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Abstract

Measurements of cell size dynamics have revealed phenomeno-
logical principles by which individual cells control their size across
diverse organisms. One of the emerging paradigms of cell size
homeostasis is the adder, where the cell cycle duration is estab-
lished such that the cell size increase from birth to division is inde-
pendent of the newborn cell size. We provide a mechanistic formu-
lation of the adder considering that cell size follows any arbitrary
non-exponential growth law. Our results show that the main re-
quirement to obtain an adder regardless of the growth law (the time
derivative of cell size) is that cell cycle regulators are produced at
a rate proportional to the growth law and cell division is triggered
when these molecules reach a prescribed threshold level. Among
the implications of this generalized adder, we investigate fluctua-
tions in the proliferation of single-cell derived colonies. Consider-
ing exponential cell size growth, random fluctuations in clonal size
show a transient increase and then eventually decay to zero over
time (i.e., clonal populations become asymptotically more similar).
In contrast, several forms of non-exponential cell size dynamics
(with adder-based cell size control) yield qualitatively different re-
sults: clonal size fluctuations monotonically increase over time
reaching a non-zero value. These results characterize the interplay
between cell size homeostasis at the single-cell level and clonal
proliferation at the population level, explaining the broad fluctua-
tions in clonal sizes seen in barcoded human cell lines.

Introduction

The size of cells critically impacts all aspects of their physiol-
ogy regulating essential processes including gene expression
regulation, nutrient metabolism and proliferation [1–7]. The fac-
tors determining cell size, and its maintenance around a desired
setpoint specific to a cell type are fundamental questions that
have long fascinated biologists. To achieve size homeostasis,
cells must synchronize multiple processes such as chromosome
replication [8], growth rate [9], cell membrane synthesis [10], or-
ganelle duplication [11], and divisome formation [12]. Remark-
ably, recent findings in bacterial, fungi, animal, and plant cells
have uncovered common principles by which aberrations in cell
size are corrected through size-dependent duration of cell -cycle
stages [13–19].

One such phenomenological principle of cell size homeostasis
is the adder, where for an isogenic cell population under stable
growth conditions, the size added (or increment) from cell birth
to division is uncorrelated with newborn size (Figure 1). Thus,
regardless of how large or small a cell is born, the division timing
is set to add, on average, a fixed cell size [20,21]. This constant

size increment itself depends on growth conditions and can vary
considerably across cell types. For an exponential increase in
cell size, an adder implies an inverse correlation between the cell
cycle duration and the newborn cell size [22].

The adder was discovered with the development of microflu-
idic imaging in evolutionary divergent bacteria such as E. coli,
B. subtilis [23], C. crescentus [24], and P. aeruginosa [25]. Cell
size analysis for organisms more complex than rod-shaped bac-
teria presents difficulties that have been recently solved. For
example, the variable morphology of mammalian cells compli-
cates the estimation of cell size. With advances in methods
that combine measurements of cell size and cell mass, it has
been observed that the adder principle is prevalent even in dif-
ferent human cell lines [26]. Some of these cell lines exhibit non-
exponential growth [26, 27], which poses challenges to existing
models that mainly account for the adder in exponentially grow-
ing cells [12, 28]. The adder principle has also been observed
in different species, including budding yeast [29], Dictyostelium
amoebas [30], bacterial strains that exceed exponential growth
rates [31], and even flatworms that consistently increase their
body area from the head after transverse splitting [32].

In this study, we investigate the minimal theoretical require-
ments to achieve an adder in cell size dynamics under any arbi-
trary growth law (the time derivative of cell size). We propose
a phenomenological approach that employs a size-dependent
division rate that results in an adder with an arbitrary added-
size distribution. We compare this approach with an equivalent
mechanistic model that involves a cell cycle regulator expressed
at a rate proportional to the growth law, with cell division trig-
gered when the regulator reaches a critical threshold level [33].
We show that, under these conditions, stochastically formulated
models result in an adder, where the size added from cell birth to
division is statistically independent of the initial size.

