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Pulmonary medical image analysis using image processing and deep learning approaches has made remarkable achievements in
the diagnosis, prognosis, and severity check of lung diseases.,e epidemic of COVID-19 brought out by the novel coronavirus has
triggered a critical need for artificial intelligence assistance in diagnosing and controlling the disease to reduce its effects on people
and global economies. ,is study aimed at identifying the various COVID-19 medical imaging analysis models proposed by
different researchers and featured their merits and demerits. It gives a detailed discussion on the existing COVID-19 detection
methodologies (diagnosis, prognosis, and severity/risk detection) and the challenges encountered for the same. It also highlights
the various preprocessing and post-processing methods involved to enhance the detection mechanism. ,is work also tries to
bring out the different unexplored research areas that are available for medical image analysis and how the vast research done for
COVID-19 can advance the field. Despite deep learning methods presenting high levels of efficiency, some limitations have been
briefly described in the study. Hence, this review can help understand the utilization and pros and cons of deep learning in
analyzing medical images.

1. Introduction

,e pandemic brought forth by the coronavirus disease 2019
(COVID-19) not only sustains a devastating response on the
well-being and health of the worldwide population but also
demands a high rate of monitoring so that it does not extend
on its destructive path. A vital aspect of the battle against
COVID-19 is the efficient examination of the patients, which
can help the infected receive quick treatment and immediate
care. As of now, the customary screening process to identify

COVID-19 is the reverse transcriptase-polymerase chain
reaction (RT-PCR) test method. ,is test identifies the
presence of SARS-CoV-2 ribonucleic acid (RNA) in respi-
ratory specimen samples (obtained via a range of procedures
such as the nasopharyngeal or oropharyngeal swabs) [1].,e
RT-PCR test method, despite being effective, has a few
shortcomings. It is time-consuming, complicated, and in-
volves a lot of manual labor. All these concerns make it
difficult to comb through the highly populated regions
where millions have to be tested in a rapid norm. It is also
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seen that the test’s sensitivity aspect is highly variable [2, 3].
Radiographic examination was opted as recourse to sur-
mount the difficulties in RT-PCR testing. Chest radiographs
(computed tomography (CT) and chest X-ray (CXR) im-
aging) are imaged and examined by radiologists (as depicted
in Figure 1(a)) to find visible references in tandem to the
infection.

Preliminary studies discovered that patients affected by
COVID-19 infection have abnormalities in chest radio-
graphic images, with a few proposing that radiographic
evaluation could be implemented as the principal method
for COVID-19 screening in highly populated epidemic areas
[4, 5]. Among radiographs, the CXRs are preferred over CTs
[6] as they support rapid triaging in parallel to viral testing
while being readily accessible and available. It is also easy to
target multiple regions due to its portability. ,e more
outstanding image quality of CT has to be sacrificed to avail
these merits. Although the radiographs generated can sig-
nificantly improve the process, it requires some form of
automation. Doctors can hasten the diagnostic procedure,
but it still involves scads of manual labor from skilled ra-
diologists, which is not a feasible solution to tackle the large
number of COVID-19 patients. To overcome this constraint,
there have been constant research attempts utilizing deep
learning (DL) methods to find the abnormalities (as seen in
Figure 1(b)) in radiographs [7].

Convolutional neural network (CNN) is the primary
choice of neural network framework for any DL practitioner
working with medical images [8] and radiographs [9] along
with vision-based tasks in general such as classification [10],
object detection [11], and segmentation [12]. DenseNet, a
type of CNN that forms the base to many of the architecture
used to recognize COVID-19 from CTs and CXRs, is shown
in Figure 2. CNNs stem from the mathematical operation of
convolutions (as shown in Figure 3), which expresses the
shape modification of functions. ,e term convolution
encompasses the process and its result function. ,e ability
of CNNs to analyze and capture spatial information helps to
perform better than most other algorithms present. CNNs
generally comprise convolutional layers, pooling layers, and
various filters. ,e architecture usage depends on the de-
mand and size of data available with which it is training.
Dropout [13] and transfer learning [14] are commonly used
techniques to improve the model’s performance. Normali-
zation approaches such as batch normalization [15] and
group normalization [16] help improve the model’s per-
formance, provide the ability to users in building larger
models, and tackle the vanishing gradient problem.

Machine learning (ML) algorithms are generally chosen
over DL algorithms to compensate the computational re-
quirements, but in the medical field, time and computational
requirements are always traded off for higher standards of
precision and hence used in preprocessing [19], feature
selection [20], classification [21], and regression [22]. As the
COIVD-19 demanded faster results, machine learning av-
enues have been explored (as shown in Table 1) to account
for the global situation constraints. ,e outline of the ap-
plication of the COVID-19 detection system in the real
world is pictorially represented in Figure 4. In [18], an

extensive study comparing K-nearest neighbor (KNN) and
support vector machine (SVM) to CNNs was made. ,e
experimentation presented that the DL classifiers trump the
machine learning classifiers. Additionally, the DL-based
classification methods generate results nearly 5 times faster
than the machine learning classifiers. Hence, they are ap-
plied in various fields [23–26]. On experimentation with
MobileNetV2 [27], the run time and computational power
requirements were further reduced. Table 2 lists the history
of the networks used.

A simple inference that can be made throughout all the
literature is that the DL models (especially CNNs) surmount
the ML models due to their capability of capturing spatial
information. ,e spatial correlations are completely absent
in general ML methods and hence fail to capture important
correlations or key points that are absent while considering
the image in a linear aspect. ,e DL models are ultimately
black box models, and the ML methods are easily inter-
pretable. Still, recent explainable methods such as class
activation maps [48, 49] help remove that barrier and let the
user know how the model is providing an output or how the
inference is generally created [50, 51].

1.1. Review Outline. ,e following contributions are made
through this review study:

(i) A detailed discussion is done with respect to the
COVID-19 prediction approaches of the preceding
reviews. ,e study analyses their merits and de-
merits and provides key insights as well regarding
the same. It covers the essential aspects of COVID-
19 research that the previous studies have missed.

(ii) A systematic comparison is studied encompassing
COVID-19 detection techniques about prognosis,
diagnosis, and severity/risk detection.

(iii) An extensive discussion on the challenges with
regard to fostering high-quality results in detecting
COVID-19. Solutions for these challenges are
presented alongside as well.

(iv) An in-depth analysis of the pre- and post-processing
methods used on the COVID-19 datasets and ar-
chitectures is provided.

(v) Discussion on the unexplored areas such as meta-
learning and self-supervised learning and defining
the explorable research avenues regarding the same
are presented.

(vi) ,is work emphasizes howmost of the research that
takes place for COVID-19 can help propagate re-
search for other diseases and medical image analysis
in general.

Moving on to Section 2, the discussion is carried out
regarding the premier approaches in COVID-19 detection
methodologies on diagnosis, prognosis, and severity/risk
detection. ,e inferences collected from reviewing the pa-
pers are also noted. Section 3 discusses the merits and
limitations of the past reviews, which have described past
attempts on detecting COVID-19 through deep learning
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methods. ,e section also includes an extension to the
solutions provided to the challenges mentioned in Shorten
et al. [52] by exploring different paradigms of deep learning.
A discussion on the various vision-based pre- and post-
processing techniques used to improve deep learning al-
gorithms is given in Section 4. ,e review continues by
identifying more challenges faced while attempting to detect
COVID-19 and a brief discourse on the future directions to
utilize the vast research done for COVID-19 towards the
domain of medical image analysis in general under Section 5
and the conclusion in Section 6.

2. Discussion on COVID-19 Medical
Image Analysis

,e major COVID-19 medical image analysis tasks are as
follows: diagnosis, prognosis, and severity/risk detection.
,e upsurge of the COVID-19 epidemic has triggered many
researchers to contribute their research findings in

pulmonary image analysis using DL and other image pro-
cessing techniques leading to an astonishing breakthrough
in COVID-19 diagnosis with stupendous amount of quality
works. Discerning COVID-19 from other non-COVID-19
conditions is an important issue to be addressed; hence, the
study has been majorly categorized as follows: COVID-19/
non-COVID-19 pneumonia (2-class classification) and
COVID-19/non-COVID-19 pneumonia/normal (3-class
classification). ,e study also includes a discussion on
classifying COVID-19 against normal condition and other
lung diseases, the impact of 2-class and 3-class classifications
using the same algorithm on the same dataset, and per-
forming the same classification technique on different image
modalities (CTand CXR).,e aforementioned workflow has
been pictorially depicted in Figure 5.

