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anical and piezoelectric properties
of glass-like complex Na2Si1�xGexO3 (x ¼ 0.0, 0.25,
0.50, 0.75, 1.0)

R. Zosiamliana,ab B. Chettri,ac G. S. L. Fabris, d J. R. Sambrano, e

Sherzod Abdullaev, fg G. Abdurakhmanov *h and D. P. Rai *a

Motivated by our previous work on pristine Na2SiO3, we proceeded with calculations on the structural,

electronic, mechanical and piezoelectric properties of complex glass-like Na2Si1�xGexO3 (x ¼ 0.0, 0.25, 0.50,

0.75, 1.0) by using density functional theory (DFT). Interestingly, the optimized bond lengths and bond angles

of Na2SiO3 and Na2GeO3 resemble each other with high similarity. On doping we report the negative

formation energy and feasibility of transition of Na2SiO3 / Na2GeO3 while the structural symmetry is

preserved. Analyzing the electronic profile, we have observed a reduced band gap on increasing x ¼ Ge

concentration at Si-sites. All the systems are indirect band gap (Z–G) semiconductors. The studied systems

have shown mechanical stabilities by satisfying the Born criteria for mechanical stability. The calculated

results have shown highly anisotropic behaviour and high melting temperature, which are a signature of

glass materials. The piezoelectric tensor (both direct and converse) is computed. The results thus obtained

predict that the systems under investigation are potential piezoelectric materials for energy harvesting.
1 Introduction

Wide band gap semiconductor materials have attracted a great
deal of attention due to the possibility of band gap engineering,
either by doping with heavier elements or by making oxygen
vacancy defects so as to improve their performance towards
different applications and different tasks.1,2 In recent years,
theoretical and experimental insight into novel silica (SiO2)
based glass-like materials has become a fascinating topic
among researchers due to their high mechanical as well as
thermodynamical stability, low thermal conductivity and
abundance in nature.3,4 Further renements of such properties
through the manufacturing processes and chemical composi-
tions have improved their thermal, pressure and chemical
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resistivity, and transparency, which has made them reliable and
suitable materials for different applications and feasible mate-
rials for a wide range of devices.5–13 As far as we are aware,
within the surveyed literature most of the important glasses are
silicate glass having high content of silica (SiO2) or quartz.14–16

As reported, silicate glasses have high technological importance
in industry and in commercial applications: battery and storage
systems, opto-electronic devices, and auxetic materials having
high performances in the elds of bio-medicine, surgical
implants and piezoelectric sensors and actuators, reproof
fabrics, optical bres, lighting technology, and many more.17–21

The pioneering work of Randall et al.22 suggested that silicate
glass structures were thought to be well understood at a local
level and reported that vitreous silica probably consists of small
crystals of cristobalite that were formed at very high tempera-
tures by performing an experimental investigation using X-ray
diffraction (XRD). Zachariasen et al.23 have investigated heat-
treated specimens by using XRD and reported a complex sili-
cate glass structure. The vitreous forms of silica showed the
relative orientation of two oxygen tetrahedra to form a network
of SiO2 characterized by an extended three dimensional network
which lacked symmetry and periodicity. The structure was well
delineated by the continuous random network (CRN). It was
also reported that the network of vitreous silica was built up of
oxygen tetrahedra that surround the silicon atom. However, in
the vitreous form of silica, the relative orientation of two
tetrahedra with a common corner may vary within a wide limit
and oxygen to oxygen atom bond angles may also vary
throughout the whole network. Thus, the glassy phases of SiO2
© 2022 The Author(s). Published by the Royal Society of Chemistry
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that consist of Si–O tetrahedra nonetheless have bond-angle
disorder both in O–Si–O and Si–O–Si angles.23–26

The structural prole and the atomic arrangement of silicate
glasses are well investigated by both experimental and compu-
tational methods.27–30 The most common superlative experi-
mental set-ups employed for determination of many
ngerprints of the structures were: Raman spectroscopy,
extended X-ray absorption ne structure (EXAFS) spectroscopy,
nuclear magnetic resonance (NMR), neutron diffraction and so
on.31–40 The experimental studies mainly highlighted the struc-
ture of silicate glasses and were mostly dened by the medium
range or short range order (MRO or SRO), i.e., the order over
distances comparable to inter-atomic distances, and lacked
long-range order (LRO) leading to more complications and
challenges when examining the structural properties. In alkali-
silicates such as Na2SiO3, the Na+ cations progress towards the
non-bridging oxygen (NBO) making weak ionic bonds that
result in the formation of sodium meta-silicate. The NBO in the
structure comprises one half of the permanently broken oxygen
bond due to the alkali Na+ ions that destroy the Si–O–Si bridging
bonds (BO).41–43 Experimental work on sodium oxide-silica ob-
tained from the sodium–concrete reaction (SCR) method and
XRDmeasurement have revealed the formation of Na2SiO3 etc.44

As a matter of fact, the experimental works are limited to
structural and electronic studies. In order to analyze the desired
functional properties and investigate these materials at the
atomic-scale, computational methods have become a major
tool. Computational techniques such as reverse Monte Carlo, ab
initio molecular dynamics (AIMD) based on density functional
theory (DFT) and classical molecular dynamics (MD) are the
most frequently employed simulation methods for such inves-
tigations.45–47 More recently, methods that include pre-available
experimental data such as force enhancement atomic rene-
ment (FEAR) have been used by Pandey et al.48 for structural
modeling of amorphous Si and SiO2 using the reverse Monte
Carlo approach where they acquired authentic structures.

