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Abstract

Background: Pseudomonas aeruginosa often causes multidrug-resistant infections in immunocompromised patients, and
polymyxins are often used as the last-line therapy. Alarmingly, resistance to polymyxins has been increasingly reported
worldwide recently. To rescue this last-resort class of antibiotics, it is necessary to systematically understand how P.
aeruginosa alters its metabolism in response to polymyxin treatment, thereby facilitating the development of effective
therapies. To this end, a genome-scale metabolic model (GSMM) was used to analyze bacterial metabolic changes at the
systems level. Findings: A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for antimicrobial
pharmacological research. Model iPAO1 encompasses an additional periplasmic compartment and contains 3022
metabolites, 4265 reactions, and 1458 genes in total. Growth prediction on 190 carbon and 95 nitrogen sources achieved an
accuracy of 89.1%, outperforming all reported P. aeruginosa models. Notably, prediction of the essential genes for growth
achieved a high accuracy of 87.9%. Metabolic simulation showed that lipid A modifications associated with polymyxin
resistance exert a limited impact on bacterial growth and metabolism but remarkably change the physiochemical
properties of the outer membrane. Modeling with transcriptomics constraints revealed a broad range of metabolic
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responses to polymyxin treatment, including reduced biomass synthesis, upregulated amino acid catabolism, induced flux
through the tricarboxylic acid cycle, and increased redox turnover. Conclusions: Overall, iPAO1 represents the most
comprehensive GSMM constructed to date for Pseudomonas. It provides a powerful systems pharmacology platform for the
elucidation of complex killing mechanisms of antibiotics.
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Introduction

Pseudomonas aeruginosa is a common multidrug-resistant (MDR)
pathogen in immune-compromised patients, cystic fibrosis pa-
tients, and burns victims [1–6]. It possesses a large genome (5.5–
7.0 Mb), complex regulatory networks, remarkable metabolic
versatility, and an extraordinary ability to survive extremely
harsh conditions such as prolonged antibiotic exposure [7, 8].
Polymyxins (i.e., polymyxin B and colistin) have been increas-
ingly used as a last-line therapy to treat infections caused by
MDR P. aeruginosa [9]. Alarmingly, the prevalence of polymyxin
resistance in P. aeruginosa has increased worldwide over the past
few years [3, 10, 11].

The exact mode of action of polymyxins is not clear except
for the initial electrostatic and hydrophobic interactions with
lipid A, a component of the lipopolysaccharide (LPS) in the bac-
terial outer membrane (OM). Subsequently, the cell envelope is
disorganized, cellular contents leak, oxidative stress increases,
and finally cell death occurs [2, 9, 12, 13]. After polymyxin
treatment, P. aeruginosa modifies its lipid A structure to atten-
uate the aforementioned electrostatic interactions [14]. Our re-
cent metabolomics data demonstrated that, apart from lipid A
modifications, numerous biochemical pathways are perturbed
by polymyxin treatment, indicating that the development of
polymyxin resistance by P. aeruginosa involves a complicated in-
terplay of multiple cellular processes [15]. There are significant
gaps in the knowledge base of themechanisms of polymyxin ac-
tivity and bacterial responses in P. aeruginosa, thereby necessitat-
ing comprehensive investigations using systems pharmacology
approaches.

With the rapid development of genome-scale metabolic
models (GSMMs) and the associated flux balance analysis (FBA)
methods, systematic investigations into the metabolic changes
in response to external nutrient alterations, genetic perturba-
tions, and antibiotic treatments become feasible [16–24]. Sev-
eral studies used transcriptomics data as constraints to com-
pute condition-specific metabolic flux changes in response to
antibiotic treatments in MDR bacteria, including Acinetobacter
baumannii [25], Mycobacterium tuberculosis [26], and Yersinia pestis
[27]. For P. aeruginosa, 4 GSMMs have been constructed, iMO1056
[28], Opt208964 [29], iMO1086 [30], and the latest iPae1146 [31].
iMO1056, Opt208964, and iPae1146 used SEEDmetabolite and re-
action names; iMO1056 and Opt208964 are fully accessible via
Model SEED [29, 31, 32]; iMO1086 used different identifiers (IR/RR
plus 5 digits for reactions and C/EC plus 4 digits for metabo-
lites) [30]. The previous applications of these models have in-
cluded simulating the metabolic dynamics in cystic fibrosis pa-
tients [33], elucidating the mechanisms of biofilm formation
[34, 35], predicting potential drug targets [36–38], and identify-
ing the key genes that control virulence factors [31]. As impor-
tant as they have been, these models have several overarching
limitations. Those past models do not include a major cellular
component, the periplasmic space; have poor representation of
glycerophospholipid (GPL) biosynthesis; and lack lipid A modifi-
cation reactions. Considering the pathogenesis of P. aeruginosa,
these major limitations significantly compromise the modeling
functions. In particular, the power of the 4 reported GSMMs to

predict metabolic responses to antibiotic treatment is very lim-
ited, as periplasmic GPL and LPS biogenesis plays critical roles in
responses to anti-pseudomonal antibiotics such as polymyxins
[15, 39–42].

Here, we describe iPAO1, a newly developed GSMM for P.
aeruginosa PAO1 based upon Opt208964 [29] and iMO1056 [28] but
with intensive manual curation using several major databases
and the literature. Most notably, iPAO1 is the first GSMM for
P. aeruginosa where the periplasmic space compartment is
incorporated to comprehensively represent cross-membrane
transport, GPL metabolism, and LPS biosynthesis. To the best
of our knowledge, iPAO1 represents the most comprehensive
metabolic reconstruction for Pseudomonas thus far. Modeling
with iPAO1 revealed that the lipid A modifications might exert
limited impact on cell growth and metabolism but change the
physiochemical properties of bacterial OM. Constrained by gene
expression levels, themodel was used to elucidate themetabolic
responses to polymyxin B treatment. Together, iPAO1 provides
a powerful systems platform for antimicrobial pharmacological
research to combat the rapidly increasing resistance.

Data Description

The genome sequence and annotation of P. aeruginosa PAO1
were obtained from GenBank (accession NC 002516.2). Mod-
els iMO1056 and Opt208964 were retrieved from Model SEED
[32]. The gas chromatography–mass spectrometry (GC-MS)
metabolomics data were collected from the literature [43].
Metabolites, reactions, and pathways were obtained from
databases KEGG (Kyoto Encyclopaedia of Genes and Genomes)
[44], MetaCyc [45], TCBD (Transporter Classification Database)
[46], TransporterDB [47], and Pseudomonas Genome DB [48].
Growth phenotypes on 190 carbon sources and 95 nitrogen
sources were determined using BIOLOG PhenotypicMicroarrays.
Nonessential gene lists were collected from 2 previously re-
ported transposon mutant libraries for PAO1 [49, 50]. Lipid A
of wild-type P. aeruginosa PAK was extracted using a mild acid
hydrolysis method, and the structural analysis of lipid A was
conducted using mass spectrometry [42]. RNA was extracted
and used to construct cDNA libraries for RNA-sequencing (RNA-
seq) on the Illumina MiSeq platform [51]. The raw reads were
quality trimmed and aligned to the PAO1 reference genome us-
ing SubRead [52]. Counts were normalized, and the differential
gene expression was determined using voom/limma packages
with Degust [53]. Whole-cell lipids and intracellular metabo-
lites were extracted and analyzed using liquid chromatography–
mass spectrometry [14, 42]. Raw lipidomics and metabolomics
data were processed with IDEOM software followed by bioinfor-
matic analysis [54].