2.1. COVID-19 Diagnosis. COVID-19 diagnostic approach
based on medical image analysis utilizes the CXR and CT

Monitor

Gantry

Cross section CT
scan slices

Radiologist

Patient

(a)

(A) (B)

(b)

Figure 1: (a) Radiological image acquisition (courtesy: newsnetwork.mayoclinic.org/discussion/mayo-clinic-radio-lung-cancer-
updatehousehold-health-hazardsprediabetes). (b) (A) Axial chest CT image (non-enhanced) of a positive RT-PCR-confirmed 70-year-
old man showing ground-glass opacities along with dilated segmental and subsegmental vessels prominent on the right side. (b) (B) CXR
showing pulmonary hypertension, mitral insufficiency, and atrial fibrillation along with COVID-19 contagion in an 83-year-old man
(arrows indicating ground-glass opacity findings in the upper right lobe and consolidation findings in the lower left lobe of the lungs)
(arrows) (courtesy: radiologyassistant.nl).
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Figure 2: Example of DenseNet architecture.
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images. AI can adequately improve the diagnostic model’s
efficiency by accurately locating the infections due to the
virus in X-ray and CT images, hence facilitating assistance to
the radiologists in making clinical decisions for disease
diagnosis and triage. [53].

2.1.1. COVID-19/Non-COVID-19 Pneumonia Diagnosis.
Harmon et al. [54] proposed an AI-based 3D model using
DenseNet-121 to identify COVID-19 frommultinational CT

data. 2724 scans from 2617 COVID-19 victims were used in
this work, among which 1029 scans belonged to 922 RT-
PCR-confirmed COVID-19 patients. Initially, the lung re-
gion was segmented using Anisotropic Hybrid-Net (AH-
Net) architecture. On testing the model using an indepen-
dent dataset, it achieved accuracy of 90.8%, area under the
curve (AUC) of 0.949, sensitivity of 84%, specificity of 93%,
positive predictive value (PPV) of 0.794, and negative
predictive value (NPV) of 0.984 with sufficient generaliza-
tion. In 140 non-COVID-19 pneumonia patients, the false-

2 4 9 1 4

2 1 4 4 6 1 2 3

-4X 7 4 =

51

2 -5 1

1 1 2 9 2

7 3 5 1 3

2 3 4 8 5 Filter/
Kernel

Image

Feature

Figure 3: 2D feature extraction by filters and kernels from images through convolution operations.

Table 1: Machine learning techniques tried and true in preceding COVID-19 medical image analysis.

Algorithm Summary
RF1 [17] Utilized quantitative features of CT scans
SVM [18] Tested SVM (RBF)1 on raw and modified CT images
KNN [18] Tested KNN (N� 21)1 on raw and modified CT images
1RF indicates random forest algorithm. RBF indicates radial basis function. N indicates the number of neighbors considered. Rest all were set to the general
settings.
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Figure 4: COVID-19 detection system.
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Table 2: Evolution of CNNs since 1959. ,e table describes primary points of novelty that motivated new architectures to be produced.

Architecture Primary focus and novelty Author and year
Simple and complex cells
[28]

Described cells in the human cortex. Hubel & Wiesel (1959)Proposed its use case in pattern recognition.
Neocognitron [29] Converted the cell idea from [28] into a computational model. Fukushima (1980)

LeNet-5 [30]
First modern CNN.

Lecun et al. (1998)Composed of two convolution layers with three fully connected layers. Introduced the
MNIST database.

AlexNet [31]
Implemented overlapping pooling and ReLU [32].

Krizhevsky et al. (2012)Non-saturating neurons are used.
Facilities’ effective usage of GPU-driven methods.

VGG-16 [33] Made an exhaustive evaluation on architectures of increasing depth. Simonyan and
Zisserman (2014)Used architectures with tiny (3× 3) convolution filters.

Inception [34]
Dimensions of network are increased while keeping the computational budget

constant. Szegedy et al. (2015)
Utilized the Hebbian principle and multiscale processing.

Modified VGG-16 [35] Proposed that if a model is strong enough to fit a large dataset, it can also fit to a small
one. Liu and Deng (2015)

ResNet [36]
Presented a residual learning framework.

He et al. (2015)Allowed building larger models with deeper layers through skip connections. Paved
the way for more variants [37, 38].

Xception [39] Presented a depth-wise separable convolution as an inception module with a
maximally large number of towers. Chollet (2016)

MobileNets [40] Made for mobile and embedded vision applications. Howard et al. (2017)Streamlined architecture using depth-wise separable convolutions.

ResNeXt [41] Presented cardinality (size of the transformation set) as a key factor along with the
dimensions of an architecture. Xie et al. (2017)

DenseNet [42]
Complete intra-layer connections among all singular connections in a feed-forward

fashion. Blei et al. (2017)
Strengthens feature propagation and encourages feature reuse.

Squeeze-and-excitation
block [43]

Adaptively recalibrates channel-wise feature responses by explicitly modelling
interdependencies between channels. Hu et al. (2018)

Residual inception [44] Combined residual and inception module. Zhang et al. (2018)
NASNet search space
[45]

Designed a new search space to enable transferability. Zoph et al. (2018)Presented a new regularization technique—scheduled drop path

EfficientNet [46] Proposed a novel scaling technique that scales all the dimensions (width/resolution/
depth) uniformly using a compound coefficient. Tan and Le (2019)

Normalizer-free models
[47]

Developed an adaptive gradient clipping technique to overcome instability. Brock et al. (2021)Designed a significantly improved class.
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Figure 5: Flow of review on different medical imaging analysis tasks.
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positive rate was 10%. ,is model was able to furnish
reasonable performance metrics, thereby enabling it as an
unbiased clinical trial tool for assisting the COVID-19
medical image analysis in specific bounded societies during
the epidemic outbreak.

A dual-sampling attention network realized by a 3D
CNN using ResNet-34 with an online attention refinement
and a dual-sampling strategy was proposed by Ouyang et al.
[55] to categorize COVID-19 against community-acquired
pneumonia (CAP). ,e model was evaluated on a multi-
center CTdataset of 4982 images consisting of 1593 CAP and
3389 COVID-19 images. Dual-sampling strategy (uniform
sampling and size-balanced sampling) was used to mitigate
the effect of imbalanced learning and the online attention
module to target the infected regions, thereby increasing the
model explainability and interpretability by showing visual
evidence to reveal the critical regions considered by the
model for diagnosis. ,e ability to generalize the proposed
model was evaluated using an autonomous test data, which
gave an accuracy of 87.5%, AUC value of 0.944, along with
sensitivity of 86.9%, specificity of 90.1%, and F1 score of
82.0%.

A multiview fusion model using ResNet-50 was devel-
oped byWu et al. [56], which makes use of the axial, sagittal,
and coronal views of CTas the three-channel input image to
the model. A multicenter dataset consisting of high-reso-
lution CT images of 368 COVID-19-infected patients and
127 patients suffering from other pneumonia (67 viral
pneumonia, 47 bacterial pneumonia, 11 mycoplasma
pneumonia, and 2 fungal pneumonia) were collected. ,e
multiview model shows better performance than the single-
view model with an accuracy of 76%, AUC value of 0.819,
sensitivity of 81.1%, specificity of 61.5%, and overcoming the
overfitting issue of the single-view model. ,is model can
mitigate the work burden of radiologists and hence improve
the diagnostic efficiency.

Ardakani et al. [57] compared ten convolutional neural
networks: ResNet-101, ResNet-50, ResNet-18, VGG-16,
VGG-19, MobileNetV2, SqueezeNet, AlexNet, GoogLeNet,
and Xception to distinguish COVID-19 against non-
COVID-19 pneumonia. A dataset consisting of 1020 high-
resolution CT scan slices from 108 COIVD-19 victims and
86 victims with non-COVID-19 pneumonia (viral pneu-
monia and other atypical pneumonia) were collected.
ResNet-101 surpassed the other CNNs due to its high
sensitivity of 100% and AUC value of 0.994 for the given
dataset. It also achieved accuracy of 99.51%, specificity of
99.02%, PPV of 99.03%, and NPV of 100%. ,is model is
claimed to remove the substantial cost and can be used as an
ancillary method in CT imaging.