The structure of Na2GeO3 was rst determined by Ginetti49

who revealed the crystal structure of Na2GeO3 by means of
radio-crystallographic study with residual factor (R) ¼ 28%.
Later renement was carried out by Vollenkle et al.50 with R ¼
4.4% and the mean Ge–O distances in the Na2GeO3 chain were
found to be 1.836 Å for the bridging oxygen atom and 1.713 Å for
the terminal oxygen atom and an average value of 2.39 Å was
calculated for the Na–O distances. A recent experimental work
on the preparation of Na2GeO3 was reported by Cruickshank51

by re-growing the crystals and collected 1083 reexions by using
a Syntex diffractometer. From this work, it was observed that
pristine Na2GeO3 existed in an orthorhombic crystal structure
with space group Cmc21 and the mean bond lengths of Ge–O
(bridging) ¼ 1.800 Å and Ge–O (non-bridging) ¼ 1.712 Å, and
Ge–O–Ge bond angle ¼ 124.6�. Moreover, system trans-
formation of Li2GeO3 / Na2GeO3 and Li2SiO3 / Na2SiO3 was
reported by West et al.52 where the starting compounds were
reagent grade Li2CO3 and Na2CO3, and electronic grade GeO2.
The mixture was then heated in an electric muffle furnace at
850 �C and the nal product of the reaction was checked by
using Guinier X-ray powder methods.
© 2022 The Author(s). Published by the Royal Society of Chemistry
As far as we know, the theoretical and experimental insights
into the structural and electronic properties of Na2SiO3 are well
explored.53 So, in this work, the main focus of the study will be
investigation of the transformation of Na2SiO3 / Na2GeO3 and
the modulation of the electronic and mechanical properties by
Ge doping at Si-sites using DFT.

2 Computational details

The computational simulations and calculations were performed
within the framework of density functional theory (DFT) using the
linear combination of Gaussian-type functions (GTF) to describe
the crystal orbitals, as implemented in the CRYSTAL17 code,54

adopting the Perdew–Burke–Ernzerhof (PBE) exchange–correla-
tion functional.55 The sodium (Na), silicon (Si) and oxygen (O)
atomic centers were described by a revised triple-zeta valence plus
polarization (TZVP) basis set, developed by Oliveira et al.,56 and
the dopant, i.e., germanium (Ge) was described by a TZVP basis
set developed by Peintinger and co-workers.57 For the structural
optimization, the accuracy of the convergence criteria for the bi-
electronic integrals was controlled by a set of ve thresholds
(10�7, 10�7, 10�7, 10�7, 10�14), and these represent the overlap
and penetration for Coulomb integrals, the overlap for HF
exchange integrals, and the pseudo-overlap, respectively. The
energy convergency was considered when the energy difference of
two consecutive thresholds was lower than 10�7 Ha, and the
shrinking factor (Pack–Monkhorst and Gilat net) was set to 12 �
12 � 12.58 The structural convergence was checked on the
gradient components and nuclear displacements with tolerances
on their root mean square set to 0.0001 and 0.0004 a.u.,
respectively.

All stationary points were characterized as minima by diago-
nalizing the Hessian matrix with respect to atomic coordinates
and unit cell parameters, and analyzing the vibrational phonon
modes at the high-symmetry points of the rst Brillouin zone,58

using the numerical second derivatives of the total energies
estimated with the coupled perturbed Hartree–Fock/Kohn–Sham
algorithm. Also, it is worth highlighting that the electronic
properties extracted were obtained using the same k-point
sampling employed for the diagonalization of the Fock matrix in
the optimization process. The pristine sodium silicate consists of
a unit cell of 12 atoms, which contains 4 sodium (Na), 2 silicon
(Si) and 6 oxygen (O) atoms, which have an orthorhombic phase
symmetry, and belongs to the Cmc21 space group,27,28,59 and has
experimental lattice parameters a¼ 10.480 Å, b¼ 6.070 Å and c¼
4.820 Å [see Table 1]. To model and study Na2Si1�xGexO3, with
the concentration of Ge, x ¼ 0, 0.25, 0.50, 0.75 and 1.0, a 2� 1 �
1 supercell was built that contains 24 atoms. Each of the doped
systems were optimized to investigate the structural, electronic,
mechanical and piezoelectric properties.

3 Results and discussion
3.1 Structural properties and dynamical stabilities

In this section, we discuss the structural properties of sodium
silicate upon performing doping with germanium (Ge) on the
silicon (Si) site. As previously mentioned in the Computational
RSC Adv., 2022, 12, 27666–27678 | 27667



Table 1 Calculated optimised lattice parameters of the Na2SiO3 unit cell (12-atoms) compared to B3LYP (Belmonte et al.28), PBE (Cuautli et al.29),
LDA (Liu et al.)30 and experimental values (McDonald et al.27). Here, the relative errors are calculated with respect to the experimental data

Parameters PBE-GGA (this work) B3LYP28 PBE29 LDA30 Exp.27

a (Å) 10.683 � 1.94 10.568 10.630 10.446 10.480
b (Å) 6.172 � 1.68 6.098 6.160 6.030 6.070
c (Å) 4.892 � 1.49 4.852 4.880 4.710 4.820
V (Å3) 322.559 � 5.01 312.681 319.546 296.680 306.60
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details section, it has to be noted that, as the constructed supercells
are asymmetric supercells (i.e., supercells of 2� 1� 1 such that the
number of atoms is 24 atoms), the optimised structures for all
different percentage doping levels given as Na2Si1�xGexO3 (x¼ 0.0,
0.25, 0.50, 0.75, 1.0) are in the lowest possible primitive symmetry
with space group P1, since the building of the supercell affects the
environment of the atoms in a certain direction. Fig. 1 shows the
emergence of different doped structures via the supercell method
along the x-axis. It has not only lowered the symmetry to the
triclinic P1 space group but also has a large effect on the lattice
parameter ‘a’, while the effect on ‘b’ and ‘c’ is almost negligible (see
Table 2). It is obvious that whenever doping with heavier atoms is
performed on a crystal structure, the lattice parameters along all
the axes should increase due to the larger atomic radius of the
dopant atom (i.e., the atomic size of Ge is larger than that of Si).
This study has elucidated the increase in lattice parameters with
the increase in doping concentration [see Fig. 2].