Materials and Methods
Strain, media, and BIOLOG experiments

Pseudomonas aeruginosa PAO1 was cultured in LB media and
subcultured on nutrient agar. Cells were swapped into sterile
capped tubes containing 16 ml IF-0 solution (Cell Biosciences,
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West Heidelberg, Australia) until the turbidity achieved 42%
transmittance in a Turbidimeter (Pacificlab, Blackburn, Aus-
tralia). The cell suspension was then diluted 5 times with IF-0
solution and dye (Cell Biosciences) to final 85% transmittance.
BIOLOG PM 1–3 (Cell Biosciences) were used to investigate the
carbon and nitrogen utilization with 2 independent biological
replicates. Sodium succinate was used as the carbon source for
examining nitrogen utilization. Growth was detected after 24-
h incubation at 37◦C, using an Infinite M200 microplate reader
(Tecan, Mannedorf, Switzerland) at 595 nm. Readings that were
≥1.5-fold of the negative control (i.e., growthmedia without bac-
teria) indicated the utilization of nutrients.

Development of a GSMM for P. aeruginosa PAO1

To expeditemodel development, 2 curatedmodels for PAO1with
the same identifier systems fromModel SEED [32], iMO1056 [28],
and Opt20896434 [29] were merged. Databases including KEGG
[44], MetaCyc [45], and Pseudomonas Genome DB [48] and the
literature were used to complete the model with missing com-
ponents. The identifiers of metabolites and reactions were kept
consistent with Model SEED [29] and cross-referred to MetaCyc,
KEGG, PubChem [55], ChEBI [56], ChemSpider [57], and BiGG [58].
The PAO1 genome annotation from Pseudomonas Genome DB
[48] was used to construct “gene to protein to reaction” asso-
ciations [59]. A periplasm compartment was incorporated into
the model. Reactions and metabolites were then assigned to
cytoplasm, periplasm, and external environment according to
the localization prediction of metabolic enzymes by PSORTb 3.0
[60]. Transport reactions were generated to enable material ex-
change across membranes according to TCBD [46] and Trans-
porterDB [47]. The model was constructed using the Systems
Biology Markup Language [61, 62]. VANTED [63] was used for
visualization and analysis of the metabolic network. For each
metabolite in the model, specific features, including compart-
ment localization, mass, charge, formula, formation free energy,
database identifiers, and source, were added (Additional file 14).
Each reaction entered into themodel was checked with elemen-
tary and charge balance. Reversibility was determined first from
the primary literature for each particular enzyme or reaction,
if available. Further curation on reaction reversibility and direc-
tions was conducted based on change of free energy and knowl-
edge about the physiological direction of a reaction in a pathway.

The Gapfind function from the COBRA toolbox [64] was
used to identify the isolated and dead-end metabolites in the
model. Candidate reactions fromKEGG,MetaCyc, and BiGGwere
manually inspected for relevance and homology evidence us-
ing BLASTp; reactions catalyzed by homologous enzymes (E-
value <1 × 10−5, identity ≥35%, coverage ≥50%) were added
to the model to eliminate the gaps. Mispredictions of BI-
OLOG growth phenotypes were used to refine the draft model
(iPAO1 draft2). Further curation was performed to represent the
complex biosynthesis pathways of macromolecules (e.g., pepti-
doglycan, GPL, and LPS).

The biomass formation equation that consisted of the neces-
sary building blocks for bacterial growth was created using the
one from iMO1086 [30], with slight modifications on composi-
tions of ions, peptidoglycans, GPL, and LPS (Additional file 17).
The growth- and nongrowth-associatedmaintenancewere from
iMO1086 [30].

Growth prediction in BIOLOG media

iPAO1 was used to predict the growth phenotypes on chemically
defined media with 190 carbon and 95 nitrogen sources (Addi-

Table 1: Lipid A composition (%) in the outer leaflet of the OM in PAK
[14]

Lipid A species Control Polymyxin B treated

Hexa-lipid A 42.5 ± 0.46 11.7 ± 1.13
Penta-lipid A 57.5 ± 0.46 67.7 ± 3.16
L-Aminoarabinosylated hexa-LA 0 1.24 ± 0.31
L-Aminoarabinosylated penta-LA 0 19.4 ± 3.44
Total 100 100

tional file 18) using the FBA method [24]. The objective function
of biomass formation was maximized with the specific nutrient
uptake rate set at 10mmol · gDW−1 ·h−1 under aerobic condition,
as follows:

max vbiomass

s.t.Sv = 0
ai ≤ vi ≤ bi , i = 1, 2, · · · ,n

where vbiomass denotes the biomass formation flux and S rep-
resents the stoichiometric matrix; each metabolic flux vi was
constrained by lower and upper bound ai and bi, respectively.
All modeling procedures were performed with the COBRA tool-
box [64] in MATLAB. The calculated specific growth rates vbiomass

were then compared to the BIOLOG PM data to assess the pre-
diction accuracy using Fisher’s exact test.

Gene essentiality prediction

In silico single-gene deletion was performed using the COBRA
toolbox; then, the mutant models were used to predict the spe-
cific growth rate in LB broth [32] using FBA. Genes with 99% re-
duction of the specific growth rate relative to the wild type were
defined as essential for cell growth; otherwise, theywere consid-
ered as semi-essential (1–99% reduction) and nonessential (<1%
reduction). Two existing PAO1 transposon insertion mutant li-
braries, 2-allele mutant library [50, 65] and mini-Tn5 insertion
mutant library [49], were used to assess the overall prediction ac-
curacy with Fisher’s exact test. To determine polymyxin-specific
essential genes, transcriptomic constrains were imposed (be-
low) before conducting in silico single-gene deletion simulations.
The calculated essential genes identified in polymyxin treat-
ment alone but not in the control were considered as polymyxin
specific.

Simulation of bacterial growth and metabolic
phenotype changes in response to lipid A modifications

The LPS stoichiometric coefficients in the biomass formula un-
der the control and lipid A modification conditions were set ac-
cording to the measured lipid A compositions in the wild-type
P. aeruginosa PAK in the absence and presence of polymyxin B
treatment (Table 1) [14]. Aerobic growth was simulated on mini-
mal media with glucose uptake at 10 mmol · gDW−1 · h−1. For
each simulation, the solution space was sampled with 10000
random points using the ll-ACHRB algorithm [66]. Flux samples
of the control and lipid Amodification were then compared. Sig-
nificantly perturbed metabolic fluxes were identified using a Z-
score based approach [67].