Recent studies have shown that adder-based cell size home-
ostasis significantly influences the stochastic dynamics of clonal
populations. Specifically, clonal expansion models based on the
adder principle produce qualitatively different predictions com-
pared to classical time-based division models [34, 35]. Mathe-
matical predictions and experimental observations indicate that
exponentially growing cells exhibit a high degree of clonal size
regulation (low stochastic fluctuations) when following the adder
mechanism [34]. Motivated by these findings, we investigate how
cell proliferation statistics change when cells adhere to growth
laws other than exponential cell size dynamics.

Our findings indicate that exponentially growing cells that im-
plement the adder exhibit clonal size fluctuations with a transient
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Figure 1: Cell size homeostasis in C. glutamicum occurs via the adder mechanism. (A) Top: Timelapse of a C. glutamicum cell undergoing
division, with one of the newborns randomly chosen for cell size tracking. Bottom: The cell size (quantified by cell length) over time (dots) fits relatively
well with exponential growth in cell size (solid line). Key cell cycle variables are illustrated on the plot: the growth law ( ds

dt = µs), cell size at birth
(sb), cell size at division (sd ), added cell size from birth to division (∆d = sd − sb), and cell cycle duration (τd ). (B) Data reveals adder-based cell
size control, where ∆d is uncorrelated to sb across C. glutamicum cell cycles. The marginal plots show histograms of cell size at birth (red) and
added cell size (green). Data are taken from [34], and we refer readers to this source for experimental details and image segmentation for cell size
measurements. The circles on the plot correspond to the mean added size for binned newborn sizes (11 bins), with error bars representing the 95%
confidence interval of the mean for each bin. The line represents the linear fit and ρ is the correlation coefficient between sb and ∆d , with the 95%
confidence interval obtained using bootstrapping.

increase until the first generation, followed by a decay to zero
over time. This means that cell colonies become asymptotically
more homogeneous relative to each other in terms of their pop-
ulation size. In contrast, for non-exponential cell size dynamics,
clonal size fluctuations increase monotonically over time, leading
to greater heterogeneity in clone sizes as they grow. These in-
sights are crucial for understanding noise mechanisms affecting
cell lineage expansion, with significant implications for diverse
fields such as cancer biology [36], embryogenesis, mutant fixa-
tion [37], and microbial ecology [38].

Results

A generalized adder mechanism

In this section, we present a generalized formalism to achieve an
adder strategy for cell size regulation. We begin by introducing
the main cell cycle variables. Figure 1 illustrates the cell size
dynamics during one cell cycle of the gram-positive, rod-shaped
bacterium C. glutamicum. Cell cycle begins with the division of
the parent cell into two newborn descendants. We randomly se-
lect one of these newborns and track its size s(t) > 0, over time t
until its division. For each cell cycle, we measure the cell size at
birth sb and at division sd , the cell cycle duration τd , and the size
added from birth to division ∆d . The relationships between these
variables are fundamental for characterizing cell size homeosta-
sis mechanisms. For instance, Figure 1B illustrates the adder
mechanism, where the size added from birth to division is uncor-
related with the newborn size.

We assume that the cell is born at time t = t0 with size sb.
Then, its cell size evolves according to the time-varying ordinary

differential equation:

ds
dt

= f (s, τ ) > 0, t ≥ t0, s(t0) = sb, (1)

where τ = t − t0 is a timekeeper variable measuring the time
spent within the cell cycle since birth. The function f > 0 is
referred to as the growth law and is allowed to be an arbitrary
function of the cell size and timer. Given an initial size at birth
s(t0) = sb, the growth law is assumed to take a form that results
in a unique solution s(t) for all t ≥ t0. The positivity of the growth
law f > 0 ensures a strictly monotonic increase in cell size over
time until the cell undergoes division. We define another mono-
tonically increasing function:

∆(τ ) := s(t0 + τ ) − s(t0) = s(t0 + τ ) − sb ≥ 0 (2)

that is the size added at time τ after cell birth with ∆(0) = 0.
Considering τd as the cell cycle duration, a random variable, one
can define the added size from cell birth to division as:

∆d := ∆(τd ) = s(t0 + τd ) − sb. (3)

Note that since both τd and sb are random variables, ∆d is also
a random variable, having different values for different cell cycles
(Figure 1B). Our aim is to define a propensity for cell division that
ensures two properties:

1. An adder for any growth law f where the added size ∆d

becomes independent of the newborn size sb. Note that
while experimentally an adder is often characterized by ∆d

being uncorrelated to sb (as in Figure 1B), here we impose
a stricter condition of statistical independence.