To obtain themost stable structure of all the systems we have
calculated the total energy corresponding to each unit cell
volume (lattice parameters). The data of total energy and unit
cell volume are tted to the Birch–Murnaghan equation of
states to obtain a smooth parabolic curve as shown in Fig. 3. The
Birch–Murnaghan equation60,61 is given as

EðVÞ ¼ E0 þ 9� B0V0
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Fig. 1 Building the asymmetric supercell of 2 � 1 � 1 from the
Na2SiO3 unit cell and doping the Si site with Ge.
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Fitting the smooth curve from the equation of states at
temperature ¼ 0 K and pressure ¼ 0 GPa gives the optimized
lattice parameters including the cell bulk modulus. The bulk
modulus (B) evaluates the magnitude of the average bond
strength in the crystal. The bulk modulus decreases with the
increase in doping concentration, which indicates a reduction
in the average valence bond strength [see Tables 3 and 4]. The
optimized result of Na2SiO3 with 12 atoms in the unit cell is in
the orthorhombic Cmc21 space group and in good agreement
with the previously reported results.27–29,51 The optimised lattice
parameters are a ¼ 10.683 Å, b ¼ 6.172 Å and c ¼ 4.892 Å, with
an optimised volume of V ¼ 322.559 Å3. The calculated lattice
parameters ‘a’, ‘b’ and ‘c’ are comparable to those of the
previously reported theoretical results from PBE as the
exchange correlation functional,29,53 the Becke 3-parameter,28

the Lee–Yang–Parr (B3LYP) functional,30 and the experimental
data obtained by McDonald et al.27

For further conrmation of the structural stability we have
calculated the formation energies (Eform)62 by using eqn (2)
given below

Eform ¼ 1

24

�
Etotal

x �
X

nzE
bulk
z

�
(2)

where z indicates the number of atoms (Na, Si, Ge, O) and x ¼
0.0, 0.25, 0.50, 0.75, 1.0. The negative values of the calculated
formation energies revealed the ground state structural stability
of all the systems which implies the realization of experimental
synthesis. The magnitude of Eform decreases as the doping
concentration increases, which indicates the instability of
doped structures.

The comparative results of the optimized lattice parameters
and the previously reported data are tabulated in Table 1.
From Table 1, it can be seen that our calculated volume is
3.06%, 0.93%, 8.02% and 4.95% larger than those reported by
Belmonte et al.,28 Cuautli et al.,29 Liu et al.30 and McDonald
Table 2 Calculated lattice parameters in Å and the change in lattice
parameters of the supercell structure with 12-atoms in Å under
different doping concentrations

Doping concentration
(x) a b c Da Db Dc

Unit cell 10.683 6.172 4.892 0 0 0
0.0 12.337 6.168 4.892 1.654 �0.004 0
0.25 12.414 6.209 4.912 1.731 0.037 0.020
0.50 12.502 6.252 4.937 1.819 0.080 0.045
0.75 12.590 6.285 4.964 1.907 0.113 0.072
1.0 12.651 6.325 5.004 1.968 0.153 0.112

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Lattice constants a, b, and c in Å as a function of doping concentration (x) of germanium (Ge), where the lattice constants increase with
increasing doping concentration.

Fig. 3 Difference in energy (E � E0) eV versus volume (Å3) graphs from equation of state calculations adopting Birch–Murnaghan fitting for
obtaining the most stable optimized volume at x ¼ (a) 0.0, (b) 0.25, (c) 0.50, (d) 0.75, (e) 1.0. E0 indicates the minimum ground state energy.

Paper RSC Advances
et al.27 respectively. The dissimilarities of volumes are due to
the well-known effect of the PBE exchange–correlation in the
GGA.
Table 3 Calculated bond lengths (in Å) and bond angles (in �) of Na2Si1�xG
the doping concentrationa

Structural parameters
Unit cell (12
atoms)

x

0

Bond length (in Å)
Si–O 1.73 1.73

1.672*a

Si–O0 1.64 1.64
1.592*a

Ge–O — —

Ge–O0 — —
—

O–O 2.68
2.619*a

O0–O0 2.81
2.714*a

Bond angle (in �)
O0–Si–O0 117.6 117.6

116.89*a

O–Si–O0 106.3 106.3
107.07*a

O0–Ge–O0 — —

O–Ge–O0 — —

a *a and *b represent ref. 27 and 51 respectively.

© 2022 The Author(s). Published by the Royal Society of Chemistry
In the glassy phases of silica (SiO2) and germanium dioxide
(GeO2) containing Na2O, the structural hallmarks are the pres-
ence of tetrahedral chains.63,64 The existence of Na2O
exO3. Here, O/ bridging oxygen, O0 / non-bridging oxygen and x is

0.25 0.50 0.75 1.0

1.73 1.74 1.74 —

1.64 1.64 1.64 —

1.85 1.85 1.86 1.86
1.80*b

1.75 1.75 1.75 1.75
1.721*b

117.9 117.7 117.7 —

106.3 106.2 106.2 —

118.5 118.7 118.5 118.8
118.9*b

105.1 105.3 105.2 105.2
105.6*b

RSC Adv., 2022, 12, 27666–27678 | 27669



Table 4 Calculated formation energies (Eform) and bulk modulus (B)
for Na2Si1�xGexO3 (x ¼ 0.0, 0.25, 0.50, 0.75, 1.0) calculated from the
equation of states at T ¼ 0 K and P ¼ 0 GPa, and their corresponding
changes with respect to x ¼ 0.0

x
Eform (in
eV) B (in GPa) jDEformj jDBj

0.0 �2.478 62.26 0 0
0.25 �2.407 60.00 0.071 2.26
0.50 �2.336 58.91 0.142 3.35
0.75 �2.267 56.75 0.211 5.51
1.0 �2.198 54.87 0.28 7.39
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depolymerizes the tetrahedral chain networks by breaking the
Si–BO–Si and Ge–BO–Ge bonds, forming non-bridging oxygen
(NBO) atoms.65,66 To understand the atomic arrangement inside
the unit cells for different doping concentrations and the pris-
tine compound (unit cell with 12 atoms), we have calculated the
bond lengths and bond angles for both BO and NBO as pre-
sented in Table 3. We report the negligible deformation of bond
lengths and bond angles while increasing the Ge concentration,
conrming the structural similarities between Na2SiO3 and
Na2GeO3. Similar ndings have been reported by Cruick-
shank.51 From Table 3, we have noticed the larger bond lengths
of X–BO as compared to X–NBO (where X ¼ Si or Ge). This may
be attributed to excess charge transfer to NBO, one of the
characteristic features of glass silica. In sodium silicate and
sodium germanate, the presence of electropositive cations
minimized the bonding potentials, resulting in an appreciable
difference in the lengths of bridging and non-bridging bonds.
Also, our calculations show that the BO–BO and NBO–NBO
bond lengths are consistent throughout the doping concentra-
tions and these bond lengths are comparable to the experi-
mental results [see Table 3].