To further analyze the metabolic impact of lipid A modifi-
cations, the proportions of all types of LPS in the biomass for-
mula were randomly assigned and the process was repeated
1000 times. For each repetition, the specific growth rates were
calculated and solution space was sampled using the methods
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described above. For each type of lipid A, specific physiochemical
properties (f) including total atom number, partition coefficient
(logP), average charge, and molecular polarity were predicted at
pH 7 using the cxcalc tool from ChemAxon (Budapest, Hungary).
The overall apparent properties F of the OM were estimated by
calculating the weighted sum, as follows:

F =
n∑

j=1

w j f j

where wj represents the stoichiometric coefficient of the j-th of
288 heterogeneous LPS molecules in the biomass formula. Pair-
wise correlation analysis was conducted between lipid A modi-
fications, physiochemical properties changes, bacterial growth,
and metabolism alterations.

Predict metabolic responses to polymyxin treatment by
constraining fluxes with transcriptomics data

The RNA-seq data from 1-h 1 mg·L−1 polymyxin B treatment
experiment using PAO1 were used as flux constraints for mod-
eling [51]. For each gene under every condition, the reads per
kilobase million (RPKM) value was calculated from the aligned
reads using the edgeR package [68] and normalized to constrain
flux upper bounds (bi) using the E-Flux algorithm [26]. Specifi-
cally, for each reaction catalyzed by a single enzyme, the upper
flux bound was set to the determined RPKM value under the re-
spective condition. For a reaction catalyzed by an enzyme com-
plex, the upper bound was set to the minimum RPKM value of
the associated genes. For a reaction catalyzed by isozymes, the
upper bound was set to the sum of RPKM values of the associ-
ated genes. The maximum of upper bounds was then normal-
ized to 10000 mmol · gDW−1 · h−1. The lower bounds ai were set
to 0 for irreversible and −bi mmol · gDW-1 · h−1 for reversible
reactions, respectively. CAMHB was used in the RNA-seq experi-
ment; it is known as an undefinedmedium that containsmainly
amino acids and oligopeptides [69]. The maximum uptake rates
of amino acids in P. aeruginosa vary between 0.26 and 1.44mmol ·
gDW−1 · h−1 [70, 71, 73]. Therefore, the upper bounds (bCAMHB

i ) of
uptake rates of amino acids, vitamins, and dipeptides in iPAO1
were constrained to 1 mmol · gDW−1 · h−1 without loss of gen-
erality. For each condition, the solution space was sampled with
10000 points using ll-ACHRB as described above. Statistical sig-
nificance of differential flux distributions was computed using
the Z-score method described above. The turnover rate for key
metabolites was calculated by summing up all influxes or ef-
fluxes [74]. To assess the impact of changing nutrient uptake
bounds, sensitivity analysis was conducted by randomly sam-
pling solution space as above while varying bCAMHB

i from 0.26 to
1.44 mmol · gDW−1 · h−1.

Results
Development of a superior GSMM for P. aeruginosa PAO1

Initially, a draft model (iPAO1 draft1) containing 1991 reactions,
1579 metabolites, and 1021 genes was created based upon
iMO1056 [28] and Opt208964 [29] (Additional files 2–4). To ob-
tain a high-quality GSMM, extensive manual curation was con-
ducted. First, iPAO1 draft1 was complemented using databases
and the literature. Specifically, the following additional informa-
tion was incorporated into the draft model, 285 metabolites and
36 reactions from KEGG [44], 225 metabolites and 50 reactions
from MetaCyc [45], and 7 metabolites and 20 reactions obtained

by previous GC–MS-based quantification [43] (Additional files 5
and 6).

Second, a periplasmic compartment was built to incorporate
698 periplasmic metabolites, 509 transport reactions across the
inner membrane (IM), 441 transport reactions across the outer
membrane (OM), and 403 periplasmic reactions. The resulting
intermediate model was designated as iPAO1 draft2.

Third, themajor pathway gaps were filled. GapFind [75] iden-
tified 109 dead-end metabolites (Additional file 7). The growth
phenotypes on 190 carbon and 95 nitrogen nutrients were pre-
dicted using iPAO1 draft2, and compared with our experimen-
tal BIOLOG phenotypic microarray (PM) results (Additional file
8). As a result, 162 false-negative predictions (i.e., the prediction
indicated nongrowth whereas the BIOLOG experiment demon-
strated valid growth on a specific nutrient) were determined, in-
dicating the lack of associated transport or catabolic reactions
for these nutrients. To link the dead-end metabolites back to
the metabolic network and eliminate inconsistencies with the
BIOLOG PM results, several modifications were made, includ-
ing adjustment of the reversibility settings of 180 reactions and
change in the directions of 87 reactions (Additional file 9); re-
moval of 14 metabolites and 96 reactions (Additional files 10
and 11), which were either duplicated (e.g., β-D-glucose was
duplicated with D-glucose) or representing general metabolite
classes (e.g., protein, mRNA, DNA); and addition of 98 bound-
ary reactions, 677 transport reactions, and 252 metabolic reac-
tions (Additional file 12). Resolving the false-negative predic-
tions of the BIOLOG growth phenotypes substantially improved
the model. For example, predictions using iPAO1 draft2 showed
that PAO1 was unable to grow with formic acid as a sole car-
bon source due to lack of the corresponding transport reaction.
Interrogation of the Pseudomonas Genome Database [48] and
Pfam [76] identified PA2777, a hypothetical protein in the Na-
tional Center for Biotechnology Information (NCBI) and UniProt
that may encode formic/nitrite transporter (Pfam01226, P = 7e-
34). Subsequent addition of the transport reaction (rxn08526) en-
abled in silico growth of PAO1 on formic acid. Another exam-
ple is that initially iPAO1 draft2 failed to predict utilization of
1,2-propanediol for growth owing to the exiting gap in dehy-
drogenation of 1,2-propanediol to lactaldehyde. Using the Ba-
sic Local Alignment Search Tool for Proteins (BLASTp) with the
query sequence of lactaldehyde reductase (fucO, b2799) from
Escherichia coli K12 MG1655, we identified a candidate homol-
ogous gene PA1991 (Identity = 35%, Eval = 2e-75, BLASTp).
PA1991 encodes an iron-containing alcohol dehydrogenase and
has more than 300 orthologues in Gram-negative bacteria that
encode lactaldehyde oxidoreductases or 1,2-propanediol dehy-
drogenases according to OrthoDB [77]. Inactivation of PA1991 re-
sulted in an 8-fold prolonged lag phase when P. aeruginosa grew
on 1,2-propanediol [78]. Therefore, reaction rxn01615 oxidizing
1,2-propanediol to lactaldehyde was added into iPAO1 draft2.
A very large number of such labor-intensive manual curations
were conducted to improve the model. This enabled in silico
growth on a number of nutrients from BIOLOG PMs, including 4-
hydroxyphenylacetate, tyramine, quinic acid, itaconic acid, cit-
ramalic acid, L-pyroglutamic acid, carnidine, glycinebetaine, L-
methylsuccinate, and D-amino acids (Additional file 8).

