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Abstract

Motivation: Recent advances in mass cytometry allow simultaneous measurements of up to 50

markers at single-cell resolution. However, the high dimensionality of mass cytometry data intro-

duces computational challenges for automated data analysis and hinders translation of new biolo-

gical understanding into clinical applications. Previous studies have applied machine learning to

facilitate processing of mass cytometry data. However, manual inspection is still inevitable and

becoming the barrier to reliable large-scale analysis.

Results: We present a new algorithm called Automated Cell-type Discovery and Classification

(ACDC) that fully automates the classification of canonical cell populations and highlights novel

cell types in mass cytometry data. Evaluations on real-world data show ACDC provides accurate

and reliable estimations compared to manual gating results. Additionally, ACDC automatically clas-

sifies previously ambiguous cell types to facilitate discovery. Our findings suggest that ACDC sub-

stantially improves both reliability and interpretability of results obtained from high-dimensional

mass cytometry profiling data.

Availability and Implementation: A Python package (Python 3) and analysis scripts for reproducing

the results are availability on https://bitbucket.org/dudleylab/acdc.

Contact: brian.kidd@mssm.edu or joel.dudley@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput, high-dimensional cytometry is one of the most

valuable tools for basic and clinical immunology. Advances in this

technology over the last decade now provide simultaneous measure-

ments of dozens of proteins at single-cell resolution (Bandura et al.,

2009; Spitzer and Nolan, 2016). Mass cytometry by time-of-flight

(CyTOF) provides a powerful new tool for studying cellular diversity

and dynamics by measuring up to 50 markers per cell. Many recent

studies highlight the utility of CyTOF for enabling novel discovery

and understanding in multiple domains of immunology, including

mapping cell subset heterogeneity and specificity in response to vari-

ous pathogens (Newell et al., 2012, 2013), precise elucidation of cel-

lular networks and biochemical pathway activation following drug

perturbation (Bendall et al., 2011; Bodenmiller et al., 2012), as well

as new understanding of cellular trafficking and tissue localization

(Wong et al., 2016a, b). However, the high number of measures and

complexity of the resulting data restrict manual exploration and pre-

sent challenges for both the analysis and biological interpretation of

CyTOF data (Newell and Cheng, 2016). New tools that automate the

data analysis are needed to realize the full potential of CyTOF for bio-

logical discovery and translational applications.

A number of studies have focused on applying or developing al-

gorithms to address the data analysis and interpretation challenges

arising from CyTOF data. One early approach applied machine

learning techniques to detect clusters of similar immune cell types in

high dimensional space (Aghaeepour et al., 2013; Qiu et al., 2011).
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More recently, researchers have used network analysis techniques to

assist the identification of known and novel cell populations (Levine

et al., 2015; Samusik et al., 2016; Shekhar et al., 2014). In concert

with these analytical advances, a number of studies have developed

software tools to organize and visualize the high-dimensional

cytometry data (Amir et al., 2013; Shekhar et al., 2014; Van der

Maaten and Hinton, 2008). Yet, to date, the available computa-

tional tools still require substantial manual manipulation to extract

biological findings and interpret the data. These manual steps create

a major limitation for exploring the full dataset and taking advan-

tage of the large number of markers in CyTOF.

One of the biggest challenges for interpreting mass cytometry

data is how best to annotate individual cells with canonical cell

types. This difficulty arises from (i) uncertainty in defining cell types

based on more than a handful of markers and (ii) the absence of bio-

logical information as an input for machine learning techniques.

Current approaches require substantial manual inspection that im-

pedes the analysis workflow, underutilizes the full value of the high-

dimensional data, and ultimately reduces the scientific insights that

can be gained from each study. Here we address the cell annotation

challenge through a novel computational method that greatly facili-

tates the organization and interpretation of mass cytometry data

through automated transfer of biological knowledge.

Our method automates cell annotation by using biological know-

ledge as an input parameter to a novel machine learning approach:

Automated Cell-type Discovery and Classification (ACDC). ACDC

provides enhanced visualization and automated classification of ca-

nonical cell populations, as well as augments the discovery of novel

populations from mass cytometry data. ACDC represents a new

framework that seamlessly integrates all the pieces to automate the

process for estimating occurrences of canonical cell populations. We

evaluated ACDC using three benchmark datasets (AML (Levine

et al., 2015), BMMC (Bendall et al., 2011; Levine et al., 2015) and

PANORAMA (Samusik et al., 2016), for which manual gating infor-

mation was available to provide a ‘ground truth’ reference.

2 Methods

Annotating individual cells requires reconciling the vast amounts of

single cell information collected through high-throughput cytometry

with our prior knowledge. To illustrate this point, it is well established

that a CD4þT-cell is identified based on high levels of CD3 and CD4

and simultaneously having low expression level of CD8. We designed

ACDC to take advantage of the biological knowledge that humans

have accumulated and integrate this information with machine learn-

ing algorithms to automate the annotation of mass cytometry data.

To combine our prior biological frameworks with new data,

the ACDC approach involves two steps (Fig. 1A and Supplementary

Fig. S1). First, ACDC converts a user-specified table of markers and

cell labels into landmark points that represent fingerprints for specific

cell types in the high-dimensional space. Second, ACDC implements

semi-supervised classification via random walks (Grady, 2006) to col-

lect information from all the landmark points and classify events at the

single-cell resolution. With ACDC, prior knowledge of canonical cell

types is explicitly encoded in the user-specified table, transformed into

landmark points and eventually fed into a semi-supervised learning al-

gorithm. We summarize the workflow of ACDC in the following:

1. Inputs: measured mass cytometry events and a user-specified

table of markers to cell types.

Fig. 1. ACDC algorithm design and validation. (A) Schematic diagram showing the work flow of ACDC. (B) Heat maps showing the average marker intensity of land-

mark points and manually gated populations from the AML dataset. (C) tSNE visualization of landmark points (large circles) and manually gated populations (dots)
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2. Generate landmark points by score matching and un-supervised

clustering. (Section 2.1)

3. Classify single-cell events by semi-supervised learning. (Section 2.2)

Study design and evaluations are presented in Section 2.3.

2.1 Generate landmark points
2.1.1 Design of cell type-marker table

A cell type-marker table is a data matrix sðcj; mkÞ whose value is ei-

ther 1 (present,þ), -1 (absent, -) or 0 (do not consider), where cj is

the jth cell type and mk is the kth marker (Supplementary Table S1–

S3). The cell type-marker table allows users to customize cell types

to be detected by linking these canonical cell types to their marker

profiles. For example, CD4þT-cells are known to have high expres-

sion level of the surface markers CD3 and CD4 and low expression

level of CD8. Therefore, CD4þT-cells are described as CD3þ/

CD4þ/CD8- cells. As another example, B-cells can be referred to as

CD19þ/CD3-cells. ACDC converts the user specified cell type-

marker table into landmark points in the high-dimensional space.

2.1.2 Design of the score function

We designed the score function to match a mass cytometry event

with a single cell type. Intuitively, the chance a measured event be-

longs to a canonical cell type is determined by the extent that the in-

tensity profile of a cluster matches one of the pre-specified profiles.

We formulated the degree of matching as the posterior probability

that a marker is in the activated/inactivated state. To be precise, we

first fit a two-mode Gaussian mixture model Pk to the kth marker’s

intensity distribution. While the marker intensity is one dimensional,

we identified the mode of high/low intensity as the activated/inacti-

vated state of this marker. The score of assigning an event wi to a

cell type cj is then defined by

f ðwi; cjÞ ¼ mink if s cj ; mkð Þ6¼0Pk s cj; mk

� �
jwik

� �

where Pk s cj; mk

� �
jwi

� �
is the posterior probability of the kth marker

is in state s cj; mk

� �
and wik is the intensity of the kth marker in an

event wi. The minimum is taken over all specified markers to ensure

that all requirements are satisfied. In practice, cell types specified by a

user might not be exhaustive. To detect those unspecified cells, we

added an ‘unknown’ type whose score is defined by

f wi;unknownð Þ ¼ 1�max
cj

ðmink if s cj ; mkð Þ6¼0Pk s cj; mk

� �
jwik

� �
Þ:

This quantity represents the level of uncertainty in our current

knowledge since its high value indicates the low probability of as-

signing any specified cell types to the event wi.

Though Pk can be directly evaluated by the Gaussian mixture

model, such posterior probability might not be monotonic if the

Gaussian mixture model has modes of unequal variances. We in-

stead used an approximated function

~Pk s ¼ 1jwð Þ ¼ exp ð w� að Þ � bÞ
1þ exp ð w� að Þ � bÞ

where a is the critical point that Pk s ¼ 1jwið Þ ¼ Pk s ¼ 0jwið Þ and b

is the slope of the posterior probability at this critical point. Both a

and b can be computed from the means and variances of the two-

mode Gaussian mixture model.

2.1.3 Unsupervised clustering

Community detection (Girvan and Newman, 2002) was used due to

its superior performance in clustering mass cytometry data (Levine

et al., 2015). The community detection aims to find a set of assign-

ments ci that maximize the modularity Q defined by

Q ¼ 1

2m

X
ij

Wij �
sisj

2m

h i
d ci; cj

� �

where Wij is the weights between ith node and jth node, sj ¼
P

kWkj

and m ¼
P

ijWij=2. d u; vð Þ is the Krnoecker delta function that takes

values of 1 when u ¼ v and 0 otherwise. ci is the community assign-

ment of ith node. We used the recommended setting to generate the

weight matrix Wij based on 30-nearest neighbor graph and Jaccard

similarity (Levine et al., 2015).

2.1.4 Landmark point generation

To generate landmark points, we partitioned the whole dataset into sub-

sets Sj ¼ fwi j f wi; cj

� �
> 1=2g. Landmark points were defined as the

centers of clusters identified by community detection in each subset.

2.2 Single-cell classification by semi-supervised

learning
2.2.1 Classification by random walkers

We implemented semi-supervised classification via random walks

(Grady, 2006) for classifying events at the single-cell resolution.

Briefly, semi-supervised classification via random walks evaluates the

probability that a data point x belongs to class c as the chance of a

random walker, starting from the data point x, first reaches a land-

mark point l of class c when navigating the network. Theoretical der-

ivation shows this probability satisfies the Laplace equation, i.e.

rPðxjcÞ ¼ 0;

with the boundary conditions PðljcÞ ¼ 1 if a landmark point l of

class c and PðljcÞ ¼ 0 if a landmark point l of other classes. The nu-

meric value of P xjcð Þ at every data point can be solved as a bound-

ary value problem. In our implementation, we used 10-nearest

neighbors to construct such a data network.

2.2.2 Processing experiments with multiple replicates

A common experimental design with mass cytometry data is to measure

multiple biological examples of a particular type (e.g. organism, tissue,

treatment condition) in one experiment. To classify data from these rep-

licate samples on a common basis, we computed a common set of land-

mark points using pooled data of all replications and then classify each

replication independently with the same landmark points. Cell frequen-

cies were then estimated by counting the classification results.

2.3 Study design and benchmarking
2.3.1 Validation datasets

We used three public benchmark datasets. BMMC dataset is a mass

cytometry dataset collected from healthy human bone marrow

(Bendall et al., 2011). While 34 parameters were originally measured,

the publically available dataset reduced to only 13 markers, and the re-

sulting dataset included 24 populations gated based on these markers

(Levine et al., 2015). AML dataset is also collected from healthy

human bone marrow (Levine et al., 2015), and consists of 32 markers

and 14 manually gated classes. PANORAMA dataset is a recently pub-

lished dataset that provides replicative measurements of mass cytome-

try data from mice, where 24 cellular populations were gated based on

38 surface markers (Samusik et al., 2016). Three experts independently

gated the cellular populations in the PANORAMA dataset and only

the consensus part of the gating was retained. All event measurements

were transformed by sinh�1ððx� 1Þ=5Þ before further processing

(Samusik et al., 2016).
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Cell type-marker tables were generated according to previous

studies (Bendall et al., 2011; Levine et al., 2015; Samusik et al.,

2016). The cell type–marker tables of the BMMC and AML dataset

were generated based on their gating hierarchy provided on

Cytobank (Supplementary Table S1 and S2). In BMMC dataset,

erythroblast, megakaryocyte platelet and myelocyte were merged as

an unknown population since negative markers exclusively define

these cells. For the PANORAMA dataset, the cell type-marker table

was generated based on the divisive marker tree with minor changes

(Samusik et al., 2016) (Supplementary Table S3). We excluded HSC

cells and pro B cells as unknown types since their defining markers

cannot be determined from the reported divisive marker tree.

2.3.2 Baseline methods

We implemented (i) score-based classification; and (ii) phenograph

clustering (Levine et al., 2015) for performance benchmarking. The

score-based classification assigns event wi to the class c� that maxi-

mizes the score, i.e.

c� ¼ argmaxcf wi; cð Þ;

where f is the designed score function. For the phenograph clustering,

data was first clustered by community detection and then all events

within a cluster were assigned to a manually gated cell type of highest

frequency in this cluster. This method was implemented as a counter-

part of estimating population frequencies by unsupervised clustering.