In order to probe the dynamical stability of the compounds,
the phonon dispersion curves along the high symmetry G, X, R,
Z, Y, G directions in the Brillouin zone (BZ) are calculated as
shown in Fig. 4. Since the unit cell consists of 24 atoms for each
doped system, we obtain 72 branches in the phonon dispersion
curve. Clearly from Fig. 4, all the phonon modes are real which
suggests the dynamical stability of the studied phases against
any arbitrary nite displacement of the atoms about their mean
positions.
Fig. 4 (a–e) Phonon dispersion curves of Na2Si1�xGexO3 (x ¼ 0.0, 0.25
materials’ dynamical stability.
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3.2 Electronic properties

Insight into the atomic-scale interactions in any material is
provided by the electronic properties. In this section, we present
the detailed investigations of the electronic properties of Na2-
Si1�xGexO3 by calculating the band structures and the density of
states (DOS) [see Fig. 5 and 6]. Our results are in good agree-
ment with the previously reported ones.25,30,42,65,67 From Fig. 5,
we can see a small dispersion at the top of the valence band
regions (VB), while for the bottom of the conduction band
regions (CB), the electronic bands are largely dispersed for all
different doping concentrations. The top of the valence band
lies close to the Fermi energy (EF), suggesting p-type semi-
conducting behaviour. For all concentrations, the highest
energy state of the valence band is located at the Z-symmetry
point while the lowest energy state of the conduction band is at
the G-symmetry point. The presence of Z–G-symmetry in all
doped systems indicates an indirect bandgap semiconductor.
Our studies agreed well with the previously reported results of
Lui et al.30 for the ab initio total-energy obtained with the local
density approximation (LDA) via a preconditioned conjugate
gradient algorithm. Recently, Baral et al.42 reported the elec-
tronic structure calculations of (Na2O)x(SiO2)1�x (x ¼ 0.0, 0.1,
0.2, 0.3, 0.4, 0.5) by using the VASP code adopting the orthog-
onal linear combination of atomic orbitals (OLCAO) approach
and reported a decrease in band gap from 5.657 eV to 2.60 eV on
increasing the x value. Subedi et al.65 have reported electronic
band gaps (Eg) of 3.96 and 3.82 eV for (Na2O)x(SiO2)1�x at x¼ 0.1
and 0.3 respectively. Our calculated indirect band gap (Z–G-
symmetry) of Na2SiO3 is found to be 3.908 eV. However, the
experimental band gap was found to be 6.0 eV for silicate
glass.68 Ching et al.67 have highlighted the sensitiveness of the
band gap towards the exchange parameters. The calculated Eg
of Na2SiO3 were found to be 6.46 eV and 9.98 eV for a ¼ 2

3
and

a ¼ 1.0 parameters, respectively. Thus the discrepancy that
arises in the band gap calculation is due to the choice of
different exchange parameters. Referring to Fig. 7, it is clear that
with the increase in doping concentration, the Eg gradually
decreases to a minimum value of Eg ¼ 3.1327 eV. It is obvious
that doping of any materials with heavier elements should
reduce the band gap and enhance the mobility of electrons
between the VB and CB due to the introduction of extra bands
near the Fermi level. Interestingly, for even doping
, 0.50, 0.75, 1.0), which show positive values for all x, indicating the

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Calculated band structures of Na2Si1�xGexO3: (a) x ¼ 0.0, (b) x ¼ 0.25, (c) x ¼ 0.50, (d) x ¼ 0.75, and (e) x ¼ 1.0.

Fig. 6 Partial density of states calculated for Na2Si1�xGexO3: (a) x ¼ 0.0, (b) x ¼ 0.25, (c) x ¼ 0.50, (d) x ¼ 0.75, and (e) x ¼ 1.0.

Fig. 7 Calculated band gap (in eV) versus doping concentration (x).
Here, red dots indicate the corresponding band gaps at x ¼ 0.0, 0.25,
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concentrations [see Fig. 5(a, c and e)], we have observed the last
two bands of the CB intersecting along the X-symmetry while
these characteristics are not visible in odd doping [see Fig. 5(b
and d)]. This suggests that for even doping the last two bands of
the CB are possibly contributed by the Na-s orbital.