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.13.612972doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.612972
http://creativecommons.org/licenses/by-nd/4.0/


2. The added size ∆d follows an arbitrary given probability
density function (pdf) p∆d , i.e, the probability that the added
size ∆d is in the interval (y , y + dy ), follows the equation:

P(y < ∆d < y + dy ) = p∆d (y )dy , y > 0. (4)

Our key result is as follows: given s and τ at any time in-
stant in the cell cycle, a cell division event occurs with propensity
f (s, τ )h(∆(τ )), i.e., the probability of division in the next infinites-
imal time interval (t , t + dt ] is f (s, τ )h(∆(τ ))dt , where h is an ar-
bitrary positively valued function of the added size. Referring the
reader to supplementary section S1 for a detailed proof, with the
chosen division propensity, ∆d becomes independent of sb with
pdf satisfying

p∆d (y ) = h(y )e−
∫ y

z=0 h(z)dz . (5)

Conversely, it can be shown that choosing

h(y ) =
p∆d (y )

1 −
∫ y

z=0 p∆d (z)dz
(6)

implements an adder for any arbitrary p∆d (y ). Thus, irrespec-
tive of newborn size and growth law, the cell cycle timing is set
such that the added size ∆d is an independent and identically
distributed random variable with pdf p∆d (y ). As a simple exam-
ple, the division propensity kf (s, τ ) for a constant h = k > 0
results in ∆d being an exponentially-distributed random variable
with mean ⟨∆d⟩ = 1/k . Here, we use the notation ⟨ ⟩ to de-
note the operation of expected value. Similarly, for this example,
the randomness of ∆d , quantified by the squared coefficient of
variability

CV 2
∆d

:=
⟨∆2

d⟩ − ⟨∆d⟩2

⟨∆d⟩2
, (7)

satisfies CV 2
∆d

= 1.
Upon cell divsion, the size and timer are reset as

s → βs, τ → 0, (8)

which correspond to selection of one of the daughters for fur-
ther size tracking. In addition, 0 < β < 1 is an independent
and identically distributed random variable. For symmetric divi-
sion in which mother cell size is approximated halved between
daughters, the mean value of β is ⟨β⟩ = 1/2, and its squared

coefficient of variation CV 2
β = ⟨β2⟩−⟨β⟩2

⟨β⟩2 quantifies the error in
size partitioning between daughters [39]. In general, it is pos-
sible to consider any arbitrary mean ⟨β⟩ for non-symmetric cell
size partitioning, as occurs in the case of budding yeast [40]. For
⟨β⟩ = 1/2, the newborn cell size statistics (mean and coefficient
of variation squared, respectively) are given by [39,41,42]

⟨sb⟩ = ⟨∆d⟩, (9a)

CV 2
sb

=
4CV 2

β + CV 2
∆d

(1 + CV 2
β)

3 − CV 2
β

. (9b)

Note from (9b) that the noise in the newborn size CV 2
sb

is much
more sensitive to errors in cell size partitioning (CV 2

β) than the
noise in added size (CV 2

∆d
). This point is more clearly seen in

the limit CV 2
β ≪ 1 when (9b) simplifies to

CV 2
sb
≈ 4

3
CV 2

β +
1
3

CV 2
∆d

, (10)

which means that β contributes approximately 4/3 of its noise to
the newborn cell size variability while ∆d contributes only 1/3 of
its noise.

Mechanistic implementation of the adder

In order to have a biological interpretation for the division propen-
sity, we provide a mechanistic framework for implementing the
adder size control. Consider a timekeeping regulator that ac-
cumulates from zero molecules at the time of cell birth. The
molecules of this regulator are assumed to be stable with a long
half-life and synthesized according to a Poisson process with a
rate kf (s, τ ) proportional to the growth law. A special case of this
is the exponential growth law f (s, τ ) ∝ s, where the division reg-
ulator is produced at a rate proportional to cell size [12,28]. The
theoretical foundation of this mechanism has been investigated
in several previous works [25, 43, 44]. The number of molecules
of our regulator m(t) ∈ {0, 1, ...} is a random process with in-
teger values, with transitions from m − 1 to m molecules occur-
ring stochastically with propensity kf (s, τ ) (Figure 2A). From a
biological perspective, the rate of change in cell size f (s, τ ) cor-
responds to the global protein production rate. Therefore, the
synthesis rate kf (s, τ ) can be naturally interpreted as indicating
that there is a fraction of proteome synthesis allocated to the ex-
pression of cell cycle regulators [45]. A cell division event is trig-
gered when the cell cycle regulator accumulates to a threshold
of M ≥ 1 molecules, and the regulator is subsequently degraded
during cytokinesis so that newborns restart the cycle with zero
molecules.

Alternatively, M can be interpreted as the number of stages a
cell must pass through from birth until division. Newborns start
with m(t0) = 0, and the transition between stages occurs stochas-
tically with propensity kf (s, τ ). In each transition from m − 1 to
m, the added cell size is an exponentially distributed random vari-
able with a mean of 1/k . Since there are M > 1 such transitions
to reach the division threshold, the total added size during the cell
cycle follows an Erlang distribution with a mean of ⟨∆d⟩ = M/k
and a squared coefficient of variation (Figure 2B):

CV 2
∆d

=
1
M

. (11)

To connect this interpretation with our general theory, we observe
that it is possible to obtain an associated propensity by estimating
h(y ) using the Erlang distribution as p∆d in (6). This mechanistic
interpretation of the generalized adder has recently been applied
in the analysis of cancer cells that were characterized by their
higher CV 2

∆d
[36] compared to healthy ones.

This multi-step framework can be extended to different scenar-
ios leading to an adder but with higher stochasticity in the added
size. These scenarios include:

• The rates of transition from m to m + 1 can be generalized
to be kmf (s, τ ), m ∈ {0, 1, 2, ... , M − 1}. In that case, the
added size is a sum of M independent exponential random
variables, each with mean 1/km [41].

• As previously done for the case of exponential growth [28],
the expression of the regulator can occur in bursts, where
bursts arrive as a non-homogeneous Poisson process with
rate kf (s, τ ), and each burst creates several molecules that
are itself drawn from a size-invariant distribution.
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Figure 2: A general mechanism implementing adder based cell size homeostasis. (A) The cell size s grows according to (1) with an arbitrary
growth law f (s, τ ). During the cell cycle, cell performs transitions between different stages m ∈ {0, 1, ... , M − 1} at a rate proportional to the growth
law, k ds

dt . Upon reaching the M-th stage, the cell divides, and the newborns restart the cell cycle from stage m = 0. Alternatively, m can be interpreted
as the number of molecules of a stable cell cycle regulator expressed at a rate k ds

dt , with cell division triggered upon reaching a critical threshold of
M molecules. (B) Simulation of cell size over time for a general non-exponential growth law. Top: Cell size over time (solid line) showing different
values of size at birth (red dots). The marginal plot shows their respective steady-state distribution. Middle: Added cell size as a function of time
(solid line) showing different values of added size at division (green dots). The marginal plot shows the distribution of added size from cell birth to
division. Bottom: Crossing of division stages m(t) over time. Once the cell reaches stage M = 10 (threshold stage), it undergoes cell division, and
the stage is reset to m = 0. Simulation parameters: ds

dt = µ s
1+s2 ;µ = 2.1, k = 10. The resets in cell size upon division were modeled as per (8) with

β = 1/2 with probability one.

• Finally, there could be statistical fluctuations in parameters
k and M across cell cycles that correspond to some form of
extrinsic noise in combination with the intrinsic noise of the
regulator copy numbers.

Our proposed generalized model, while ensuring an adder re-
gardless of the growth rate specifics, can be modified to capture
other paradigms of cell size homeostasis, such as timer (cell cy-
cle duration is independent of newborn size) or sizer (division
size is independent of newborn size) [20, 46]. Such cases often
result in an added size becoming correlated with the size at birth.
For example, an adder-sizer combination would result in a neg-
ative correlation between ∆d and sb as in fission yeast [47] and
slow-growing E. Coli cells [48]. This adder-sizer can be predicted
by modifications to this mechanism, such as reversible steps in
the stage-crossing process related to degradation of the division
regulator [12, 48, 49]. Alternatively, this adder-sizer can also be
modeled by accumlation of the regulator with a rate ksλkf (s, τ )
corresponding to size-dependent proteome allocation to regula-
tor synthesis [46,48,50]. Here λ > 0 (λ < 0) captures the nega-
tive (positive) correlations between the added size and newborn
size. Finally, the description of the division process using propen-
sities has opened new perspectives in the characterization, not
only of division strategies, but also of cell size dynamics across
multiple cell species [46,51,52].

In summary, we have described both a phenomenological
approach and a mechanistic approach implementing cell size
homeostasis as per the adder principle irrespective of the growth
law, and this approach can be easily generalized to other forms
of cell size control.

Clonal proliferation dynamics for different adders depends
on the growth law

Next, we explore how cell size regulation at the single-cell level
propagates across generations to affect the colony population.
Can different types of growth laws yield qualitatively different fluc-
tuations in clonal size, even though cell size control remains an
adder? To illustrate this, consider a cell colony that begins with
a newborn cell (the progenitor) of size sb. Given that division
events occur stochastically, the number of descendant cells N(t)
from the single progenitor is a stochastic process. To character-
ize the random variability of the colony population size, we use
its statistical moments: the mean number of cells in the colony
⟨N⟩ and the population noise quantified by CV 2

N , the squared
coefficient of variation of N(t). We are specifically interested in
connecting the transient dynamics of CV 2

N to the growth law f in
(1) for an adder with given statistical properties of ∆d .

Modeling approach for computing CV 2
N

Statistical moments of N(t) can be approximated analytically [35]
or numerically [53] in particular cases. To have a more accurate
approach, in this article, we use individual-based simulation al-
gorithms to simulate clonal expansion [34]. The stochastic timing
of division is set by the requirement of the added size to divi-
sion for each newborn cell to follow a prescribed distribution p∆d ,
and each division event results in addition of two newborns to
the population. To better illustrate the effect of the growth law on
CV 2

N , we simplify the approach by considering that all clonal repli-
cas start with a single newborn with the same size, all cells follow
the same growth law (i.e., no intercellular differences in growth
rate). We further assume the added size to follow a gamma dis-
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Figure 3: Illustration of sample trajectories for cell size, clonal population size, and total biomass for exponential and non-exponential
cell size dynamics, with cell division timing set according to the adder. (A) (top panel) Cell size dynamics for exponentially ds

dt = µs;µ = ln(2)
and (bottom panel) non-exponentially growing cells ds

dt = µ s
1+s2 ;µ = 2.1 within a proliferating colony. Different colors represent different descendants

of the colony progenitor. In both cases, size control follows the adder model, where the size added (∆d ) in each cell cycle is an independent and
identically distributed random variable following an exponential distribution with ⟨∆d⟩ = 1 and CV 2

∆d
= 1. (B) Examples of clonal population size over

time for simulated colonies. Each colony starts with a newborn progenitor cell with size sb = 1 a.u. The black line represents the colony in (A), and
the dark red line is the mean population number. The y-axis is on a logarithmic scale. (C) Total colony biomass, defined as the sum of the cell sizes
of all descendant cells at a given time. When all colonies start with the same-sized progenitor, the biomass is given by (13). For the exponential case
(top panel), the total biomass does not vary across colony replicas, while for the nonexponential case (bottom panel), biomass shows considerable
inter-colony differences.

tribution with mean ⟨∆d⟩ = 1 (arbitrary units) and noise in added
size CV 2

∆d
. Note from (9a) that this choice of ⟨∆d⟩ fixes the av-

erage size of the newborn cell to always be ⟨sd⟩ = 1. In this sce-
nario, stochasticity in the added size is the only source of noise
impacting clonal size dynamics and we modulate this noise level
by considering two cases: a high noise (CV 2

∆d
= 1) and a low

noise (CV 2
∆d

= 0.1) in ∆d .
Referring the reader to supplementary section S2 for details

on our simulation algorithm, we present sample trajectories of
cell size, clonal population size, and total biomass (sum of cell
sizes of all descendant cells at a given time point) in Figure 3 for
exponential (top panel) and non-exponential growth in cell size
(bottom panel).

As an example of non-exponential growth law, we use

ds
dt

= µ
s

1 + s2
(12)

that was previously reported based on experiments measur-
ing the proliferation potential of cell size-sorted human and
Drosophila cells [54,55].

Exponential cell size dynamics

Our results show that for exponential cell size dynamics with
f ∝ s in (1), CV 2

N increases from zero reaching its maximum
around the first division and then decreases monotonically to
zero over time (Figure 4A). Thus, as the average clonal size ex-
pands exponentially (Figure 3B top), the interclonal population
size differences asymptotically vanish. The difference between
low-noise (CV 2

∆d
= 0.1) and high-noise (CV 2

∆d
= 1) in added size

is the transient behavior of CV 2
N , with CV 2

∆d
= 0.1 exhibiting a

lower peak value of CV 2
N and oscillatory dynamics (Figure 4A).

To intuitively understand why CV 2
N → 0 as t → ∞ it might be

useful to consider the net biomass of the colony B(t) which is the
aggregate size of all cells in a colony at a given time. For expo-
nential cell size dynamics, the total biomass follows the simple
expression

B(t) = sbeµt (13)

where sb is the cell size of the progenitor cell that is assumed
to be the same across colony replicas. Thus, despite the fact
that the number of cells is variable from colony to colony, the
total biomass is fixed between colonies at any time t with the
coefficient of variation CV 2

B = 0. When the number of cells
in the colony is very large (each having random differences in
cell size), by the central limit theorem one could approximate
B(t) ≈ N(t)⟨s⟩, where ⟨s⟩ is the average steady-state cell size.
From this approximation, it can be seen that

CV 2
N

⟨N⟩→∞−−−−−→ CV 2
B . (14)

Note that for (14) to hold, the noise in cell size has to be
bounded CV 2

s < ∞. This property is ensured by cell size home-
ostasis mechanisms. A particular case where (14) does not hold
is the timer-based cell division. In this mechanism, cell cycle du-
ration is a size-independent random variable. Such timer-based
are known to be non-homeostatic with variance in cell size in-
creasing unboundedly over time [56].

Non-exponential cell size dynamics

Interestingly, a qualitatively different result emerges when cell
size dynamics follow non-exponential dynamics. This stark con-
trast is illustrated in Figure 3C. Unlike the exponential case,
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Figure 4: Cell size dynamics qualitatively impact the stochastic dynamics of clonal population size. (A) Plot of the squared coefficient of
variation of clonal size (CV 2

N ) over time for cell size dynamics following exponential and non-exponential growth laws as described in Figure 3. In all
cases, cell size homeostasis occurs according to the adder model, with ∆d following a gamma distribution with ⟨∆d⟩ = 1 and two values of CV 2

∆d

corresponding to high noise (CV 2
∆d

= 1) and low noise (CV 2
∆d

= 0.1). For exponential cell size dynamics, CVN exhibits a transient peak and then
approaches zero as t → ∞. In stark contrast, CV 2

N increases over time to asymptotically approach a non-zero value for non-exponential cell size
dynamics. Lowering the noise in the added size (CV 2

∆d
) results in lower values of CVN . (B) Plot of the squared coefficient of variation (CV 2

B ) of total
biomass, i.e., the aggregated size of all cells in a colony. For the exponential case, CVB = 0 due to (13), while CVB monotonically increases over time
in the non-exponential case, exhibiting similar asymptotic values to CVN . All coefficients of variation are computed based on 5000 colony replicas,
with colored regions representing the 95% confidence interval obtained using bootstrapping.

where biomass is given by (13) with no interclonal variability
(CV 2

B = 0), the non-exponential case shows biomass differences
between clones due to the history of cell division events in the
colony (CV 2

B > 0). The variability in biomass across colony
replicas is quantified in Figure 4B, where the biomass coefficient
of variation (CVB) increases monotonically over time, eventually
reaching a positive value. Tighter cell size regulation results in
lower CVB values (CV 2

∆d
= 0.1 compared to CV 2

∆d
= 1). Con-

sequently, as indicated by (14), since CV 2
B > 0, the population

noise (CV 2
N ) does not decay to zero but instead reaches a pos-

itive value after several generations (Figure 4A). Although CV 2
N

and CV 2
B are both zero at the start of clonal expansion, simula-

tions confirm that limt→∞ CV 2
N = CV 2

B > 0. However, as shown
in Figure 4, the transient profiles of these noises CV 2

N and CV 2
B

differ. Additional examples of the effect of non-linearity in the
growth law on clonal size noise are provided in the supplemen-
tary section S3.

Discussion

An important contribution of this article is to formulate a systems-
level stochastic model implementing adder -based cell size
homeostasis for any arbitrary cell size dynamics. This is achieved
by appropriately defining a stochastic propensity of cell division
events that ensures that the added size from cell birth to division
is a random variable independent of newborn size and follows a
given distribution p∆d . At any instant in the cell cycle, this propen-
sity is given as the product of two functions: the growth law f in
(1); and a function h defined in (6) of the added size since birth
to that cell cycle time instant. We also proposed a mechanis-
tic implementation of this scheme, which consists of a cell divi-
sion regulator synthesized at a rate proportional to the cell size
growth law, and division is triggered upon reaching a prescribed
threshold level (Figure 2). In the context of bacteria, a potential
regulator could be the FtsZ protein that polymerizes to form a
ring (Z-ring) defining the site of division and recruiting other di-

vision proteins to the site [12]. The generalization of the adder
presented here is particularly relevant given recent findings of
an adder in several human cell lines [26, 57] despite exhibiting
non-exponential cell size dynamics (see Figure 4 in [26]).

We connect adder -based cell size control at the single-cell
level to variations in clonal size at the population level, as quan-
tified by the coefficient of variation CVN of cell number across
colony replicates. The main finding is that despite having ex-
actly similar adder mechanisms, the growth law f qualitatively
changes the stochastic dynamics of clonal population expansion.
For exponential cell size dynamics, our results show a transient
peak in CVN that decays to zero over time (Figure 4A), while
for the non-exponential case, CVN increases over time to reach
a positive steady-state limit (Figure 4B). These qualitative differ-
ences can be explained by looking at the dynamics of the to-
tal colony biomass. Exponentially growing cells show smooth
exponential growth of biomass that increases as in (13) and
is invariant of the timing specifics of individual division events.
In contrast, cells with non-exponential growth yield a colony
biomass that depends on the history of division events (Figure
3C). The latter non-exponential scenario results in colony-to-
colony biomass fluctuations that increase over time (Figure 4B),
resulting in higher levels of CVN approaching a non-zero steady
state value as per (14).

An important limitation of the results presented in Figures 3-
4 is that we considered the timing of cell division events as the
only source of noise in the colony expansion process. Several
biologically realistic factors, such as variability in the size of the
initial progenitor cell and growth rate fluctuations, were ignored.
In supplementary section S4, we repeated simulations of clonal
expansion with these additional noise sources and, as expected,
we observe that they amplify both CVN and CVB (Figure S2).

These findings have important implications for understand-
ing the clonal expansion of cancer cells, for example, measured
through barcoding technologies. More specifically, each cell re-
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ceives a unique barcode at an initial time, and after several gen-
erations of clonal expansion, the number of cells in each bar-
code (or clone) is determined. Taking data from a recent publi-
cation on a melanoma cell line [58], we find a large variability in
clonal population size at the endpoint (CVN ≈ 1.3). Given that
many human cell lines exhibit non-exponential cell size dynam-
ics [26], this CVN value is consistent with our results in Figure 4,
where CVN approaches a positive steady state. However, given
the large variability seen in the data, it may be necessary to in-
clude other noise mechanisms (such as differences in the growth
rate of single cancer cells within the same isogenic population)
to capture the experimentally observed CV 2

N . In contrast, cells
with tighter cell size regulation and exponential growth, as seen
with some bacterial species, yield lesser inter-clonal population
size fluctuations [34]. Our study motivates time-resolved mea-
surements of CVN to systematically discern the noise sources
driving clonal expansion differences, and such differences have
important medical consequences driving single-cell heterogene-
ity in response to targeted cancer drug therapy [58–62].
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