Fourth, the biogenesis of the bacterial envelope was
delineated. Cross-linking between amino acids residues among
peptidoglycan chains results in a rigid network structure in P.
aeruginosa [79]. In total, 17 reactions representing peptidogly-
can cross-linking and hydrolysis were incorporated by searching
for homologues of glycosyltransferases, transpeptidases, car-
boxypeptidases, and endopeptidases in PAO1 [80]. Overall, a



Metabolic modeling of responses to polymyxins 5

Inner membrane

Outer membrane

FA[e]

FA[p]

FACoA[c] FA[c] 2AGPG[c]2AG3P[c] 2AGPE[c]AcCoA[c]

FAACP[c]AcACP[c]

FAP[c]

PE[c]PG[c]

PS[c]

CDP-DAG[c]PA[c]

PC[c]

2AGPC[c]

PGP[c]

12DGR[c]

1AG3P[c]

2AGPG[p]2AG3P[p] 2AGPE[p]2AGPC[p]12DGR[p]

1AG3P[p]

PC[p] PG[p] PE[p]

1AGPC[p]

PA[p]

CLPN[p]

1AGPG[p] 1AGPE[p]

FA[p] FA[p] FA[p]

FA[p]

PA[p]

FA[p] FA[p]

PGP[p]

FA[c] FA[c]FA[c]

FA[p]

B-band 

LPS

A-band 

Uncapped

APG[c] APG[c] APG[c]

FA[c]

Figure 1: The curated GPL biosynthesis in iPAO1. [c], intracellular metabolites; [p], periplasmic metabolites; [e], external metabolites. Blue arrows indicate transport

reactions. Full names of metabolite classes are listed in Additional file 27.

detailed peptidoglycan biosynthesis pathway was constructed
with 60 reactions. GPL compositions in the bacterial membranes
can change in response to antibiotic treatment [39, 81]. Pre-
vious studies [82] and our own lipidomics results [14] showed
a great diversity in GPL species in P. aeruginosa. Overall, 386
unique metabolites (i.e., 66.2% of the 583 metabolites in the GPL
metabolism pathway) and 367 reactions (66.7% of the 550 reac-
tions in the GPL metabolism pathway) were incorporated into
iPAO1 draft2 (Additional files 1, 13, and 14; Fig. 1). LPS consists
of lipid A, core oligosaccharide, and O-antigen polysaccharide
[40] and plays key roles in the host–pathogen interaction and
resistance to antibiotics such as polymyxins [13, 83]. A detailed
synthesis and interconversion network was generated with 432
types of LPS and 1169 reactions (Fig. 2; Additional file 1). Notably,
our GSMM is the most comprehensive to date in lipid A biosyn-
thesis and modifications.

The resulting final iPAO1model consists of 3022 metabolites,
4365 reactions, and 1458 genes (25.8% of the PAO1 genome; Ad-
ditional files 15–17), representing, respectively, 252%, 340%, and
40% increases of the components in iMO1056 and 125%, 171%,
and 43% increases of the components in Opt208964 (Table 2).
The significant expansion in iPAO1 includes cross-membrane

transport, GPL/LPS biosynthesis, peptidoglycan biosynthesis,
and fatty acid degradation (Additional files 15–17). The reac-
tions from iPAO1 were categorized into 109 pathways mainly
based on classifications in MetaCyc and KEGG. In iPAO1,
27.9%/43.7%/51.6% metabolites, 20.3%/33.5%/59.5% reactions,
and 65.3%/17.6%/28.5% genes are originated from iMO1056,
Opt208964, and our manual curation, respectively (Fig. 3A).

Components in iPAO1 were aligned with databases includ-
ing KEGG [44], MetaCyc [45], PubChem [55], ChemSpider [57],
ChEBI [56], Model SEED [32], and BiGG [58] (Additional files 15 and
16). Consequently, 1404 (46.5%), 1590 (52.6%), and 2142 (70.9%)
metabolites have corresponding identifiers in MetaCyc, KEGG,
and Model SEED, respectively; 1556 (35.6%), 1596 (36.6%), and
1964 (45.0%) reactions were computationally mapped to the
reactions from MetaCyc, KEGG, and Model SEED, accordingly
(Fig. 3B). A significant portion of mismatches were caused by
the incorporation of specific types of metabolites in the GPL
metabolism and LPS biosynthesis pathway, which in databases
are usually lumped as general compound classes. The proper-
ties of metabolites, including mass, charge, and formula, were
included in iPAO1. The standard Gibbs free energy changes
of formation (�fG◦) and reaction (�rG◦) were obtained from
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Table 2: Components in model iMO1056, Opt208964, and iPAO1

Class Subclass iPAO1 iMO1056 Opt208964

Genes 1458 1042 1021
Reactions 4365 992 1609

Cytoplasmic metabolic
reactions

1716 730 1132

Periplasmic metabolic
reactions

403 0 0

External metabolic
reactions

40 0 0

Transport reactions 960 150 253
Transport across IM 519 0 0
Transport across OM 441 0 0
Transport from
cytoplasm to
extracellular space

0 150 253

Boundary reactions 352 112 223
Reactions without
associated genes

628 159 374

Sink reactions 0 0 1
Metabolites 3022 858 1344

Cytosol 1519 746 1121
Periplasm 698 0 0
Extracellular space 805 112 223

Pathways 109 -a 117

aPathway information is not available in iMO1056 from theModel SEED database.

MetaCyc and Model SEED for 1877 metabolites (62.1%) and 1355
reactions (31.0%) (Additional files 15 and 16).

A breakdown of genes involved in iPAO1 (Additional file 17)
using the clusters of orthologous groups (COGs) showed re-
markable improvement compared to previous reconstructions
(Fig. 3C). The largest increase in the coverage compared to
iMO1056 is lipid transport and metabolism (24.1%), followed by
inorganic ion transport and metabolism (19.3%); whereas com-
pared to Opt208964, the largest increase in the coverage is nu-
cleotide transport and metabolism (57.9%), followed by amino
acid transport and metabolism (52.0%). Overall, the transport
and metabolism of nucleotides and amino acids showed the
highest percent coverage of COG functional categories in iPAO1
(72.9% and 65.6%, respectively). Notably, the reactions in cate-
gories not apparently related to metabolism were dramatically
reduced in iPAO1 compared to Opt208964, including translation,
ribosomal structure and biogenesis, post-translational modifi-
cation, protein turnover, chaperones and signal transduction
mechanisms, and undetermined categories, including function
unknown class.

In iPAO1, GPL metabolism, LPS biosynthesis, and transport
across OM were ranked the 3 largest pathways and also con-
tained the largest proportion of curated reactions (Fig. 3D). Ad-
ditionally, these 3 pathways have high reaction-to-gene ratios
(13.1–24.2; Fig. 3E), indicating that enzymes in these pathways
are capable of acting on a broad range of substrates. As ki-
netic parameters are usually not involved in aGSMM, constraint-
based analyses (e.g., FBA) of a GSMM do not directly account
for enzyme levels, intracellular metabolic concentrations, or
substrate-level regulation. Accordingly, the affinity difference of
various substrates was not considered in our iPAO1modeling ef-
fort.

We used the biomass formation equation from iMO1086
to construct iPAO1 with modifications on LPS and ion species
(Additional file 18). In addition, to take into account the ex-

tra energy consumption caused by charging tRNAs, the original
amino acids in the biomass formation reaction were replaced by
aminoacyl-tRNA, followed by addition of specific charging reac-
tions to the model. Taken together, iPAO1 represents the most
comprehensive metabolic reconstruction thus far for P. aerugi-
nosa PAO1.

Growth capability on various nutrients

Investigation of nutrient utilization using BIOLOG PMs showed
that PAO1 could utilize a broad range of nutrient sources, indi-
cated by the observed growth on 68 of 190 (35.8%) carbon and
76 of 95 (80.0%) nitrogen substrates (Fig. 4). Growth simulation
with iPAO1 achieved an overall accuracy of 89.1% (254 of 285),
which substantially outperformed previous models (81.5% for
Opt208964 [29], 77.9% for iMO1056 and iMO1086 [30], and 80% for
iPae1146 [31]). Twenty-one false-positive and 10 false-negative
(Fig. 4, Additional file 8) disagreements were observed, possibly
due to the complexity of regulatory mechanisms and missing
annotation of nutrient transport and/or catabolism pathways
in PAO1.

Prediction and validation of gene essentiality

In silico single-gene deletion with iPAO1 showed 143 essential
genes (μmut < 0.01 μwt), 40 semi-essential genes (0.01 μwt < μmut

< 0.99 μwt), and 1275 nonessential genes (0.99 μwt < μmut< μwt)
when growing in Luria-Bertani (LB) media (Additional file 19).
Among the essential metabolic genes, the largest COG propor-
tion (46 of 143, 32.1%) is cell envelope biogenesis, indicating that
there are relatively fewer alternative reactions in this pathway.
For nonessential genes, amino acid transport and metabolism
(352 of 1315, i.e., 26.7%) represents the largest group, suggesting
the existence of large metabolic redundancy.

The predicted gene essentiality was further verified by 2 in-
dependent genome-scale transposon mutant libraries [49, 50,
65]. The overall prediction accuracy achieved 87.9%, which is
higher than iMO1056 (85.0%) [28] and iMO1086 (84.2%) [30] but
slightly lower than Opt208964 (92.9%) [29] and iPae1146 (91.46%)
[31]. The higher accuracy in Opt208964 is partially due to er-
rors in the annotation of essential genes. For instance, 351 genes
in Opt208964 were grouped as experimentally validated essen-
tial; however, 145 of the 351 genes are nonessential as their cor-
responding mutants were found in the transposon mutant li-
brary [50]. In iPae1146, removal of 16 isozymes increased the
prediction accuracy of essential genes; e.g., 3-ketoacyl-ACP re-
ductase (EC 1.1.1.100) reactions in iPae1146 were associatedwith
PA2967 only [31], whereas in iPAO1, these reactions were as-
sociated with another 8 highly conserved isozymes (PA0182,
PA1470, PA1827, PA3387, PA4089, PA4389, PA4786, and PA5524).
Furthermore, condition-specific essential genes were predicted
in iPAO1 by imposing transcriptomics constraints. Modification
of lipid A with 4-amino-4-deoxy-L-arabinose (L-Ara4N) leads
to polymyxin resistance in P. aeruginosa, and deficiency in arn
genes reverses the susceptibility [84]. Seven additional essential
genes (arnABCDEFT, PA3552-3558, encoding L-Ara4N biosynthe-
sis) were predicted by iPAO1 under polymyxin treatment.

Impact of lipid A modifications on bacterial growth and
metabolism

Pseudomonas aeruginosa modifies lipid A components in the
OM in response to polymyxin treatment [85]. The LPS stoi-
chiometric coefficients in the biomass formula of iPAO1 were
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Figure 3: Constitutional genes, reactions, and metabolites in iPAO1. A) Sources of iPAO1 components. B) Radar map showing the percentages of metabolites and
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Figure 3: −continued

configured based on our lipid A profiling data [14] (Table 1), and
the metabolic impact of lipid A modifications was predicted by
randomly sampling the metabolic solution space with 10000
points (see Methods section). Overall, 273 fluxes were signifi-
cantly affected (Z-score, false discovery rate [FDR] <0.01; >0.1
mmol · gDW−1 · h−1 under at least 1 condition; Additional file
20). The specific growth rate remained unchanged. A 0.026mmol
· gDW−1 · h−1 flux from glucose via glucose 6-phosphate, uridine
diphosphate glucose, and consequently L-Ara4N biosynthesis
was identified due to lipid A modifications. The overall fluxes
through lipid A deacylation reactions were increased (from 0.007
mmol · gDW−1 · h−1 to 0.011 mmol · gDW−1 · h−1); the generated
(R)-3-hydroxydecanoate was fuelled into β-oxidation to produce
octanoyl-CoA, which was subsequently salvaged for fatty acid
biosynthesis.

To further investigate the impact of lipid A modifications on
bacterial growth, 1000 sets of the compositions of 288 hetero-

geneous LPS molecules were randomly generated with the to-
tal proportion of LPS unchanged in the biomass formation for-
mula (Additional file 21). The metabolic fluxes were calculated
for each of the 1000 sets of LPS compositions by randomly sam-
pling the solution space with 10000 points. Across the 1000 sets
of metabolic fluxes (Additional file 23), the specific growth rate
varied between 0.8812 and 0.8897 mmol · gDW−1 · h−1. Correla-
tive analysis of the apparent overall physiochemical properties
of lipid A (Additional file 22) with the predicted growth pheno-
types showed 3 interesting findings. First, addition of L-Ara4N
reduced the negative charge of lipid A (ρ = 1.00), decreased the
hydrophobicity of the OM (represented by logP, ρ = −0.59) but re-
quired assimilation ofmore ammonia (represented by ammonia
turnover, ρ = 0.57). Second, hydroxylation on acyl chains of lipid
A exerted minor effects over either bacterial growth or phys-
iochemical properties. Third, addition of acyl chains resulted
in large lipid A molecules (represented by the atomic counts,
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Figure 4: Comparison of the BIOLOG result (left columns) and model prediction (right columns). Blue indicates growth and yellow indicates no growth.
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Figure 5: Simulation of the impact of lipid A modifications on bacterial growth, metabolism, and OM physiochemical properties. The significant correlation (P < 0.05)

of paired items is indicated in red.

ρ = 0.88), enhanced molecular polarity of lipid A (ρ = 0.87), in-
creased OM hydrophobicity (ρ = 0.75), and, notably, retarded
growth (ρ = −0.95), reduced redox and energy turnover (ρ =
−0.98 for both), and increased requirement of ammonia (ρ =
0.59) (Fig. 5). It is evident that none of the three aforementioned
modifications produced a dramatic impact on bacterial growth
or metabolism (Additional file 23).

Elucidating the mechanisms of metabolic responses to
polymyxin treatment

RNA-seq data were utilized as model constraints (Additional
file 24) with an E-Flux method [67] to calculate the metabolic
fluxes in the absence and presence of polymyxin B (see the
Methods section). The exchange fluxes were constrained based
on the maximum uptake rates of the media ingredients (see
the Methods section and Additional file 1). Comparison of
the flux distributions revealed that 1392 reactions were differ-
entially regulated (FDR <0.01, Additional file 25). A range of
metabolic pathways were significantly disturbed, including cen-
tral metabolism, amino acid metabolism, purine biosynthesis,
fatty acid biosynthesis and metabolism, LPS and GPL biosyn-
thesis, and transport reactions. Polymyxin B treatment reduced
the growth rate (18.2%) and increased oxygen uptake (6.9%) and
CO2 emission (6.0%); however, the respiration quotient remained
roughly unchanged (Table 3).

As the major carbon sources, the amino acids and oligopep-
tides from cation-adjusted Mueller-Hinton broth (CAMHB) were
utilized to generate intermediatemetabolites, redox, and energy
equivalents for biomass formation. In response to polymyxin
treatment, the gluconeogenesis pathway was significantly
induced from pyruvate to 3-phosphoglycerate but suppressed

from 3-phosphoglycerate toward glucose 6-phosphate. The
extra flux from 3-phosphoglycerate was shunt to serine and
glycine biosynthesis (Fig. 6) via 3-phospho-D-glycerate:NAD+

oxidoreductase (rxn01101), 3-phosphoserine:2-oxoglutarate
aminotransferase (rxn02914), O-phospho-L-serine phosphohy-
drolase (rxn00420), and 5,10-methylenetetrahydrofolate:glycine
hydroxymethyltransferase (rxn00692), through which more
reduced nicotinamide adenine dinucleotide (NADH) equiv-
alents were generated compared to the control (i.e., growth
in CAMHB without polymyxin treatment). The resulting 1-
carbon unit in 5,10-methylenetetrahydrofolate was oxidized
to formic acid via 10-formyltetrahydrofolate amidohydrolase
(rxn00691); the generated glycine was fuelled into tricarboxylic
acid (TCA) cycle via glycine:oxygen oxidoreductase (rxn00269)
and acetyl-CoA:glyoxylate C-acetyltransferase (rxn00330). In
addition, the metabolic flux via TCA cycle was upregulated from
citrate to fumarate, with increased NADH production. Within
oxidative phosphorylation, the mean fluxes through NADH
dehydrogenase (Complex I, rxn10122), cytochrome bc1 complex
(Complex III, rxn13820), and cytochrome c oxidase (Complex IV,
rxn13688) decreased by 6.6%, 7.2%, and 7.8%, respectively. The
flux via F0F1-ATPase (Complex V, rxn10042) was downregulated
by 11.1%. The overall fluxes via biosynthesis of macromolecules
including LPS, GPL, and peptidoglycan decreased due to the
significantly reduced biomass formation. The biosynthesis
of spermidine increased by 38.3% in response to polymyxin
treatment that was also indicated by upregulated expression
of speD (PA4773; encoding the S-adenosyl-L-methionine decar-
boxylase, log2FC = 3.62, FDR <0.01) and speE (PA4774; encoding
spermidine synthase, log2FC = 3.54, FDR <0.01).

Calculating the flux-sum of critical cofactors revealed 13.1%
increase of redox turnover and 8.2% decline of energy turnover
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Table 3: Specific growth rate, significantly altered major exchange fluxes (>1 mmol · gDW−1 · h-1), respiration quotient, and the fluxes through
F0F1-ATPase calculated using the RNA-seq data [51] as flux constraints

Exchange flux (mmol · gDW−1 · h-1) Control Polymyxin B treatment Z-score FDRa

Specific growth rate (h−1) 0.82 ± 0.00 0.67 ± 0.00 10 201.3 0.00
H2O 46.9 ± 21.8 53.0 ± 19.0 20.37 0.00
O2 −106.0 ± 23.0 −113.4 ± 19.8 24.30 0.00
CO2 109.2 ± 22.6 115.8 ± 19.3 22.62 0.00
NH4

+ 36.6 ± 9.29 38.0 ± 8.77 10.94 0.00
Glycine 2.15 ± 4.76 1.92 ± 4.46 3.05 0.00
L-Alanine 1.21 ± 5.01 − 0.52 ± 2.20 31.77 0.00
Succinate 2.08 ± 4.19 2.52 ± 4.42 7.27 0.00
H+ − 41.5 ± 14.1 − 40.4 ± 11.9 6.44 0.00
Methanethiol 1.53 ± 0.82 1.34 ± 1.11 12.62 0.00
H2S 1.66 ± 1.74 1.41 ± 2.18 9.29 0.00
Respiration quotient 1.03 ± 0.10 1.02 ± 0.10 7.63 0.00
ATPase (mmol · gDW−1 · h−1) −188.6 ± 52.4 −167.6 ± 48.4 29.62 0.00

aFDR was calculated using the Benjamini-Hochberg method [72].

after 1 mg · L−1 polymyxin B treatment for 1 h. Breaking down
the cofactors showed that the turnover of major redox equiva-
lents NADH, Reduced nicotinamide adenine dinucleotide phos-
phate (NADPH), ubiquinol-8, and FADH2 substantially increased
by 12.6%, 13.9%, 3.9%, and 35.9%, respectively; whereas the
turnover of ATP, the major contributor to energy, significantly
decreased by 8.52% after 1 mg · L−1 polymyxin treatment for 1 h
(Fig. 6, Additional file 26). Overall, metabolic flux analysis using
iPAO1 integratedwith our transcriptomics data revealed a signif-
icant global impact on bacterial metabolism due to polymyxin B
treatment.

Discussion

The emergence of Gram-negative ‘superbugs’ that are resistant
to the last-resort polymyxins highlights the urgent need for
novel approaches such as GSMMs to understand the mecha-
nisms of antibacterial activity and resistance. The main util-
ity of GSMMs is their ability to bridge critical gaps between ge-
nomics and metabolic phenotypes through the prediction of
metabolic responses to antimicrobial treatments at the net-
work level. Here, we report the development, optimization, val-
idation, and application of a high-quality GSMM designated
iPAO1 for a type strain P. aeruginosa PAO1. Importantly, iPAO1
was used to understand the complicated effect of polymyxin
treatment on bacterial metabolism. Simulation with iPAO1
showed that lipid A modifications in response to polymyxin
treatment only exert minor effects on bacterial growth and
metabolism. Further calculations that integrate transcrip-
tomics data as model constraints revealed that polymyxin
treatment may reduce growth and affect a broad range of
pathways.

iPAO1 represents the most comprehensive metabolic model
for P. aeruginosa to date and incorporates 1458 genes, ac-
counting for approximately 25.8% of the PAO1 genome. Among
the 4 GSMMs developed for P. aeruginosa PAO1, iMO1086 and
iPae1146 were constructed on the basis of iMO1056 with mod-
erate increase of metabolites, reactions, and genes [28, 30, 31];
Opt208964 is also in a medium size, which limits modeling ca-
pacity [29]. In contrast, iPAO1 is significantly expanded in model
scale by doubling or even tripling the numbers of metabolites
and reactions (Fig. 3A). iPAO1 achieved an unprecedented pre-
diction accuracy of 89.1% for growth on various nutrients, out-

performing all of the previously reported GSMMs for P. aeruginosa
[28–31]. The iPAO1modelwas also used to predict gene essential-
ity with a high accuracy of 87.9%. Given the extensive curation
and significant expansion, iPAO1 will serve as the primary refer-
ence for future development of metabolic models, particularly
for other P. aeruginosa strains.