The calculated DOS gives the number of different states at
a particular energy level that electrons are allowed to occupy as
shown in Fig. 6. Analysis of the DOS plot indubitably reveals
that the majority of energy states around the top of the VB are
contributed by oxygen O-px, O-py and O-pz orbitals while the
bottom of the CB is mainly contributed by the silicon Si-px, Si-py
and Si-pz, and sodium Na-s orbitals for doping concentration
x ¼ 0.0 [Fig. 6(a)]. From Fig. 6(b–e), we have observed the
shiing of the bottom of the conduction band towards the
Fermi energy on increasing the concentration of Ge dopant.
Recently, Wang et al.69 reported the band gap variation of
HxMoO3, 0 < x # 2 and observed a quasi-metallic property of
HxMoO3. Similarly, from the PDOS plot (Fig. 6) we can see that
allowed shallow states are created due to Ge dopant atoms near
the conduction band minima and observe a more complex
hybridization between Na-s, Si-p and Ge-p orbitals, i.e., more
orbitals overlap as x increases. This results in the shiing of the
conduction region towards the Fermi level and thus reduces the
band gap when x increases as shown in Fig. 7. However, within
the valence band region, the contributions from Na-s, Si-p and
Ge-p orbitals are negligibly small compared to O-p, and as
a result the dopant atoms do not have much effect in the
valence band region. This enhances the semi-conducting
properties of the studied compounds. The oxygen contribu-
tion in the VB region was further analyzed in terms of BO and
NBO; between �5.5 and 0 eV all the oxygen orbitals O-px, O-py
and O-pz split into two main regions with the BO peaks at lower
© 2022 The Author(s). Published by the Royal Society of Chemistry
energy. This reveals that the top of the VB is mainly from the
NBO contribution due to its higher energy state. Referring to the
relative atomic concentration of BO and NBO, the DOS intensity
(states per V) of BO should be half that of NBO. From the total
DOS (TDOS) calculations within �5.5 eV to 0 eV, for all
concentrations the TDOS intensities near the Fermi level (i.e.,
the contribution from NBO) are almost double the TDOS
intensities within the region of �5.5 to �3.0 eV (i.e., the
contribution from BO). Ching et al.67 reported that the BO
valence orbitals were at lower energy (or higher binding energy)
as compared to NBO. This is consistent with the atomic struc-
ture of the compounds as the bond lengths of BO–BO are
smaller in comparison with NBO–NBO (see Table 3 for O–O and
O0–O0 bond lengths). This fact can be explained by on-site
Coulomb repulsion; lower energy (or higher binding energy)
0.50, 0.75, 1.0 for doping with Ge on Si sites.

RSC Adv., 2022, 12, 27666–27678 | 27671
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BO valence orbitals should have lower electronic valence charge
as compared to NBO. This implies that the electrostatic repul-
sion between BO–BO is smaller, thus resulting in a smaller
separation than that of NBO–NBO.
3.3 Elastic and mechanical properties

To perceive whether the studied compounds meet the required
stability and durability, the elastic constants play an important
role to determine the strength, response of the compounds
towards external stress, and applicability for practical applica-
tions. In this regard, we have calculated the elastic constants
and other mechanical properties of Na2Si1�xGexO3. The calcu-
lated values at x ¼ 0.0 are comparable to an earlier report by
Belmonte et al.28 using the LCAO DFT/B3LYP functional. The
elastic constant tensors Cij computed using stress–strain rela-
tions70,71 are presented in Table 5; they satisfy the necessary and
sufficient Born criteria for a triclinic P1 structure,72,73 i.e., C11 >
0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0 [C11 + C22 + C33 + 2(C12 +
C13 + C23)] > 0, C33C55 � C35

2 > 0, C44C66 � C46
2 > 0 and C22 + C33

� 2C23 > 0. This indicates that the compounds under investi-
gation are mechanically stable. The mechanical stability is
further conrmed by the positive stiffness eigenvalues (l).
Herein, we have also investigated the phase velocity and
polarization of seismic waves along a given propagation direc-
tion using the Christoffel determinant:74
Table 5 Calculated elastic constants Cij (in GPa units), anisotropic factors
the compounds (r) (in g cm�3), transverse (vt), longitudinal (vl) and averag
coefficient (z) for Na2Si1�xGexO3 (x ¼ 0.0, 0.25, 0.50, 0.75, 1.0)

x C11 C22 C33 C44 C55

0.0 118.824 100.117 111.436 50.007 35.059
0.25 115.075 96.262 101.447 47.864 34.197
0.50 112.696 94.043 95.406 45.886 33.278
0.75 108.624 90.601 85.019 44.208 32.371
1.0 103.831 89.733 76.126 42.912 31.329

x l1 l2 l3 l4 l5

0.0 18.086 35.059 50.007 57.133 86.202
0.25 17.77 34.197 47.822 52.934 77.059
0.50 17.258 33.278 45.281 49.633 73.409
0.75 16.543 32.372 44.061 46.063 62.636
1.0 15.51 31.329 42.912 43.679 53.424

Table 6 Calculated quasi-longitudinal wave velocities (vp) and quasi-shea
indicate maximum and minimum velocities. Calculated single-crystal azi
%), Gruneisen parameter (g) (dimensionless), Pugh's ratio (k) (dimensionle
0.25, 0.50, 0.75, 1.0)

x vpmax
vpmin

vsmax
vsmin

�VPVRH
�VSVRH

0.0 7.017 6.172 4.463 2.864 6.491 3.615
0.25 6.592 5.911 4.210 2.565 6.151 3.400
0.50 6.293 5.682 3.989 2.448 5.867 3.217
0.75 5.964 5.276 3.804 2.327 5.572 3.030
1.0 5.681 4.864 3.652 2.196 5.316 2.859
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jCijklnjnl � rV2dikj ¼ 0 (3)

where Cijkl are elastic constant tensors, n is the unit vector
normal to the surface of seismic propagation into space, r is the
density of the crystal, V is the phase velocity of the seismic wave
and dik is the Kronecker delta. From this calculation we obtain
two sets of waves: a quasi-longitudinal wave (vp) and two quasi-
shear waves with vsfast > vsslow. Here, vp is polarized nearly along
the direction of propagation while the two latter waves are
polarized almost perpendicular to the direction of propagation
(see Table 6). Utilizing the elastic constant tensor and its
compliance tensor (Sij), we perform a calculation of �VPVRH and
�VSVRH which gives the isotropic seismic velocities averaged over
all propagation directions (calculated values of �VPVRH and �VSVRH

are given in Table 6). The main reason for calculating such
parameters is to understand the single-crystal azimuthal
seismic anisotropy for longitudinal waves (AP) and shear waves
(AS) given by:75