An adaptive feature selection-guided deep forest (AFS-
DF) method was proposed by Sun et al. [58] for COVID-
19 classification using CT radiographs. ,e deep forest
model was used on four location-specific handcrafted
features such as volume, surface area, number of infected
lesions, and histogram distribution from the CT images to
describe high-level feature representation. ,e selected
features were classified using SVM. A dataset consisting of
2522 de-identified pulmonary CT images from 1027 CAP

and 1495 COVID-19-infected patients was used for this
study. ,e proposed AFS-DF variants outperform by
achieving 1.38%, 1.15%, and 1.11% enhancement over
their obverse methods (logistic regression (LR), SVM, and
RF) in most of the evaluation metrics. AFS-DF-SVM
outperforms the other models with accuracy of 91.79%,
AUC value of 0.9635, sensitivity of 93.05%, and specificity
of 89.95%. ASF-DF reduces the repetition of features using
the trained forest.

In the study by Narin et al. [59], binary classifications
were performed to distinguish COVID-19 against viral and
bacterial pneumonia using 341 COVID-19 CXRs and 2800
normal CXRs from the GitHub repository (open source)
commonly contributed by Cohen et al. [60] and ChestX-ray8
database [61], respectively. 2772 bacterial pneumonia and
1493 viral pneumonia CXRs were collected from a Kaggle
repository called chest X-ray images (pneumonia) [62]. ,e
model performance of five different pre-trained CNN var-
iants (ResNet-152, ResNet-101, ResNet-50, Inception-
ResNetV2, and InceptionV3) was compared, among which
ResNet-50 model showcased the highest classification per-
formance. ,is model achieved an accuracy, precision, and
specificity of 99.5%, 98.0%, and 99.5%, respectively, for
discriminating COVID-19 against other viral pneumonia,
whereas for COVID-19/bacterial pneumonia classification,
the accuracy, precision, and specificity values were 99.7%,
98.3%, and 99.8%, respectively. ,is method was imple-
mented directly in an end-to-end manner eliminating
manual intervention for feature extraction, feature selection,
or classification tasks.

A deep learning model comprising of three major
components, a backbone network, a classification head, and
an anomaly detection head, was proposed by Zhang et al.
[63] to reduce the false-negative rate as much as possible.
,e model was built using 1431 CXR pneumonia images of
1008 patients from the ChestX-ray14 dataset [61] and 100
images belonging to 70 COVID-19 patients from the GitHub
repository [60]. ,e experiment was conducted for different
values of T parameter that controls the compensation be-
tween the true-positive rate and the true-negative rate. As
the T value decreases from 0.50 to 0.15, the sensitivity in-
creases from 72.00% to 96.00% and the specificity drops
from 97.97% to 70.65%, but the AUC value remains the
same. Based on the performance metrics (sensitivity—96%,
specificity—70.65%, and AUC—95.18), the model performs
well for T� 0.15 with a reduced false-negative rate of nearly
4%. Despite its good performance, it had its limitations, 4%
missing COVID-19 cases and a false-positive rate of almost
30%.

Abraham and Nair [64] used a combination of multi-
CNN models (MobileNetV2, SqueezeNet, Xception, Dar-
kNet-53, and ShuffleNet) with correlation-based feature
selection (CFS) followed by the BayesNet classifier. ,e
experiment was performed using two datasets: Dataset I: 453
COVID-19 and 107 non-COVID-19 images of either bac-
terial/viral pneumonia [55] and 390 CXRs of viral and
bacterial pneumonia [60, 61, 65, 66] and Dataset II: 71
COVID-19 CXRs and 7 non-COVID-19 CXRs [66]. Only
the BayesNet classifier achieved an accuracy of >90%. ,e
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proposed model gave an accuracy of 91.16% and 91.44% for
Dataset I and Dataset II, respectively. ,e multi-CNNs (with
3 or more pre-trained CNNs) comparatively showed better
results than the single pre-trained CNNs.

Autee et al. [67] proposed the StackNet-DenVIS to re-
duce the false-negative rate in classification using a stacked
generalization ensemble of four different CNNs. A total of
9953 CXRs consisting of 9085 non-COVID-19 and 868
COVID-19 cases from multiple sources were gathered
[60, 65, 68, 69]. ,e data imbalance problem was handled by
generating synthetic images using deep convolutional
adversarial generative networks and SMOTE+Tomex links.
With an accuracy of 95.07%, this model achieved a low false-
negative rate at low cost in comparison with the RT-PCR
test.

2.1.2. COVID-19/Non-COVID-19 Pneumonia/Normal or
Non-Pneumonia Diagnosis. A 3D deep learning framework,
COVNet, realized using ResNet-50 was implemented by Li
et al. [70] to distinguish COVID-19 against CAP and non-
pneumonia cases. ,e network was able to extract the 2D
local features and the 3D global representative features for
better classification. A CT image dataset consisting of 1292
COVID-19 CTs, 1325 CTs with non-COVID-19 pneumonia,
and 1735 CTs with CAP infections, totally contributing to
4352 scans, was collected for this study. An AUC value of
0.96, sensitivity of 90%, and specificity of 96% were obtained
with 95% confidence interval for an independent test dataset.
Due to the shortage of laboratory-confirmed COVID-19
data, the work was unable to present the results for dis-
tinguishing COVID-19 from other lung diseases.

Wang et al. [71] have proposed a prior-attention residual
model, PA-66-M, using two subnetworks based on 3D
ResNets for pneumonia detection and classification of
pneumonia type. ,e two subnetworks were integrated by a
late-fusion strategy using a fully connected layer with
learning capacity. Lung segmentation was performed using
U-Net. ,e dataset consisting of 936 chest CTs of normal
cases, 2406 CT images with interstitial lung disease (only
viral pneumonia), and 1315 COVID-19-infected CT images
was collected from multiple cooperative hospitals. ,e
proposed model was capable of accurately focusing the le-
sions with an accuracy, sensitivity, and specificity of 93.3%,
87.6%, and 95.5%, respectively. By applying a constant
weighting factor, the prior-attention residual model was able
to converge faster than the self-attention strategy. Some of
the normal scans were misclassified to pneumonia class by
the proposed model, and it also failed to unveil some of the
scans with COVID-19 lesions.

Hasan et al. [72] used handcrafted texture features based
on Q-deformed entropy along with deep features from
CNN. ,e extracted features were refined by analysis of
variance (ANOVA) and then classified to distinguish
COVID-19 from other pneumonia types and normal cases.
,e LSTM neural network classifier outperformed SVM,
KNN, and LR with an accuracy of 99.68%. ,e performance
of the combined features was better when compared to using
only handcrafted or deep features.

,ree-dimensional classification models using two
CNNs namely the ResNet-23 and ResNet-18 were used by
Butt et al. [73] to classify COVID-19/influenza A viral
pneumonia (IAVP)/normal CT image patches. A location
attention mechanism was incorporated to identify the
corresponding location of the identified patch in the pul-
monary CT image. ,is model was smart enough to accu-
rately distinguish COVID-19, when compared to using a
model without location attention mechanism. Hence, an
overall accuracy of 86.7% was observed with sensitivity of
98.2%, specificity of 92.2%, and AUC value of 0.996. ,is
work used 618 transverse-section CT samples in which 219
samples were obtained from nearly 110 COVID-19-infected
patients, 224 scans from 224 IAVP patients, and 175 from
healthy people.

Detailed relation extraction neural network (DRENet) is
a pre-trained ResNet-50 with feature pyramid network
proposed by Song et al. [74] to derive the top-K-level fea-
tures and extract the image-level predictions for COVID-19
diagnosis at the patient level. For model development and
evaluation, the dataset was collected from different hospitals
comprising 777 CT images from 88 COVID-19 victims, 505
CTslices from 100 bacterial pneumonia patients, and 708 CT
slices from 86 healthy people. ,e regions detected by the
proposed model contained the most important feature of
COVID-19 infection, ground-glass opacity (GGO). DRENet
exhibited an efficient performance with an accuracy of 93%
and F1 score of 0.93.

A social mimic optimization method was proposed by
Toğaçar et al. [75] to select the potential deep features from
the combined feature set of MobileNetV2 and SqueezeNet,
to categorize COVID-19 from pneumonia and normal
conditions. It provides efficient features by stacking the
original images with the reconstructed fuzzy color images,
which had better quality and reduced noise. It used 76
COVID-19 images from [60] and 295 COVID-19, 98
pneumonia, and 65 normal images from [69]. On classifi-
cation using SVM, all performance metrics, F score, sen-
sitivity, specificity, precision, and accuracy, were 100% for
detecting COVID-19 cases, exhibiting an overall accuracy of
99.27%. ,e average values of F score, sensitivity, specificity,
and precision for all the three classes are 0.9858, 98.33%,
99.69%, and 98.89%, respectively. ,e model was aimed to
produce swift and more authentic results as MobileNetV2
and SqueezeNet used fewer parameters compared with the
other networks.

Wang et al. [68] created an open-source network,
COVID-Net, and public dataset, COVIDx, consisting of
13,975 CXR images belonging to 13,870 patients obtained by
combining data from five different public data repositories
[60, 76–79]. COVID-Net architecture used a lightweight
residual design pattern called projection-expansion-pro-
jection-extension (PEPX) pre-trained on ImageNet dataset.

Compared with VGG-19 and ResNet-50 architectures,
COVID-Net has lower complexity in terms of architecture
and computations. It showed an accuracy of 93.3% with
sensitivity of 91.0%. Qualitative analysis of the network
implies that it does not depend on inappropriate informa-
tion for decision-making.
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Nishio et al. [80] have evaluated the performance of
conventional neural network architectures with different
data augmentation techniques (conventional method, mix
up, and random image cropping and patching (RICAP)) to
identify COVID-19 pneumonia from pulmonary X-rays. 215
COVID-19-infected, 533 non-COVID-19 pneumonia-in-
fected, and 500 healthy CXR images [60, 80] were used for
this work. VGG-16 with the combination of conventional
with mix-up data augmentation was found to give better
results with an accuracy of 83.7% and a sensitivity value of
90.9% compared with ResNet-50, DenseNet-121, Mobile-
Net, and EfficientNet.

,e MH-Net proposed by Canayaz et al. [81] makes use
of two meta-heuristic algorithms namely the binary gray
wolf optimization (BGWO) and binary particle swarm
optimization (BPSO) to select the potential features
extracted from VGG-19, ResNet, GoogLeNet, and AlexNet.
Finally, an SVM classifier was used. 364 CXR images each of
COVID-19, pneumonia, and normal cases ([60, 65, 69])
enhanced by the image contrast enhancement algorithm
were used for this work. VGG-19 model with BPSO feature
optimization (488 features) on the enhanced data outper-
forms the other models with an overall accuracy of 99.38%,
sensitivity of 99.39%, and specificity of 99.69%. ,e un-
balanced class problem is overcome using equal number of
CXRs in each class, and also, it uses fewer parameters
compared with other models.

,e COVID-19 Inception-ResNet model (CoVIRNet)
that uses different inception residual blocks for diagnosing
COVID-19 infection from the CXR images was proposed by
Almalki et al. [82]. Multiscale feature maps obtained from
different depths, which are then concatenated by average
pooling, are used to improve the efficiency of the proposed
method. ,e problem of overfitting encountered by small
datasets has been overcome using different regularization
techniques in the deep learning blocks. ,e author proposed
two approaches: (i) CoVIRNet-Inception-ResNet blocks
consisting of a single inception module with extra branches
of convolution layer using reduction factorization; (ii)
CoVIRNet with RF-multiscale, multilayer features extracted
from the proposed Inception-ResNet blocks are classified
using a random forest classifier. For this, a multicenter
dataset of size of 1251 was used, among which 284 COVID-
19 infection images were collected from [79, 83]. 310 normal
CXRs, 330 bacterial pneumonia, and 327 viral pneumonia-
infected images were collected from [62]. On comparing the
performance of CoVIRNet with fine-tuned versions of
Xception, ResNet-101, MobileNetV2, and DenseNet-201,
the second approach CoVIRNet with RF showed better
performance with accuracy of 97.29%, precision of 97.74%,
recall of 97.02%, and F score of 0.9732.

Subsection 2.1 gives a brief review on the different
COVID-19 diagnostic methods by performing two-class or
three-class classifications against other pneumonia/normal
cases proposed by various researchers in both CXR and CT
imaging modalities. Tables 3 and 4 summarize the studies
including the network, dataset, and performance metrics
used for the evaluation of COVID-19/non-COVID-19
pneumonia diagnosis and COVID-19/non-COVID-19

pneumonia/normal or non-pneumonia diagnosis, respec-
tively. ,e performance metrics used for evaluation and
their corresponding formulae are tabulated in Table 5.

2.1.3. Other Comparative Studies. Apart from the tech-
niques mentioned in the previous sections, there are also
other comparative studies done by some researchers, which
explore the performance of a COVID-19 diagnostic algo-
rithm for different image modalities (CT and CXR) or on
datasets with binary (COVID-19/non-COVID-19) or mul-
ticlass classifications (COVID-19/non-COVID-19/normal/
other lung diseases).

(1) Comparison of Binary and Multiclass Classification. Hu
et al. [84] performed an automated diagnosis of COIVD-19
based on ShuffleNetV2 on pulmonary CT images. Two
classifications are performed on the data collected from
multiple sources. 16 different data augmentation operations
were performed on the 1042 chest CT images (comprising of
521 COVID-19, 397 healthy, 76 bacterial pneumonia, and 48
SARS) to increase the dataset size for better training of the
model. Binary classification of COVID-19 from the healthy
cases obtained an accuracy of 91.21% along with sensitivity
of 90.52%, specificity of 91.58%, and AUC value of 0.9689. In
the case of multiclass classification (COVID-19/bacterial
pneumonia/SARS), the accuracy dropped to 85.40% for the
same algorithm. ,e sensitivity, specificity, and AUC values
were 85.71%, 84.88%, and 0.9222, respectively.

Chowdhury et al. [69] had compared the performance of
different pre-trained CNNs for COVID-19 detection with
and without data augmentation using the data collected
from multiple public datasets ([60, 83, 85]). Among the
various networks analyzed, DenseNet-201 showed compa-
rably better classification results for both COVID-19/normal
and COVID-19/normal/pneumonia discrimination with
image augmentation. ,e binary classification shows better
performance with an accuracy of 99.7% compared with the
multiclass problem with an accuracy of 97.94%. ,e per-
formance difference was insignificant, and the overall per-
formance of three-class problemwas less in comparison with
the binary classification problem.

COVID-DenseNet proposed by Sarker et al. [86] is a
deep learning architecture realized using DenseNet-121 with
transfer learning from CheXNet for the detection of
COVID-19 from COVIDx [71] CXR images. ,e most
significant regions in the image that were responsible for the
prediction were highlighted by performing an interpretation
analysis using Grad-CAM.,e overall accuracy for COVID-
19/non-COVID-19 classification and COVID-19/pneumo-
nia/normal classification is 0.96 and 0.94, respectively. ,is
work tried to make the model explainable and interpretable
to certain extent using the Grad-CAM representation.

DarkCovidNet architecture based on the DarkNet-19
model was designed by Ozturk et al. [87] to identify COVID-
19 from X-ray images collected from [60, 61] comprising of
127 COVID-19, 500 pneumonia, and 500 normal images.
For COVID-19/no findings/pneumonia classification, the
model produced a classification accuracy, sensitivity, and
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specificity of 87.02%, 85.35%, and 92.18%, respectively. In
the case of binary classification COVID-19/no findings, the
performance metrics increased to accuracy of 98.08%,
sensitivity of 95.13%, and specificity of 95.3%. DarkCo-
vidNet was able to diagnose COVID-19 within seconds.

Mahmud et al. [88] proposed the CovXNet architecture,
which is a multi-dilation CNN architecture that makes use of
transferable multi-receptive feature optimization technique

for COVID-19 detection from CXR images. A balanced
dataset consisting of 305 images of different resolutions
collected from different medical centers was used for each
class: COVID-19, viral pneumonia, bacterial pneumonia, and
normal. For distinguishing COVID-19 against normal, bac-
terial pneumonia, and viral pneumonia, the binary classifi-
cation resulted in a accuracy of 97.4%, 94.7%, and 87.3%,
respectively. While carrying over the same architecture for

Table 3: A summary of research reviewed on COVID-19/non-COVID-19 pneumonia diagnosis.

Work Image
modality Dataset size Method used Accuracy

(in %)
Sensitivity or
recall (in %)

Specificity
(in %)

AUC
(in %)

Precision
(in %)

F1
score

Harmon
et al. [54] CT

(i) 1029
COVID-19 DenseNet-121 and

AH-Net
segmentation

90.8 84 93 94.9 NA NA(ii) 1695 non-
COVID-19
Pneumonia

Ouyang et al.
[55] CT

(i) 3389
COVID-19 Dual sampling

87.5 86.9 90.1 94.4 NA 0.82
(ii) 1593 CAP Attention network

with ResNet-34

Wu et al.
[56] CT

(i) 331
COVID-19 Multiview fusion

model using
ResNet-50

76 81.1 61.5 81.9 NA NA(ii) 114 other
pneumonia

Ardakani
et al. [57] CT

(i) 510
COVID-19 ResNet-101 99.51 100 99.02 99.4 NA NA(ii) 510 non-
COVID-19

Sun et al.
[58] CT

(i) 1495
COVID-19 Adaptive feature

91.79 93.05 89.95 96.35 NA NA
(ii) 1027 CAP Selection-guided

deep forest—SVM

Narin et al.
[59] CXR

(i) 341
COVID-19

ResNet-50

99.5 99.4 99.5 NA 98 0.987(ii) 1493 viral
pneumonia
(iii) 341
COVID-19

99.7 98.8 99.8 NA 98.3 0.985(iv) 2772
bacterial
pneumonia

Zhang et al.
[63] CXR

(i) 100
COVID-19 Residual CNN with

anomaly detection
head

NA 96 70.65 95.18 NA NA(ii) 1431
pneumonia

Abraham
and Nair
[64]

CXR

(i) 453
COVID-19

Combination of
multi-CNN

91.16 98.5 NA 96.3 85.3 0.914(ii) 497 non-
COVID-19
Pneumonia

(i) 71 COVID-
19

91.44 98.6 NA 91.1 98.6 0.986(ii) 7 non-
COVID-19
Pneumonia

Autee et al.
[67] CXR

(i) 868
COVID-19 StackNet-DenVIS 95.07 99.40 94.61 98.40 NA NA(ii) 9085 non-
COVID-19

Bold values represent the best result obtained for each performance metric among all the methodologies compared.
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Table 4: A summary of research reviewed on COVID-19/non-COVID-19 pneumonia/normal or non-pneumonia diagnosis.

Work Image
modality Dataset size Method used Accuracy

(in %)
Sensitivity or
recall (in %)

Specificity
(in %)

AUC
(in %)

Precision
(in %)

F1
score

Li et al.
[70] CT

(i) 1292
COVID-19

COVNet NA 90 96 96 NA NA(ii) 16325 non-
COVID-19
pneumonia
(iii) 1735 CAP

Wang
et al. [71] CT

(i) 1315
COVID-19 Prior-attention

93.3 87.6 95.5 NA NA NA(ii) 963 normal Residual model 3D
ResNets

(iii) 2406 ILD

Hasan
et al. [72] CT

(i) 118 COVID-
19 LSTM using Q-

deformed entropy
and deep features

99.68 NA NA NA NA NA(ii) 96
pneumonia
(iii) 107 normal

Butt et al.
[73] CT

(i) 219 COVID-
19 3D ResNets with

location attention
mechanism

86.7 98.2 92.2 99.6 81.3 0.839(ii) 224 IAVP
(iii) 175 normal

Song et al.
[74] CT

(i) 777 COVID-
19

DRENet 93 93 NA NA 93 0.93(ii) 505 bacterial
pneumonia
(iii) 708 normal

Toğaçar
et al. [75] CXR

(i) 371 COVID-
19 SVM—social

99.27 98.33 99.69 NA 98.89 0.9858(ii) 98
pneumonia

Mimic optimized
deep features

(iii) 65 normal

Wang
et al. [68] CXR

(i) 358 COVID-
19

COVID-Net 93.3 91 NA NA NA NA
(ii) 5538 non-
COVID-19
pneumonia
(iii) 8066
normal

Nishio
et al. [80] CXR

(i) 215 COVID-
19 VGG-16 with

conventional and
mix-up

augmentation

83.7 90.9 NA NA NA NA(ii) 533 non-
COVID-19
pneumonia
(iii) 500 normal

Canayaz
[81] CXR

(i) 364 COVID-
19

MH-Net 99.38 99.39 99.69 NA 99.39 0.9938(ii) 364
pneumonia
(iii) 364 normal

Almalki
et al. [82] CXR

(i) 284 COVID-
19

CoVIRNet feature
extractor with RF 97.29 97.02 NA NA 97.74 0.9732

(ii) 327 viral
pneumonia
(iii) 330
bacterial
pneumonia
(iv) 504 normal

Bold values represent the best result obtained for each performance metric among all the methodologies compared.
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multiclass classifications such as COVID-19/viral pneumo-
nia/bacterial pneumonia and COVID-19/normal/viral
pneumonia/bacterial pneumonia, the classification accuracies
dropped to 89.6% and 90.2%, respectively. Based on the
obtained results, distinguishing viral pneumonia from
COVID-19 is arduous when compared to other diseases.
CovXNet is highly scalable with huge receptive capacity.

(2) Comparison of COVID-19 Diagnostic Performance in CT
and CXR Images. COVID-MTNet is a deep learning ar-
chitecture proposed by Alom et al. [89] to perform multiple
tasks such as COVID-19 segmentation and detection from
CT and CXR images. A dataset of 3875 samples of COVID-
19 pneumonia and 1341samples for normal cases was col-
lected from [60, 62]. ,e infected regions were segmented
using the NABLA-N network, and the detection process was
performed using the inception recurrent residual neural
network (IRRCNN) model with transfer learning. ,e
segmentation network using pixel-level analysis significantly
reduced the possibility of false-positive and false-negative
detections. ,e model produced a segmentation accuracy of
94.52% for CXR images and 99.56% for CT images in the test
data. In the detection model, an accuracy of 98.78% and
87.26% was observed in the CT and CXR images, respec-
tively. ,ese results show that the CT imaging modality
better discriminates the COVID-19 infection from the
normal cases. ,e detection model can be generalized and
made to produce more accurate results by training greater
number of samples. Some false-positive detections were
observed in the segmentation model for CT images due to
the insufficiency of labeled CTdata for COVID-19 infection.

Vinod and Prabaharan [90] proposed an artificial in-
telligence technique for fast COIVD-19 diagnosis using
decision tree classifier with deep CNN features. ,e CXR
dataset contains 113 normal images and 306 COVID-19-
infected X-rays. ,e CT dataset contains 350 COVID-19
images and 395 non-COVID-19 images. ,e test score
resulted in 0.82 for CT and 0.87 for CXR. ,e recall score is
high in the case of CT images, i.e., 0.93. ,e recall score for
COVID-19 diagnosis in CXR images is 0.88. ,e number of
false negatives is less for diagnosis in CT image modalities.

In [91] by Perumal et al., Haralick texture features were
extracted from the enhanced images. ,ese modified images
were then fed into different predefined CNNmodels such as
ResNet-50, VGG-16, and InceptionV3 to find the patterns
similar to other pneumonia, so that it can easily detect
COVID-19 across other diseases. 14 Haralick features
(mean, variance, entropy, etc.) were used for the identifi-
cation of the relationship between biological features in the
data. ,is method was experimented on data from multiple
centers ([60, 65, 92, 93]). VGG-16 using transfer learning
achieves better classification with an accuracy of 93%,
precision of 91%, and recall of 90%.

Irfan et al. [94] developed a hybrid multimodel deep
neural network (HDNN) for COVID-19 detection from
multimodal data. It was designed as a mixture of LSTM and
CNN to predict the risk of disease onset from both CT and
CXRs. 1500 images from healthy patients and 3500 images
from infected (COVID-19 and pneumonia) patients were
collected from various sources ([60, 77, 78, 95, 96]). Initial
preprocessing involves the Kalman discrete-time model-
based denoising followed by sampling the 1080×1080 sized
images to 256× 64 sized time-series data. ,e hybrid model
added efficacy to the work using LSTM to vanish the gra-
dient problem and CNN to extract features automatically.
On classifying the data into normal, pneumonia, and
COVID-19-infected, an accuracy of 99% and PPV of 98.7%
were obtained. ,is work also concludes that COVID-19
detection from CTs using HDNNs proves to be consistent
and fast.

Other approaches that include classification of
COVID-19-positive cases against COVID-19-negative
cases or healthy cases [97–99] were present and also
classification of COVID-19 against other pulmonary
diseases as in [100], where a deep neural network with the
generative adversarial network (GAN) based on synthetic
data augmentation is used to classify 8 different lung
pathologies. ,e collected dataset contains images from
Digital Pathology Classification Challenge (Kaggle) and
COVID-19 images from [60] comprising of 5789 atelec-
tasis, 1010 cardiomegaly, 6331 effusion, 10317 infiltration,
6046 mass, 1971 nodule, 1062 pneumonia, 2793 pneu-
mothorax, 84312 normal, and 337 COVID-19 images. ,e
proposed model performed better than InceptionV3 and
ResNet models with an accuracy of 89.2%. Accurate lung
region of interest (ROI) segmentation also takes an in-
dispensable part in better diagnosis of COVID-19 by
delineating the lesions and measuring their extent. Most of
the works have used U-Net [101] architecture for this
purpose ([70, 71, 95, 102]). U-Net is a CNN architecture
developed specially for biomedical image segmentation
with the ability to give both the localization information
and the contextual information, which leads to the better
prediction of a segmentation map. Image segmentation
can also be applied to quantify the lung-infected region
([101, 103, 104]), which involves visualization of the lesion
distribution, prediction of severity, and assessing the
progression during follow-up.

2.2. COVID-19 Prognosis. Prognosis refers to predicting the
likeliness or expected disease development based on the
track of the disease that is diagnosed, the condition of the
patient (physical and mental), the available treatments, and
other additional factors. Few COVID-19 prognosis methods
are explained in this section.

Table 5: Performance metrics used in COVID-19 detection.

Performance metric Accuracy Sensitivity/recall Specificity Precision F1 score
Formula (TP + TN)/(TP + FP + TN + FN) TP/(FN + TP) TN/(FP + TN) TP/(FP + TP) (2∗ (R∗P))/(R + P)

TP—true positive, TN—true negative, FP—false positive, FN—false negative, R—recall, and P—precision.
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Sverzellati et al. [105] simulated the triage setting of a
pandemic environment with large population of COVID-
19-infected suspects provided that the clinical decision
should be given in the absence of any resource constraints.
For this, reconstructed CXR (r-CXR) images were generated
from the high-resolution CT (HRCT) images. Mortality
prediction was done based on the multivariable (age, sex,
duration of symptoms at triage, and a comorbidity score of
0–4) by performing LR analyses to identify the contribution
of clinical and radiological variables in the analysis and using
a study population of 300 patients. ,e images were graded
as follows: normal, alternative diagnosis (to be specified),
indeterminate, or typical for COVID-19 pneumonia by
expert radiologists. ,e study findings put forward that the
clinicians can rely on positive CXR for showing the low or
high extent of pneumonia, and in the case of the interme-
diate extent of CXR, it is complemented by CT for optimal
stratification of high- and low-risk groups. For indicating the
COVID-19 infection, the sensitivity, specificity, PPV, and
NPV of HRCT are 95.2%, 32.8%, 82.2%, and 67.9%, re-
spectively, which proves to be better than the corresponding
metrics of r-CXR.

Wang et al. [106] proposed the COVID-19Net to identify
patients of potentially high risk with poor prognosis using
the transfer learning process in two steps. Initially, the
network was trained on 4106 non-COVID-19 CT images
from epidermal growth factor receptor (EGFR) dataset,
which was then transferred to the COVID-19 dataset con-
sisting of CT images from 1266 victims: 924 with COVID-19
(471 patients had follow-up for more than 5 days) and 342
with other pneumonia. For prognostic analysis, 64-di-
mensional DL features were combined with clinical features
(age, sex, and comorbidity) to compose an integrated feature
vector. ,en, a multivariate Cox proportional hazard model
was used to predict the risk of a patient. ,e Kaplan–Meier
analysis and log-rank test implied that the deep features have
promising prognostic value for COVID-19 (p< 0.0001,
p � 0.013, and p � 0.014 in 3 datasets).

Feng et al. in [107] explored the predictive value of
COVID-19 prognosis from chest CT images by comparing
the difference in clinical and CT characteristics in the
progressive and stable patients by performing multivariate
LR and nomogram establishment. Older age, CT severity
score on admission, and higher neutrophil-to-lymphocyte
ratio (NLR) were identified to be the independent and
significant predictive aspects for advancement to severe
COVID-19 infection during hospitalization and were sup-
ported by an appreciative calibration of the nomogram, a
nonsignificant Hosmer–Lemeshow test statistic (p � 0.791),
and AUC value of 0.898 in the validation cohort. ,is
method was simple with only three easily obtainable vari-
ables and was capable of promptly predicting the progres-
sion risk (in-hospital) in the moderate stage of COVID-19
patients within 14 days. It was performed on an unbalanced
data consisting of only 10% of patients developing severe
COVID-19 pneumonia, which seems to be a limitation of
this work.

Liang et al. [108] developed and validated a risk pre-
dictionmethod for early diagnosis of COVID-19 infection in

patients. For this, different clinical, laboratory, epidemio-
logical, and radiological image variables were screened at the
time of admission in medical center/hospital to predict the
risk score as low-, moderate-, and high-risk cases. ,e Least
Absolute Shrinkage and Selection Operator (LASSO) was
used for screening the variables, and LR was used to for-
mulate the predictive risk score (COVID-GRAM). ,is
method was developed with a cohort of 1590 patients and
validated on 710 patients to estimate the risk that they will
develop a critical illness. 10 variables including chest ra-
diographic abnormality, age, cancer history, number of
comorbidities, and NLR were identified as independent
predictive factors among 72 potential factors by the LR
model. A mean accuracy of 0.88 was obtained in the vali-
dation group. ,is was designed as a Web-based calculator
to assist the clinicians in estimating the possibility of de-
veloping critical ailment in individual hospitalized victims.
As the development and validation patient group was
completely selected from a particular county, there might be
limitation in generalizing the work for patients from dif-
ferent regions.

Wu et al. [109] used CT images to develop an easy-to-use
and noninvasive prognosis method to predict the clinical
risk of COVID-19 patient outcome as death, need for
mechanical ventilation, and admission to the intensive care
unit. ,e development cohort consists of 492 patients
grouped into the early-phase group and the late-phase group
based on their CT scanning performed one week before or
after the symptom onset, respectively. A fine-gray competing
risk regression model was used to frame the clinical model
and CrrScore (the clinic-radiomic signature), and a Least
Absolute Shrinkage and Selection Operator (LASSO) was
used to construct the RadScore (the radiomic signature). In
the late-phase group, the radiomic signature alone proved to
be efficient to forecast the poor outcome in patients with an
AUC value of 0.976 and C-index of 0.885. In the case of the
early-phase group, the clinic-radiomic signature exhibited
better efficacy with an AUC value of 0.862 and C-index of
0.850. ,erefore, based on the time of CT scanning con-
cerning the symptom onset, appropriate signatures can be
used for predicting the prognostic outcome.

Research works on the prognostic analysis of COVID-19
using radiological images are minimal and need to be further
explored to keep a check on the severity of the diseases and
reduce the mortality rate. For prognosis, the clinical features
are combined with the radiological image findings to predict
the patient’s medical condition for delivering successful
triage and lessen the disease spread.

2.3. COVID-19 Severity/Risk Detection. A streamlined se-
verity/risk detection mechanism is highly required for
COVID-19 triage to lower the prodigious rate of mortality.
Apart from early screening, the severity assessment also
plays a vital role in triage and disease management. A review
on the related works in the literature is discussed below.

Cohen et al. [110] built a severity prediction model to
assist the clinicians in managing the patient care using a
regression model to predict two types of scores: extent of
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lung involvement (0–8 score) by ground-glass opacity or
consolidation and degree of opacity (0–6 score) on the
COVID-19-infected CXR images. DenseNet was employed
to predict pneumonia from 94 COVID-19 CXR images
acquired from [8]. ,e model was trained with 7 datasets
[90, 98, 111–115] with 18 common radiological finding tasks
consisting of 88,079 non-COVID-19 CXR images. Just using
a single feature (lung opacity) for risk predictions countered
to the ground truth value of prediction score, the model was
capable of better prediction in both the opacity score and the
geographic extent of infection. ,e Pearson correlation
coefficient and R2 for lung opacity score prediction task are
0.78± 0.04 and 0.58± 0.09, respectively. Similarly, for the
geographic extent prediction the Pearson correlation coef-
ficient of 0.80± 0.05 and R2 value of 0.60± 0.09 were ob-
tained. It was capable of predicting the geographic extent
score (range 0–8) with 1.14 mean absolute error (MAE) and
lung opacity score (range 0–6) with 0.78MAE generalization
that can be improved by performing large-scale evaluations
on public datasets from around the world.

Zhu et al. [116] also employed a model similar to [110]
for accurate staging of COVID-19 severity on CXRs. A deep
CNN model was used to foresee the lung severity scores
from 131 CXRs based on the degree of opacity (0–3 score)
and geographic extent (0–4 score). A correlation analysis
was performed amidst the predicted score and the radiol-
ogist scores, which resulted in a higher value of 0.90 and a
MAE of 8.5%, making the model yield top results. An av-
erage opacity score of 2.52 and average geographic extent
score of 3.42 were obtained across three readers.

Tang et al. [17] proposed a severity assessment model to
categorize the COVID-19-infected CT images as severe or
non-severe. For these, 63 quantitative features of top im-
portance such as volume and ratio of the left/right/whole
lung and volume of GGO were extracted from 176 CT
images obtained from different hospitals (using different
scanners) and trained to the random forest model. An ac-
curacy of 0.85, AUC value of 0.91, true positive rate of 0.933,
and true negative rate of 0.745 were obtained for this model.
,e volume and ratio of GGO were identified to be the
feature with most importance to estimate the severity of the
disease, and another finding from the study revealed that the
quantitative features observed in the right lung were more
significantly related to COVID-19 severity than the features
of the left lung. ,e main drawback is that the model is able
to label the images as only severe or non-severe instead of
multiple classifications such as mild, common, severe, and
critical.

,e limitation of [17] can be overcome by the COVID-
SDNet proposed by Tabik et al. [117], which has better
generalization capability. A balanced and homogeneous
database, COVIDGR-1.0, was built, which includes different
levels of severity such as normal with positive RT-PCR
(normal PCR+), mild, moderate, and severe. It consists of
426 COVID-19-positive CXR images and 426 COVID-19-
negative images (normal PCR: 76, mild: 100, moderate: 171,
and severe: 79). It performs smart data generation using a
class-inherent transformation approach motivated by GAN
and ResNet-50 loaded with ImageNet weights for

classification. Better and more stable results and great bal-
ance between specificity and sensitivity were obtained.
Comparing the classification accuracies of 4-class classifi-
cation (normal PCR +: 28.42%± 2.58, mild: 61.80%± 5.49,
moderate: 86.90%± 3.20, and severe: 97.72%± 0.95) and 3-
class classification (mild: 46.00%± 7.10, moderate:
85.38%± 1.85, and severe: 97.22%± 1.86), even though
normal PCR+ seems to be the toughest level to predict, its
existence accelerates the accuracy of the minor severity
levels, notably mild level. It is also observed that the seg-
mentation of the lung region using U-Net has essentially
improved the sensitivity value.

Severity assessment in COVID-19 mostly relies on
classifying the pre-identified radiological images or using the
clinical data of patients to perform the severity analysis, but
pre-identification of radiological images as mild, moderate,
or severe infections may be challenging and difficult.

2.4. Inferences. Based on the study described in the previous
sections, the review findings and inferences are listed below:

(i) COVID-19 diagnosis can be performed by clas-
sification or segmenting the infected region.
Classification can be viable and easy to implement
in short time as it demands only weak image-level
labels and few model specifications for training the
classification model.

(ii) Classification of COVID-19 infection against
normal cases seems to be much easier with high
classification results and performance metrics. In
general, binary classification (COVID-19/non-
COVID-19, COVID-19/other pneumonia) yields
better results than multiclass classification
(COVID-19/other pneumonia/normal/other lung
diseases).

(iii) Distinguishing COVID-19 from other pneumonia,
especially viral pneumonia, is challenging as they
show similar characteristics in the radiological
images. In such cases, the efficiency of the classifier
can be improved by adding more images or other
types so that the learning process can be enhanced
during training.,e performance of distinguishing
COVID-19 from normal or bacterial pneumonia
can yield better results since there is significant
variation in the radiological image features.

(iv) Deep Learning methods are mostly preferred than
the machine learning methods for feature ex-
traction as they can extract the inherent deep
features specific to each class for a finer classifi-
cation. ,e most commonly used deep models for
feature extraction and classification that give
promising results are DenseNet, ResNet, VGG,
and their modified variants. Other networks like
Inception, Exception, ShuffleNet, and EfficientNet
also have been used in many works.,e CNN layer
implementation with residual connection is
depicted in Figure 6. Diagnosis of COVID-19
employing deep learning techniques have shown
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better sensitivity and specificity than the radiolo-
gist’s decision. U-Net is the most widely preferred
deep learning architecture for segmentation task,
which is depicted in Figure 7.

(v) Deep features can be combined with clinical data
such as clinical symptoms, nucleic acid detection
results, epidemiology, and laboratory indicators,
which can bypass any misdiagnosis and effica-
ciously improve the clinical triage.

(vi) Prognosis of COVID-19 is of equal importance as
that of diagnosis, since it demands medical triage
and management of the patient care. Early iden-
tification of the disease can aid in the diagnostic
ambiguity of radiologists. Works on COVID-19
prognosis are minimal, so this can open up a large
research path for many researchers.

(vii) Prediction of COVID-19 infection severity plays a
vital role in making clinical decisions so that the
medical team can work towards reducing the
mortality rate.

(viii) Despite CXRs being cheap and easily obtainable,
CTs are highly preferred for COVID-19 analysis as
they are capable of early detection of the disease
even in victims with negative RT-PCR tests, in
asymptotic patients or even ahead symptoms may
arise.

Figure 8 illustrates the inferences from the review of
different tasks related to medical image analysis of COVID-
19.

3. Related Reviews in the Field

,ere are have been previous reviews [52, 118] that have
encompassed most of the research regarding COVID-19
in terms of machine learning, deep learning, and medical
imaging along with its analysis and scrutinized them to
preference inferences, to promote further research in the
field. ,ey also present challenges that future researchers
should tackle to incorporate better results and build more
efficient models. Table 6 (while there are other reviews
present, they were either extremely short, or did not
contain valuable information, or were mostly covered in

the mentioned reviews.) lists out the most useful reviews,
which have taken place till date and their respective merits
and limitations. Most reviews covered the architectures
used quite broadly and have also made studies in context
to their usage (pre-trained or incorporation for custom
methods). A general pipeline of the same is shown in
Figure 9. Another aspect that was covered in multiple
reviews was the use and availability of public datasets,
which is paramount to expand the COVID-19 research
capabilities.

Model generalization has also been tackled in numerous
studies as it is an important aspect to be considered while
building deep learning-based models. While the reviews
have covered the majority of the research taking place and
the challenges accompanied by them, only Shorten et al. [52]
accounted for extending work via privacy-preserving
methods andmentioned research taking place through other
deep learning paradigms such as meta-learning [126] and
self-supervised learning [127]. Apart from these, the read-
mission risk of COVID-19-recovered patients can also be
analyzed using a predictive model. ManyML- and DL-based
predictive models have been designed to predict the read-
mission risk of patients discharged from hospitals for var-
ious diseases [128, 129]. Increased readmission rates may be
liable to high healthcare cost and risk of inpatient hospital
mortalities. Several works have been carried out to improve
the performance of these predictive models using evaluation
metrics [130, 131]. Similarly, many studies have been con-
ducted regarding the COVID-19 case readmission rates and
factors [132, 133].

In the field of medicine, data privacy is of utmost im-
portance and is always the leading cause for the shortage of
open-source data. Addressing this issue should be the first
among the list of challenges concerning COVID-19. One of
the main reasons for having such expansive development
and testing is because of the large amounts of open-source
data present (including open accessing all research), which is
generally absent for other diseases. Self-supervised learning
approaches have proven to surpass the usual supervised deep
learning methods in [134, 135] and should be given more
importance and consideration when topics of extension and
challenges are brought upon. ,ere is also a major gap in
accounting for the research conducted in terms of prognosis
for COVID-19. ,ere is no single review that focuses on this
aspect. In terms of medical image analysis, few solutions are
addressed to the challenges mentioned in [52]. To the best of
our knowledge, the previous reviews missed to cover the
topics discussed above. Additional information is all part of
recent developments, which have taken place post the
drafting of those reviews.

3.1. Extension of Discussion on the Limitations of Deep
Learning Approaches Discussed in Shorten et al. (2020) [52]

(a) Explainability: deep learning models are often called
black box models due to their non-interpretive be-
havior. ,is highly disregards using deep learning
models on sensitive real-world tasks such as medical
image analysis and has hence turned into a nontrivial

X (Identity) F(x)

F(x) + x+

ReLU

ReLU

X

Weight
(Layer)

Weight
(Layer)

Figure 6: Sample residual connection used in ResNet [40].

14 Journal of Healthcare Engineering



issue. With the focus here being the same, there are
ample explainable techniques that have come up to
aid in explaining vision-based deep learning models.
Table 7 shows the current state-of-the-art methods
used to help interpret vision-based deep learning
models. Score-CAM eliminates the dependence on
gradients (as seen in Grad-CAM) by securing the
weight of individual activation maps, by virtue of its

forward passing score on the aimed target class,
which results in a linear combination of the acti-
vation maps and weights. EVET [135] proposes a
heuristic pipeline for strengthening the visual ex-
planations by applying image transformations.
Explainability in segmentation tasks (primarily done
by U-Nets) is a field that is still being heavily ex-
plored. Initial attempts have been done by adapting

Classification
gives better
diagnosis

Distinguishing
COVID-19/

Normal is easier
comparatively

Distinguishing
COVID-19/Viral

pneumonia is
challenging

DenseNet,
ResNet,VGG &

variants – 
outperforming

networks

Research on
Prognosis is

minimal

Deep features +
Clinical Data =
Better diagnosis

Severity
prediction – for

improved triaging
& reduced

mortality rate

CT images
preferred over
CXR images

Inferences

Figure 8: Inferences from the review of COVID-19 medical image analysis.
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Table 6: Merits and limitations of existing review papers exploring the broad depth of COVID-19 research in terms of medical imaging,
medical image analysis, machine learning, and deep learning.

Review paper Merits Limitations

Ozsahin et al.
[119]

Classified different groups of studies. Only highlights result and techniques without any
intuition as to why either are used.

Added a severity constraint. Includes segmentation models within classification
studies.

Shoeibi et al.
[120]

Includes a forecasting study of coronavirus prevalence in
multiple countries.

Certain figures depict subpar comparisons and include
unnecessary comparison samples.

Includes pre- and post-processing techniques used in various
COVID-19 detection approaches.

,e review is more focused on architectures utilized
rather than the inference generated from the literature.

Pham [97]
Presents many strong inferences on pre-trained networks. Should have considered the use of the Matthews

correlation coefficient (MCC) [121] as binary
classification was considered.

Alleviates the task of data augmentation. Empirically proved
DenseNet-201 works best.

Shorten et al.
[52]

Pinpoints key discussions in regards to deep learning
approaches and the challenges faced by same in multiple

domains apart from medical imaging.

Falsely claims the first paper to review in a deep learning
point of view for COVID-19 analysis.

Explores several supporting domains such as federated
learning, meta-learning, and self-supervised learning, which is

missed in most reviews.

Compares paper to other “artificial intelligence”-based
methods to their approach.

Alsharif et al.
[122]

Attempts to compare deep learning to machine learning
approaches.

Fails to dive deep into the problem and hence causes
incorrect generalization of methods.

Joy et al. [123]
,e review is inclined to help beginners in the field.

No challenges are mentioned or analyzed.It poses an extensive study covering various approaches and
architectures.

Alghamdi
et al. [124]

Gives in-depth analysis about architectures and the various
constraints in tandem to them such as data, explainability, and

more.

Does not consider the SOTA methods in explainability
terms.

Fails to address other possible learning paradigms and
privacy-preserving methods.

Should be mentioned as the review is architecture-
dominated.

Islam et al.
[125]

Gives an extensive study on open challenges. Limitations are covered in the paper.Highlights the data partitioning techniques.
1While there are other reviews present, they were either extremely short, or did not contain valuable information, or were mostly covered in the mentioned
reviews.
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Figure 9: Generalized pipeline of COVID-19 detection from radiological image modalities.
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Grad-CAM to segmentation in the form of SEG-
GRAD-CAM [136]. ,e origin of the above work
comes from [137]. Explainable models can benefit
the medical image analysis pipeline in many ways. It
helps understand where the model is focusing on the
image, increase user confidence, and inspect the
model at a deeper level, which in turn helps in
debugging the model as well.

(b) Generalization Metrics: precision is generally the
major metric taken into consideration while ac-
counting for a fair metric for medical image clas-
sification methods. While considering segmentation,
the authors in [138] give a detailed description re-
garding which metrics to consider. ,ey also men-
tion the use of precision here as well. A detailed study
on generalization concepts and metrics can also be
studied in [139].

(c) Learning From Limited Labeled Datasets or Unla-
beled Data: primary focus on two paradigms of
learning is as follows:

(i) Meta-Learning: it follows the approach of
learning to learn. It is used to adapt to learn new
environments and in a quicker fashion greatly
aligns with the demand of COVID-19 research.
It also requires lesser data samples. In [118], a
trainable n-shot deep meta-learning framework
was built to classify COVID-19 cases with lim-
ited training CXR images. Another aspect of
meta-learning is neural architecture search
(NAS) and that has been observed to work better
than many baseline models [140].

(ii) Self-Supervised Learning: it is a subgroup of
unsupervised learning, which works on the basis
of training the deep learning model explicitly
with automatically generated labels. As Figure 10
depicts, the process involves learning visual
features from pretext task (tasks predesigned for
networks to deal with) and acts as a pre-trained
model for other downstream tasks (computer
vision applications to examine the self-super-
vised learned feature quality) via fine-tuning.
References [133, 134] have rivaled the top-per-
forming models in image tasks, even surpassing
the supervised methods. Reference [141] showed
that the combination of data augmentation and
self-supervised learning has outperformed all
previous approaches in severity assessment.

(d) Data Privacy: a detailed discussion of data privacy is
given in [52]. To extend on the avenues mentioned

there, the use of differentially private federated
neural architecture search [142] is recommended to
preserve data privacy. ,rough this method, a model
can be tested on several subsets of data, which
contain varied distributions and distinctions from
other datasets and in parallel keep any information
about the various data samples completely priva-
tized. Although the method is very computationally
demanding, it can help screen through different
samples of data and greatly test the robustness of any
model. Figure 11 depicts the working of both NAS
and federated NAS (FNAS) [143]. An application of
federated learning in terms of prognosis can be seen
in [144]. A noise implementation algorithm is in-
tegrated with a cross-device federated learning, such
that the initial symptom prognosis can be achieved
during a pandemic like COVID-19.

4. Pre- and Post-Processing Techniques for
COVID-19 Medical Image Analysis

4.1. Preprocessing. Preprocessing is a crucial part of vision
models’ pipeline. ,e process involves performing opera-
tions at the lowest level of abstraction. ,e objective is to
enhance the picture information that suppresses undesired
deformities or improves the image features necessary for
continued transformations, which is mainly linked with
generating higher accuracy in models. Even simple tech-
niques such as resizing or cropping the image can make
major difference in deep learning models. For example,
cropping out the redundant parts of a scan can help the deep
learning model avoid unnecessarily parsing through that
spatial information to concentrate on the more essential
areas of the scan. Certain models require specific size of
input images to fit in. In such situations, rescaling the image
is completely unavoidable.

Figure 12 depicts a chest CT scan being put through
contrast-limited adaptive histogram equalization (CLAHE)
in comparison with an original CT image. A clear depiction
of sharper visual features after CLAHE is applied, which
makes it easier for the model to develop and correlate these

Table 7: State-of-the-art explainable techniques for vision-based
deep learning models.

Task Explainable method

Classification
Grad-CAM [48]
Score-CAM [49]
EVET [135]

Segmentation SEG-GRAD-CAM [136]

Unlabeled Dataset

Self-supervised PTT

Self-supervised DTT

Convolutional
Neural Net

Knowledge Transfer

Pretext
Task

Convolutional
Neural Net

Downstream
Task

labeled Dataset

Figure 10: General self-supervised learning pipeline. PTT: pretext
task training; DTT: downstream task training.
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visual cues. Figure 13 illustrates how the preprocessing step
can also help better express the image features through
image enlargement. ,e enlarged points are first targeted
(shown as question marks) and then filled through inter-
polation. A comparative image is also shown with no in-
terpolation done. In addition to the techniques mentioned in
Table 8, there are certain methods that can aid in pre-
processing. Data augmentation is a widely used method in
much literature to help increase the training sample size.
GANs have also been applied to increase the sample size
[153]. