-o-rutinosid Polyphenol 1.09786 <0.01
11 eriodictyol Polyphenol 1.08076 <0.01
12 naringenin Polyphenol 1.07391 <0.01
13 protocatechuic acid Polyphenol 1.06823 <0.01
14 quercetin Polyphenol 1.06197 <0.01
15 hyperoside Polyphenol 1.06062 <0.01
16 gallocatechin Polyphenol 1.05693 <0.01
17 4-hydroxybenzoic acid Polyphenol 1.05198 <0.01
18 apigenin-7-glucoside Polyphenol 1.05169 <0.01
19 2,5-dihydroxybenzoic acid Polyphenol 1.03708 <0.01
20 myricetin Polyphenol 1.03414 <0.01
21 trans-4-hydroxycinnamic acid Polyphenol 1.0322 <0.01
22 astragalin Polyphenol 1.02076 <0.01
23 Quercetin 3-glucoside-7-acetate Polyphenol 1.00454 <0.01

OPLS-DA helped us to eliminate most of the variables that contributed less to the clas-
sification. The screened 23 differential metabolic characteristics could assist us in screening
marker metabolites. However, due to the complexity of metabolite detection methods,
we prefer to use as few variables as possible to achieve the purpose of identification. In
addition, the data scaling method is an important influencing factor of OPLS-DA model,
which may interfere with the selection of important variables in the model, and random
forest is not sensitive to the selection of data scaling method, which is also a prominent
advantage of random forest [39]. Based on the metabolic characteristics screened out by
OPLS-DA, the random forest model was used for further screening, which could eliminate
the interference to a certain extent. Therefore, the application of the decision combination
of OPLS-DA and random forest in this study allowed us to observe the data from differ-
ent angles, thereby accurately further refining the differential metabolic characteristics.
Random forest is a combined classification model composed of multiple decision tree
classification models. The optimal classification result is selected through the voting of
multiple decision tree classification models. The importance of each variable is evaluated
with the mean decreasing precision method. The parameters of the random forest model
were set as the default settings. In order to improve the accuracy and stability of the feature
selection, the modeling was repeated 100 times. The obtained variable importance results
were ranked after the average value was taken, and the results were presented in the
form of histogram (Figure 7). Then, the variables that showed greater feature importance
in the modeling were selected to sequentially establish the random forest classification
model, so as to find the minimum number of variables when the highest classification
accuracy is reached. Finally, when the first four metabolite profiles (luteolin, protocatechuic
acid, astragalin, and naringenin) were used to model the random forest, the out-of-bag
(OOB) error of the model was 0.0, and the accuracy of cross-test prediction was 100%.
This indicated that the four compounds represented sufficient traceability information
and had practical application value for the identification of partridge tea origin from four
geographical origins. The extracted ion chromatographs (XIC) of luteolin, protocatechuic
acid, astragalin, and naringenin were shown in Figures S2–S5.
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4. Conclusions

In this study, the C/N/O/H stable isotope ratios and polyphenol and alkaloid con-
tents of partridge tea from SY, WN, WC, and BT regions in Hainan Province of China
were determined, and these characteristics were used for the first time to identify the
geographic origin of partridge tea. There were significant differences in the C/N/O/H
stable isotope ratios and the contents of polyphenols and alkaloids among the partridge
teas from the four regions, which indicated that the geographical origin had a greater
impact on these indicators of partridge tea, and thus the geographical origin of partridge
tea could be correctly identified. Through chemometric analysis, it was found that both the
stable isotope ratio and polyphenol and alkaloid content can accurately classify the sample
sources. Potential markers distinguishing the origin of partridge tea were identified, in-
cluding three stable isotope ratios (δ13C, δ D, and δ18O) and four polyphenol characteristics
(luteolin, protocatechuic acid, astragalin, and naringenin). Therefore, stable isotope ratio
and polyphenol and alkaloid contents were effective indicators for identifying the origin of
partridge tea, which would provide the basis for the origin tracing of partridge tea. The
results of this study may also indicate that, in future studies, if a single detection method
cannot distinguish samples from different origins, the combination of stable isotope and
metabolomics methods may be a better method, because both of them have satisfactory
results for origin identification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10092130/s1. Figure S1. Total ion chromatography (TIC) of Hainan partridge tea by
LC-MS/MS. Figures S2–S5. Extracted ion chromatographs (XIC) of luteolin, protocatechuic acid,
astragalin and naringenin.
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