AP ¼
 
vpmax

� vpmin

VPVRH

!
� 100 (4)

and

AS ¼
 
vsmax

� vsmin

VSVRH

!
� 100 (5)
(Aan and AU) (unitless), stiffness eigenvalues (l) (in GPa units), density of
e (vav) velocities of sound (in km s�1), and the dimensionless Kleinman

C66 C12 C13 C23 Aan AU

18.086 44.978 28.728 41.368 2.75 0.67
17.770 46.775 30.520 39.525 2.96 0.62
17.288 47.404 29.755 93.827 3.03 0.629
16.544 48.434 32.505 37.800 3.38 0.627
15.570 49.127 34.491 36.838 3.74 0.678

l6 r vt vl vav z

187.04 2.519 3.615 6.491 4.025 0.519
182.83 2.701 3.399 6.151 3.787 0.544
179.71 2.881 3.221 5.867 3.591 0.557
175.69 3.055 3.030 5.572 3.380 0.579
172.59 3.218 2.859 5.316 3.192 0.602

r wave velocities (vs) (in km s�1 units). Here, the subscripts max andmin
muthal seismic anisotropy for longitudinal (AP) and shear (AS) waves (in
ss) and melting temperature (Tm) (in Kelvin) for Na2Si1�xGexO3 (x ¼ 0.0,

AP AS g k mm Tm

13.02 49.21 1.63 1.89 1.2446 877.626 � 300
11.07 48.38 1.66 1.94 1.2652 851.396 � 300
10.41 47.90 1.68 1.99 1.2929 835.197 � 300
12.35 48.76 1.71 2.05 1.2994 807.401 � 300
15.37 50.93 1.75 2.12 1.3019 779.682 � 300

© 2022 The Author(s). Published by the Royal Society of Chemistry
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At x ¼ 0.0, we have obtained AP ¼ 13.02% and AS ¼ 49.21%.
These results are consistent with the results of Belmonte et al.,28

in which the AP and AS values were 15% and 51% respectively for
Na2SiO3. From Table 6, our AP and AS values are relatively high
for x ¼ 0.0, 0.25, 0.50, 0.75, 1.0, indicating the anisotropic
single-crystal elasticity. The highly anisotropic single-crystal
elasticity behavior is also conrmed by the large values of C11,
C22 and C33 as compared to the other elastic stiffness tensors.
Considerably large values of C11, C22 and C33 with respect to the
other elastic constant tensors also show that Na2Si1�xGexO3 are
more resistant to axial compression compared to shear defor-
mation. This is further conrmed by the fact that the bulk
modulus (B) values given in Table 7 are comparatively larger
than the values of shear modulus (G). For internal deformation
stability, we have calculated the dimensionless Kleinman coef-
cient z (see Table 5) by employing eqn (6):76

z ¼ C11 þ 8C12

7C11 þ 2C12

(6)

A Kleinman coefficient in the range of 0 # z # 1 determines
the stability of the compounds against stretching and bending.
z closer to 0 indicates a negligible contribution of bond bending
to resist external stress. From the calculated results, it has been
observed that the mechanical strength of the studied
compounds was mostly governed by bond stretching or con-
tracting rather than bending of bonds. For machinability
purposes and practical applicability, we have performed the
calculation of the machinability index mm, which indicates the
feasibility of machinery applications, cutting forces, plasticity
and lubricating properties, and themelting temperature Tm (see
Table 6). The formulae adopted for mm and Tm calculations
are:77,78

mm ¼ B

C44

(7)

Tm ¼ 354þ 4:5

�
2C11 þ C33

3

�
� 300 (8)

The calculated mm are all in an acceptable range for
machinability, lower feed forces, mediocre lubricating proper-
ties and high strain value. The calculated Tm at x ¼ 0.0 is
comparable to the experimental melting temperature (Tm ¼ 810
�C) of sodium orthosilicate (2Na2O$SiO2) estimated by
Meshalkin et al.79 where the investigation was performed at
near-liquidus phase equilibria in 33–58.5 mol% SiO2.
Table 7 Calculated elastic moduli (Bulk modulus (B), Young's modulus (Y
for Na2Si1�xGexO3 (x ¼ 0.0, 0.25, 0.50, 0.75, 1.0). Here, the subscripts V,

x BV BR BH YV YR YH

0.0 62.281 62.202 62.241 88.40 79.454 83.968
0.25 60.714 60.402 60.558 83.88 75.882 79.912
0.50 59.569 59.078 59.324 80.617 72.839 76.756
0.75 57.969 56.92 57.444 76.012 68.679 72.366
1.0 56.734 55.001 55.867 71.91 64.463 68.203

© 2022 The Author(s). Published by the Royal Society of Chemistry
In Table 7, we have reported the calculated elastic moduli and
Poisson's ratio for different x values which are all estimated in
terms of the Voigt80 (uniform strain assumption), Reuss81

(uniform stress assumption) and Hill assumptions.82 When the x
value increases, the elastic moduli decrease while the Poisson's
ratio increases, suggesting that the systems being studied are
under tensile deformation rather than compressive. The
increasing Poisson's ratio with x indicates the ductile nature,

further conrmed by the increase in Pugh ratio
�
k ¼ G

B

�
(see

Table 6). The critical value for the transition from ductile mate-
rials to brittle ones is 1.75 (i.e., k > 1.75 indicates a ductile mate-
rial). It is well known that in crystallography the isotropy or
anisotropy of a material plays an important role. Making use of
the elastic stiffness tensors and elastic moduli, we have calculated
the two anisotropic factors Aan and AU (see Table 5) given by:83

Aan ¼ 4C11

C11 þ C33 � 2C13

(9)

AU ¼ 5
GV

GR

þ BV

BR

� 6 (10)

Here, Aan and AU represent the elastic anisotropy and the
strength of the anisotropy of the materials, respectively. The
calculated Aan for all values of x are greater than 1, indicating
the compounds are elastically anisotropic. For isotropic mate-
rials Aan ¼ 1. The deviation of AU from zero corresponds to the
strength of the anisotropy of the materials. The maximum
deviation of AU from zero is observed at x ¼ 0.0 and 1.0; this
reveals that Na2SiO3 and Na2GeO3 are highly anisotropic
materials which seems to be the generic feature of glass
materials.84