Unlike iPAO1, none of the previous P. aeruginosaGSMMs incor-
porated the periplasm. As polymyxins initially target LPS in the
OM and can cause substantial changes in the cell envelope, the
periplasmic space is a major component in iPAO1. The periplas-
mic space of E. coli is estimated to constitute up to 16% of total
cell volume [86]. It contains a thin cell wall composed of peptido-
glycan and a variety of ions and proteins, which are involved in
transport, folding, cell envelope biogenesis, electron transport,
and xenobiotic metabolism [87]. iPAO1 is the first P. aeruginosa
GSMM to incorporate the periplasmic compartment, enabling
accurate representation of metabolic machinery, especially for
those reactions that occur exclusively in this important cellular
space, and transport of substrates across the IM and OM. Fur-
thermore, iPAO1 provides detailed representations of GPL and
LPS biosynthesis that allows the precisemapping of GPL and LPS
responses fromexperimentalmetabolomics and lipidomics data
(Fig. 1 and 2).

In response to polymyxin treatment, Gram-negative bacte-
ria modify their lipid A with cationic moieties (i.e., phospho-
ethanolamine and L-Ara4N) that act to repel the like-charge of
the polymyxin molecule [40]. Based on our simulations (Addi-
tional file 20), we purport that such lipid A modifications ex-
erted a limited impact on cellular metabolism and growth. Most
of the flux changes were insignificant; the remaining signifi-
cant flux changes mainly resulted from futile cycles that con-
tain sets of reactions using redox equivalents, whereas the net
carbon flow remained unchanged. Simulation using randomized
lipid A compositions further consolidated our hypothesis that
lipid Amodifications cause onlymoderate variations of bacterial
growth and metabolism (Fig. 5, Additional file 23). Our simula-
tion results revealed that lipid Amodifications result in substan-
tial physiochemical changes in the OM of P. aeruginosa, including
neutralizing the surface negative charge by addition of positively
changed L-Ara4N and altering the polarity and hydrophobic-
ity by acylation and deacylation. The general mode of action of
polymyxin involves the initial electrostatic interaction between
the cationic side chains of the polymyxin molecule with the an-
ionic lipid A head groups [83]. These events are subsequently
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Figure 6: Polymyxin B–inducedmetabolic perturbations. The distributions ofmetabolic fluxes andmetabolite turnover rates are shown in subgraphswith red indicating
control and blue indicating polymyxin B treatment.

followed by hydrophobic interactions between the N-terminal
fatty acyl chain and position 6/7 hydrophobic side chains of the
polymyxinwith the hydrophobic fatty acyls of lipidA [83]. There-
fore, in concept, both the addition of L-Ara4N and deacylation
of lipid A should contribute to polymyxin resistance. Indeed,
in our recent transcriptomic and neutron reflectometry stud-
ies, we discovered that deletion of the corresponding gene pagL
(PA4661) resulted in an increased susceptibility to polymyxins in
a polymyxin-resistant mutant PAKpmrB6 derived from P. aerugi-
nosa PAK [14, 88], demonstrating that the lipid A deacylation also
plays a key role in the response of P. aeruginosa to polymyxin
treatment.

Also, in our recent transcriptomics and metabolomics
studies, we discovered that polymyxin treatment leads to re-
markable growth reduction and metabolic perturbations in
Gram-negative bacteria [41, 42, 89–91]. The integration of tran-
scriptomics results into GSMMs allows formore accurate predic-
tions ofmetabolic responses to either environmental (i.e., antibi-
otic treatment) or genetic perturbations (i.e., mutations) [92]. In
the present study, we used the E-Flux method to integrate tran-
scriptomics data as flux constraints [26]. E-Flux canmap contin-
uous gene expression levels to the metabolic network and uses
the transcript abundance to determine the degree to which a re-
action is active or inactive [26]. Therefore, E-Flux provides amore
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physiologically relevant description of the continuous nature
of the reaction activity and avoids use of any artificial thresh-
olds to binarize gene expression data [93]. In the present study,
metabolic fluxes with andwithout antibiotic treatment were not
calculated withminimization of metabolic adjustment (MOMA),
asMOMAwas developed to predict themetabolic flux redistribu-
tions in gene knockout mutants [94]. MOMA hypothesizes that
metabolism of the mutant tends to approximate the wild type
[94], which is distinct from the antibiotic treatment scenario. For
instance, our metabolomics data have demonstrated that the
antibiotic treatment caused dramatic metabolic changes in bac-
teria [41].

Comparison of the calculated flux distributions revealed
that a broad range of metabolic perturbations occur in re-
sponse to polymyxin treatment (Fig. 6), ranging from central
carbon metabolism to oxidative phosphorylation and amino
acid metabolism. Reduced growth, increased redox turnover,
and decreased energy turnover due to polymyxin treatment
were evident (Fig. 6), indicating that bacterial cells regulated
their metabolism to produce more redox power to cope with
the oxidative stress. This is consistent with previous findings
that showed bactericidal antibiotics induced lethal oxidative
damages by generating highly deleterious free radicals with sub-
sequent culmination of cellular death [95]. In addition, our sim-
ulations revealed that polymyxin treatment induced an uptake
of L-alanine, which was catabolized to generate more NADH
(Fig. 6). This indicates that rich media (e.g., CAMHB) may pro-
vide abundant amino acids and peptides that can be utilized
by bacterial cells to generate sufficient redox equivalents to
copewith the oxidative damage caused by polymyxin treatment.
Furthermore, our simulation results also showed an upregu-
lated metabolic flux toward L-spermidine biosynthesis upon
polymyxin B treatment (rxn00127 and rxn01406; Additional file
25). Previous studies showed that polyamines (e.g., spermidine)
could protect P. aeruginosa from antimicrobial peptide killing
[96]. It is assumed that the cationic spermidine could interact
with the anionic LPS, mask the negative cell surface, and reduce
the electrostatic interactions between polymyxin B and bacte-
rial OM. Therefore, the enhanced biosynthesis of spermidine
might increase its abundance at the cell surface and contribute
to polymyxin resistance.

The constructed iPAO1 provides a detailed presentation of
LPS biogenesis (Fig. 2), in particular, lipid A modifications. Fur-
ther integration with specific regulatory modules will enable dy-
namic simulation of metabolic responses to polymyxin treat-
ment. Previous studies revealed that various two-component
regulatory systems (TCSs), including PhoPQ, PmrAB, ParRS,
CprRS, and ColRS, play key roles in regulating polymyxin resis-
tance [84, 97–100]. Among them, the PmrAB and PhoPQ systems
are able to sense the depletion of external cations (e.g., Mg2+

and Ca2+) and upregulate the expression of the arnBCADTEF-
ugd operon, which is responsible for the modification of lipid A
with L-Ara4N [101]. Moreover, the fatty acylation of lipid A by
PagP is under the control of PhoPQ [102, 103]. ParRS and CprRS
are independent TCSs that mediate the upregulation of pmrAB,
arnBCADTEF-ugd operon, pagL, and adaptive resistance in re-
sponse to polymyxin treatment [97, 104]. In overview, lipid A
modifications due to polymyxin treatment are strictly controlled
by very complex regulatory networks that involve signal sen-
sors, transcriptional regulators, and metabolic enzymes. There-
fore, future studies are warranted to integrate these regulatory
modules into the GSMM to enable simulating bacterial response
dynamics to polymyxin treatment and analyzing adaptive resis-
tance mechanisms in P. aeruginosa.

Overall, we have constructed, optimized, and validated a
high-quality genome-scale metabolic model iPAO1 for P. aerug-
inosa PAO1. This comprehensive model incorporates metabolic
pathways, particularly the biogenesis of membrane compo-
nents, and enables delineation of the complex metabolic re-
sponses to antibiotics. iPAO1 provides a valuable systems tool
for quantitative simulation of bacterial metabolic responses to
antibiotics, elucidation of the molecular mechanisms of an-
timicrobial killing and resistance, and facilitation of designing
rational antimicrobial combination therapy. To the best of our
knowledge, this study is the first to integrate antimicrobial
pharmacology, computational biology, ametabolic network, and
systems pharmacology to analyze large-scale datasets in or-
der to better understand the dynamic and complex nature
of polymyxin killing and resistance. Combined with antibiotic
pharmacokinetics and pharmacodynamics, iPAO1 offers an in
silico platform for precision polymyxin chemotherapy.

Conclusion

The generated collection of transcriptomics, metabolomics,
lipidomics, and lipid A profiling data provides comprehen-
sive datasets of P. aeruginosa for future integrative analysis of
polymyxin systems pharmacology. As the largest curated GSMM
thus far for Pseudomonas, iPAO1 represents all aspects of the
cellular metabolism and may serve as the platform for inte-
grative analysis of multiomics data. Simulation with transcrip-
tomics constraints in this study revealedmetabolic flux changes
in amino acid catabolism, tricarboxylic acid cycle, and redox
turnover caused by polymyxin treatment. Correlative analysis
of metabolomics and transcriptomics with the constraint-based
modeling is necessary for delineating the regulatory effects on
metabolism. The methodology of using GSMMs to analyze mul-
tilevel omics data is applicable to other areas beyond antimi-
crobial pharmacology. Further integration with antimicrobial
pharmacokinetics and pharmacodynamics will not only pro-
vide better pharmacological understanding but also empower
the model to quantitatively predict the bacterial responses to
antimicrobial therapy in the context of complex interplay of
signaling, transcriptional regulation, and metabolism. In sum-
mary, our GSMM approach provides a powerful systems tool to
elucidate the complex mode of action of antibiotics and will
paradigm shift antimicrobial pharmacology.

Availability of supporting data

The raw RNA-seq data have been deposited in the NCBI se-
quence read archive database under the BioProject accession
number PRJNA414673. The metabolomics and lipidomics data
have been deposited in theMetabolight database with accession
number MTBLS630. Supporting data, including the scripts used
in this project, are available via theGigaScience repository GigaDB
[105].

Additional files

Figure S1: Sensitivity analysis of the mean metabolic fluxes (A)
and metabolite turnover rates to the variation of nutrient up-
take upper bounds. Red indicates the control and blue indicates
polymyxin B treatment.

Additional file 1 (additionalFile1.docx): Manual curation of
GPL biosynthesis, LPS biosynthesis and modification pathways,
and sensitivity analysis of nutrient uptake bounds.
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Additional file 2 (additionalFile2.xlsx):Metabolites in the con-
structed draft model iPAO1 draft1.

Additional file 3 (additionalFile3.xlsx): Reactions in the con-
structed draft model iPAO1 draft1.

Additional file 4 (additionalFile4.xlsx): Genes in the con-
structed draft model iPAO1 draft1.

Additional file 5 (additionalFile5.xlsx): Supplemented
metabolites according to previous GC-MS based metabolomics
data.

Additional file 6 (additionalFile6.xlsx): Supplemented reac-
tions according to previous GS-MS based metabolomics data.

Additional file 7 (additionalFile7.xlsx): Root gap metabolites
identified using GapFind from the COBRA toolbox.

Additional file 8 (additionalFile8.xlsx): Comparison of the
predicted growth phenotypes with the BIOLOG PM results.

Additional file 9 (additionalFile9.xlsx): Reactions with
changed reversibility and directionality duringmanual curation.

Additional file 10 (additionalFile10.xlsx): Deleted metabolites
during manual curation.

Additional file 11 (additionalFile11.xlsx): Deleted reactions
during manual curation.

Additional file 12 (additionalFile12.xlsx): Added reactions
during manual curation.

Additional file 13 (additionalFile13.xlsx): Added intermediate
metabolites in GPL biosynthesis pathway.

Additional file 14 (additionalFile14.xlsx): Added reactions in
GPL biosynthesis pathway.

Additional file 15 (additionalFile15.xlsx): Metabolites in the
constructed model iPAO1.

Additional file 16 (additionalFile16.xlsx): Reactions in the
constructed model iPAO1.

Additional file 17 (additionalFile17.xlsx): Genes in the con-
structed model iPAO1.

Additional file 18 (additionalFile18.xlsx): Biomass formation
formula.

Additional file 19 (additionalFile19.xlsx): Comparison of the
predicted gene essentiality with the information derived from
two transposon insertion mutant libraries.

Additional file 20 (additionalFile20.xlsx): Metabolic flux
changes in response to lipid A modifications using lipidomics
data as stoichiometric constraints.

Additional file 21 (additionalFile21.xlsx): Randomized stoi-
chiometric coefficients of LPS species.

Additional file 22 (additionalFile22.xlsx): Predicted physio-
chemical properties of lipid A molecules.

Additional file 23 (additionalFile23.xlsx): Metabolic flux
changes in response to lipid A modifications with randomly as-
signed lipid A compositions as stoichiometric constraints.

Additional file 24 (additionalFile24.xlsx): Metabolic flux con-
straints calculated based on RNA-seq data.

Additional file 25 (additionalFile25.xlsx): Metabolic flux
changes in response to polymyxin treatment using RNA-seq
data as flux constraints.

Additional file 26 (additionalFile26.xlsx): Metabolite turnover
rates.

Additional file 27 (additionalFile27.xlsx): Full names of the
metabolite abbreviations in Figure 1.
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