2.3.3 Evaluation metrics

We applied three metrics to evaluate the performance on estimating

cellular population frequencies. Given two normalized histograms

h1 and h2, generated by counting the number of each cellular cat-

egory classified either manually or automatically, the maximum

error is computed by taking maximum of absolute errors on all com-

ponents. To be precise, the maximum error is defined by

d h1; h2ð Þ ¼ max
i
jh1;i � h2;ij;

where h1;i and h2;i are ith elements of histograms h1 and h2, respect-

ively. The Canberra distance is defined by

d h1;h2ð Þ ¼
X

i

h1;i � h2;i

�� ��= h1;i þ h2;i

� �
:

This distance is chosen to estimate the capability of capturing

rare populations since it gives higher penalty on the low-frequency

populations. Lastly, the intersection distance, defined by

d h1;h2ð Þ ¼ 1� sum
i

min h1;i; h2;i

� �
;

measures the difference between the common area underlying two

histograms and 1, which is the largest possible common area. The

intersection distance reflects the accumulative errors in all populations.

The accuracy of classifying single-cell events is measured by the

F1-score, which reflects the harmonic mean of precision (purity) and

recall (yield),

Fi ¼ 2� Pii � Rii

Pii þ Rii
;

Pij ¼
CijP
kCik

; Rij ¼
CijP
kCkj

;

where Cij is the number of events classified as population i that be-

longs to the manually gated population j.

2.3.4 Confidence estimation

For validation on AML and BMMC datasets, the confidence level was

estimated using 5-fold cross validation while keeping the percentage of

samples for each class unchanged. For the PANORAMA dataset, con-

fidence level was estimated as the standard deviation over samples.

2.3.5 Measuring tightness of clusters

We used the silhouette coefficient to measure the tightness of a given

cluster (Rousseeuw, 1987). The silhouette coefficient measures how

similar a datum is to its own cluster compared to the other clusters.

For the ith datum, silhouette coefficient of this datum is defined as

si ¼
bi � ai

maxðai; biÞ
;

where ai is the average Euclidean distance from this datum to other

members of the same cluster, and bi is the lowest average distance

from this datum to members of other clusters. The silhouette coeffi-

cient ranges from -1 to 1 while a negative silhouette coefficient indi-

cates a datum is closer to other clusters than its own cluster.

3 Results

3.1 ACDC helps visualization of mass cytometry data
To test whether the detected landmark points represent the corres-

ponding cellular populations, we first applied ACDC to the AML and

BMMC datasets. In the AML dataset, ACDC identified every popula-

tion highlighted in the study and showed virtually no difference with

manual gating (Fig. 1B). The one exception was a population of

CD34þCD38þCD123þHSPCs that showed a lower average inten-

sity of CD123 in ACDC than with manually gating. To examine how

landmark points depicted cellular populations, we used tSNE (Van der

Maaten and Hinton, 2008) to map cellular measurements sampled

from the manually gated populations onto a two-dimensional space

and displayed the detected landmark points in their respective coordin-

ates (Fig. 1C). The tSNE projection also supports the observation that

landmark points detected by ACDC fall within their corresponding

cluster of cells. We found similar results in the BMMC dataset

(Supplementary Fig. S2). These results confirm that landmark points

can locate cellular populations as accurate as manual gating.

3.2 ACDC classifies canonical cell populations as

accurate as human experts
Although landmark points aid the exploratory analysis of mass

cytometry data, the focus of this study was to evaluate whether

landmark points classify events accurately at single-cell resolution.

For comparison, we implemented two alternative classification

methods: (i) a score-based classification that assigns an event to the

class of the highest score and (ii) phenograph (Levine et al., 2015)

clustering combined with manual gating to annotate each cluster.

Overall, ACDC achieved comparable accuracy (92.9 6 0.5% for

BMMC and 98.3 6 0.04% for AML) on classifying single-cell events

with phenograph clustering (93.6 6 0.7% for BMMC and

96.5 6 0.7% for AML) and significantly improved the score-based

classification method (78.1 6 0.03% for BMMC and 68.4 6 0.1%

for AML). We also analyzed the classification performance for each

cell type (Fig. 2A and E). In the AML dataset, ACDC achieved a me-

dian F1-score of 0.93, compared with 0.84 for the score-based clas-

sification and 0.83 for the phenograph clustering. We observed a

lower performance of ACDC in the BMMC dataset (median

F1-score of 0.60, compared with 0.63 for the score-based classifica-

tion, and 0.55 for the phenograph clustering) due to the difficulty in
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detecting rare populations with frequencies less than 0.5%, such as

GMP, HSC, MEP and MPP. However, low silhouette coefficients

suggest that these rare populations may not form well-defined clus-

ters (Fig. 2B and F and Supplementary Fig. S3). Both the score-based

and phenograph clustering methods also failed to identify these rare

populations due to a lack of representative data for these cell types.

3.3 ACDC estimates frequencies of canonical cell

populations as accurate as human experts
We next addressed the practical issue of estimating the frequency of

a cell population. When applied to the AML and BMMC datasets,

ACDC and the phenograph clustering gave estimates comparable to

the manually gated ones while the score-based classification method

overestimated the frequency of the unknown population (Fig. 2C

and G). To quantify discrepancies between the estimated and man-

ually gated frequencies in all populations, we examined three com-

mon metrics: maximum error, Canberra distance, and intersection

distance, which measure maximum deviations, the capability of cap-

turing rare populations and accumulative errors respectively. In gen-

eral, both ACDC and the phenograph clustering estimated the

population frequency up to 2% maximum error of manual gating

reports and 2–5% error accumulatively on these two datasets (Fig.

2D and H). However, ACDC showed a lower Canberra distance to

manual gating, highlighting lower discrepancy for rare populations.

3.4 ACDC captures sample variations in population

frequencies
In addition to evaluating the classification accuracy using data col-

lected from one set of samples, we wondered if ACDC captured

variations accurately over biological replicates in the PANORAMA

dataset (Fig. 3A). We computed correlations between estimated and

manually gated frequencies per cell type (Fig. 3B). ACDC achieved

an average per-cell type correlation of 0.79, compared to the correl-

ation of 0.71 for the score-based classification and 0.38 for pheno-

graph clustering. Regarding classifying single-cell events, ACDC

achieved a median F1-score of 0.88 (Fig. 3C) compared to 0.79 ob-

tained in the original study (Samusik et al., 2016), though two cell

types were omitted due to the lack of defining markers when curat-

ing the input table for ACDC (see Methods for full details). These

results confirm that ACDC more accurately captures sample vari-

ations reflected in the manually gated results.

3.5 ACDC discovers ambiguous populations from mass

cytometry data
One challenge for supervised learning approaches is the limited abil-

ity to discover categories not present in the training data. Here we

demonstrate that ACDC provides insight on clusters of cells that do

not fit into any of the pre-defined cell types. Specifically, 24 clusters

of unknown cell types detected from the PANORAMA dataset

(Supplementary Fig. S4). We found that one of the unknown clusters

showed marker patterns similar to both IgDþ IgMþB-cells and

CD8þT cells (Fig. 4A). This profile suggests the unknown cluster

represents some form of lymphoid cells sharing characteristics of B

cells and CD8 T cells. We also found a cluster of unknown cell types

that shared features of IgDþ IgMþB cells and CD4þT cells, and

cannot be easily categorized into conventional types (Fig. 4B).

Though we cannot exclude the possibility these events are doublets

that slipped though the pre-gating quality control carried out in

(Samusik et al., 2016) (Supplementary Fig. S5), these results demon-

strated that ACDC can highlight ambiguous events that escaped the

automated classification for further investigation. However,

Fig. 2. Validation on AML and BMMC datasets. (A, E) Classification accuracy of ACDC (yellow bars), score-based classification (purple bars), and phenograph clus-

tering (gray bars) evaluated by F1-score. (B, F) Silhouette coefficients of manually gated populations show cluster tightness. (C, G) Comparison of population fre-

quencies estimated by the 3 methods versus manual gating (green bars). (D, H) Errors in estimating population frequencies. Error bars reflect the standard

deviations of the accuracy estimates from the cross-validation trials described in Section 2.3.4
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resolving the biological identity of these events may require utiliza-

tion of collaborative evidence.

3.6 Robustness and computational complexity
We evaluated whether ACDC is robust to changes in the parameter

tuning. ACDC uses one parameter k to construct nearest neighbor

networks for semi-supervised classification. Table 1 shows the clas-

sification accuracy evaluated on the BMMC and AML benchmark

datasets when setting k to 10, 20 and 30. The results are not sensi-

tive to the parameter k over a 3-fold range.

We also examined the computational complexity of ACDC. The

most expensive computational step in ACDC is the semi-supervised

classification, which involves constructing and inverting a large ma-

trix. In our current implementation, ACDC takes �250 and

�900 seconds to process BMMC and AML benchmarks (Table 1).

This computation was done on a machine with an IntelV
R

CoreTM

i7-6700K Processor 3.40 GHz and 16 GB RAM. By comparison, it

takes �125 and �550 s to cluster the BMMC and AML datasets

using Phenograph on the same machine.

4 Conclusion

Here we have introduced a new method called ACDC that combines

profile matching and semi-supervised learning to automate the ana-

lysis and interpretation of mass cytometry data. ACDC takes advan-

tage of biological knowledge to guide learning algorithms and

creates a new framework for interpreting data from high-

dimensional cytometry. By using biological knowledge as an input

for the analysis, we turned the unsupervised problem of data inter-

pretation into a semi-supervised problem of network propagation.

Our results suggest ACDC reliably classifies single-cell events and

aids discovery of novel cell types.

Fig. 3. Validation on PANORAMA dataset. (A) Frequencies of cellular populations estimated by manual gating (green bars), ACDC (yellow bars), scored-based

classification (purple bars) and phenograph clustering (gray bars). All events excluded by manual gating were labeled ‘unknown.’ (B) Per-cell type Pearson correl-

ations over 10 replications. (C) Average F1-scores over 10 replications. Error bars represent standard deviations

Fig. 4. Illustration of selected unknown clusters. (A) Two-dimensional heatmap shows the profile of an unknown cluster sharing features of CD8þT cells,

IgDþ IgMþB cells and gamma-delta T cells (rows shown below). Colors reflect the marker intensity. (B) Heatmap indicates the profile of an unknown cluster shar-

ing features of CD4þT cells and IgDþ IgMþB cells (rows shown below). The top-3 similar canonical populations are shown right below the unknown cluster

Table 1. Computational performance of ACDC

Accuracy (%) Time (s) Events

k-nn 10 20 30 10 20 30

BMMC 92.02 92.24 92.49 245 309 376 81747

AML 98.36 98.30 98.25 884 992 1077 103184
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One limitation of ACDC is that each marker label is binary

(present or absent). In practice, cell populations of interests are

defined by intermediate markers (Guilliams et al., 2014; Levine

et al., 2015; Ohradanova-Repic et al., 2016; Rosenblum et al.,

2016). One possible improvement is to extend the Gaussian mix-

ture model and consider multiple states (Chan et al., 2008; Cron

et al., 2013), and we anticipate this development in a future

study.

Given the active development of many algorithms to facilitate the

processing and analysis of high-throughput cytometry data, recent ef-

forts have also been focused on developing reproducible pipelines and

frameworks (Aghaeepour et al., 2013, 2016; Finak et al., 2014). The

introduction of a study-specific table with markers and cell labels

offers a new direction toward automatic and reproducible analysis of

mass cytometry data. With this easy-to-customize design, the annota-

tion step feeds into cytometry data analysis upfront. This feature

allows the cellular determinations to be reproduced or modified easily

with a given cell type–marker table. Additionally, flagging ambiguous

events help sift through the massive data to guide researchers for fol-

low up on areas of quality control and process improvement, as well

as the discovery of biologically relevant cell populations.

Currently, our design requires a table specified by the analyst.

However, there’s no limit to what information goes into this table.

Thus, it’s possible to infer a comprehensive table automatically from

the complete biomedical literature mining (Courtot et al., 2015;

Shen-Orr et al., 2009) or through a targeted query of an immunolo-

gical database (Courtot et al., 2015). The community has long rec-

ognized the importance of reliable immunophenotyping analysis in

flow cytometry (Aghaeepour et al., 2013; Finak et al., 2016).

Additional efforts to integrate existing tools into shared computa-

tional pipelines for better CyTOF processing and cell type enumer-

ation are needed. With the removal of the manual processing steps

that currently limit large-scale CyTOF analysis, we envision ACDC

as a step toward a new paradigm of reproducible, systematic and ob-

jective immunophenotyping that fully embraces high-dimensional

datasets for discovery and translation to actionable insights.
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