One of the main concerns for elastic property calculation is
guring out the average sound velocity vav determined by the
transverse (vt) and longitudinal (vl) velocities and the Gruneisen
parameter (g). Considering the elastic moduli, density of the
compound and Poisson's ratio we perform such calculations:85

vav ¼
�
1

3

�
1

vl3
þ 2

vt3

���1
3

(11)

where vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Bþ 4G

3r

r
and vt ¼

ffiffiffiffi
G
r

r
:

g ¼ 3ð1þ nÞ
2ð2� 3nÞ (12)

where n is the Poisson's ratio.
), and Shear modulus (G) all in GPa units) and Poisson's ratio (n) (unitless)
R and H represent Voigt, Reuss and Hill assumptions respectively

GV GR GH nV nR nH

34.984 30.865 32.925 0.26344 0.28711 0.27516
33.03 29.398 31.214 0.26974 0.29062 0.28007
31.628 28.134 29.881 0.27444 0.29451 0.28436
29.658 26.438 28.048 0.28146 0.29890 0.29004
27.899 24.705 26.302 0.28875 0.30466 0.29653
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The calculated vt, vl and vav are given in Table 5. The obtained
values show that vt, vl and vav are reduced when x increases. The
calculated Gruneisen parameters (g) [see Table 6] describe the
vibrational properties which are affected by the change in
crystal volume as x increases. The acoustic wave evaluator in
Fig. 8 3-Dimensional plot of group velocity as a function of propagat
obtained from the Christoffel determinant for Na2Si1�xGexO3 (x ¼ 0.0, 0

27674 | RSC Adv., 2022, 12, 27666–27678
solid media (AWESOME)86 analyzes the phase and group
velocities of the compounds (see Fig. 8). It is clear that the
seismic velocities estimated by the Christoffel equation are
direction dependent. Fig. 8 shows the group velocity of Na2-
Si1�xGexO3 as a function of the propagation direction. In this
ion direction for the p-mode and two s-mode (fast and slow) waves
.25, 0.50, 0.75, 1.0). Here, vg are in m s�1 units.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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study, we have calculated the group velocities of p-mode, fast s-
mode and slow s-mode waves under different doping concen-
tration (x). In p-waves or compressional waves, the vibrations of
atoms are in the direction of wave propagation and as a result p-
waves travel faster as compared to s-waves or shear waves where
atoms oscillate perpendicular to the direction of propagation.
The main difference between these two waves is that p-waves
cause the studied materials to compress and expand along the
direction of propagation, while the s-waves have greater
amplitude and produce vertical and horizontal vibration, and as
a result s-waves are more destructive to the mechanical stability.
At x¼ 0.0, for p-mode themaximum velocity (vpmax

) is 7017m s�1

along [1 1 0] and the minimum velocity (vpmin
) is 6127 m s�1

along [0 1 1]. This implies that the compound being investi-
gated is more dense along [0 1 1], while along the [1 1 0]
direction, the density is a minimum for x ¼ 0.0. From Table 6,
we can observe that vpmax

decreases with x, this shows that when
the concentration of Ge atoms increases, the compound being
investigated has higher density. And the directions for higher
and lower density regions are presented in Fig. 8. For the two s-
mode seismic waves, vsfast and vsslow, the maximum velocities are
along [0 1 0] and [0 0 1] respectively, while the minimum
velocities are along [0 1 1] and [0 1 0] respectively. Clearly, from
the equation vp ¼ vgJ, where J is the power ow angle, we can
nd that the distinction between fast and slow s-modes is due to
the phase velocity and therefore, referring to Fig. 8, we observed
that for different x values the velocity of the fast s-mode is
always higher than that of the slow s-mode.

3.4 Piezoelectric properties

Piezoelectric properties have attracted tremendous research
interest due to the green method of energy conversion. Piezo-
electric materials are future energy materials that can be prac-
tically implemented in actuators, sensors, medical tools for
monitoring heartbeats and breathing, and many more.87–90

Piezoelectric properties of a material emerge as a result of
applied mechanical stress that gives rise to atomic scale polar-
ization. The direct ‘e’ and converse ‘d’ piezoelectric tensors
measure the variation of polarization ‘P’ induced by strain (h)
and the h generated by an external electric eld (E) at constant
electric eld and stress, respectively.

At constant eld,

P ¼ eh (13)

At constant stress,

h ¼ dTE (14)

This calculation is based on computing the intensity of
polarization induced by strain. Cartesian polarization compo-
nents are expressible in terms of strain tensors, given by:

Pi ¼
X
n

einhn

where ein ¼
�
dPi

dhn

�
E

(15)
© 2022 The Author(s). Published by the Royal Society of Chemistry
Here, i ¼ x, y, z; n ¼ 1, 2, 3, 4, 5, 6 (1 ¼ xx, 2 ¼ yy, 3 ¼ zz, 4 ¼ yz,
5 ¼ xz, and 6 ¼ xy); h is the strain tensor; and E is the induced
electric eld. In this calculation, the Berry phase (BP) approach
is adopted in which direct piezoelectric constants are given in
terms of numerical rst derivatives of the BP 4l with respect to
strain.91–94

ein ¼ jej
2pV

X
l

ali
d4l

dhn

(16)

where ali is the ith Cartesian component of the lth direct lattice

basis vector al. The derivative
d4l

dhn
is computed numerically by

applying nite strains to the crystal lattice. The direct and
converse piezoelectric tensors are closely related; the relation-
ship between the tensors is given by:

e ¼ dC;
d ¼ eS

(17)

where C is the fourth-rank elastic tensor of energy second
derivatives with respect to pairs of deformations and S ¼ C�1 is
the fourth-rank compliance tensor.

The main aim of calculating the piezoelectric properties is to
obtain the direct and converse piezoelectric response of the
studied compounds, and compare these results with commonly
used and standard piezoelectric materials such as quartz (SiO2).
The strain (h) along different directions results in the disruption
of the structure which will patently distort the negative cloud of
electrons surrounding the positive nuclei. This small separation
leads to an electric eld between them, and as such polarization
is developedwhich can bemanipulated to give novel piezoelectric
properties. In Tables 8 and 9, we report the direct and converse
piezoelectric response for Na2Si1�xGexO3. Tarumi et al.95 found
experimentally that for a-quartz (a-SiO2), the piezoelectric
constant was largest along the x-axis due to strain hxxwith a value
e11 ¼ 0.15 C m�2 at room temperature, and at 5 K, the reported
piezoelectric constant was 0.07 Cm�2. From these calculations, it
was claried that the studied compounds had a better response
towards piezoelectricity as compared to SiO2. For each case (i.e.,
at x ¼ 0.0, 0.25, 0.50, 0.75, 1.0), the maximum piezoelectric
responses induced are along the z-axis by strain hyy, i.e., for
piezoelectric constant e32. The calculated direct piezoelectric
constant rst increases with doping concentration x, and is
a maximum at x ¼ 0.50 with e32 ¼ 0.308 C m�2 which then
decreases. Moreover, we can observe a noticeable piezoelectric
response along the y-axis induced by strain hyz (i.e., e24) and also
along the z-axis again but induced by strain hxx (i.e., e31).
Considering how doping concentration affects the piezoelectric
constant, the maximum piezoelectric response possible at x ¼
0.50 will be due to the equilibrium concentration between Ge and
Si. This suggests that the piezoelectric properties of the studied
compounds are signicantly affected by the motion of both Si
and Ge atoms. However, the overall piezoelectric response was
better for Na2GeO3 than for Na2SiO3. Computed converse piezo-
electric constants or piezoelectric strain constants (din) that
describe the situation where strain develops under an applied
electric eld are the result of coupling of the direct piezoelectric
and compliance constants. The maximum values obtained at d32
RSC Adv., 2022, 12, 27666–27678 | 27675



Table 8 Direct piezoelectric constants of Na2Si1�xGexO3 (x ¼ 0.0, 0.25, 0.50, 0.75, 1.0) (in C m�2 units)

x e15 e16 e21 e22 e23 e24 e31 e32 e33 e34

0.0 0.103 0.001 — 0.003 �0.001 0.145 0.140 0.221 �0.582 —
0.25 — 0.008 0.015 �0.011 �0.010 0.132 0.156 0.262 �0.715 0.006
0.50 — 0.015 0.029 �0.017 �0.015 0.134 0.123 0.308 �0.768 0.028
0.75 — 0.006 0.023 �0.014 �0.006 0.127 0.192 0.290 �0.909 0.012
1.0 — — — — — 0.104 0.182 0.287 �1.015 —

Table 9 Converse piezoelectric constants of Na2Si1�xGexO3 (x ¼ 0.0, 0.25, 0.50, 0.75, 1.0) (in pm V�1 units)

x d15 d16 d21 d22 d23 d24 d31 d32 d33 d34

0.0 2.930 0.043 �0.014 0.048 �0.020 2.905 1.161 4.688 �7.263 0.003
0.25 — — 0.230 �0.175 �0.110 2.757 1.514 6.032 �9.855 0.267
0.50 — — 0.443 �0.280 �0.229 2.916 0.894 7.747 �11.587 1.214
0.75 — — 0.380 �0.307 �0.105 2.872 2.734 8.150 �15.369 0.593
1.0 — — — — — 2.416 3.955 9.039 �19.494 �0.002
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for different doping concentrations are the result of soening of
the C32 elastic constants upon relaxation. The reported d32 values
increase with x with the highest value of 9.039 pm V�1 at x ¼ 1.0.
In conclusion, we can say that the calculated piezoelectric
constants for Na2Si1�xGexO3 are fairly low in comparison to some
ferroelectric materials such as SrTiO3 with I4cm space group that
shows a piezoelectric response of e33 ¼ 8.82 C m�2.96 Therefore,
to utilize Na2Si1�xGexO3 for practical and efficient piezoelectric
devices, more rigorous research so as to further enhance its
piezoelectric responses is vital. From the surveyed literature, we
have found that utilizing low dimensional (LD) materials for
piezoelectric materials could enhance the piezoelectric response
compared to their bulk forms.97 Recently, Wang et al.98 reported
the piezoelectric response for 2-D SnS2 nanosheets with thickness
of�4 nm and pointed out that the piezoelectric responses reduce
with an increase in the thickness of the nanosheets. They ob-
tained an effective out-of-plane piezoelectric response of 2� 0.22
pm V�1. This value is comparable to our calculated converse
piezoelectric constant d24 where our observed values are within
the range of 2.4 to 3 pm V�1.
4 Conclusions

In summary, we have studied the structural, electronic,
mechanical and piezoelectric properties of complex glass-like
Na2Si1�xGexO3 by using DFT calculations. We have shown that
the structural and the electronic properties of the studied
compounds are mostly dened by the presence of silicon and
germanium. Also, doping with heavier elements tuned the wide
band gap to a medium one. Our calculations of phonon disper-
sion curves, formation energy and elastic tensor constants
revealed that the transformation of Na2SiO3 / Na2GeO3 is
practically possible by preserving dynamical as well as mechan-
ical stability. The calculated machinability index and melting
temperature have shown that the compounds under investigation
are at an acceptable machinability level and can be utilised in
a high temperature range. We observe maximum piezoelectric
27676 | RSC Adv., 2022, 12, 27666–27678
responses along the z-axis, i.e., e32, for all structures and these
values are higher than that of the standard piezoelectric material
SiO2. However, our observed maximum direct piezoelectric
constant e32 ¼ 0.308 C m�2 at x ¼ 0.50 seems to be low as
compared to the ferroelectric material SrTiO3. So, for practical
application of Na2Si1�xGexO3 as a piezoelectric component in
devices, we need rigorous research to enhance the efficiency.
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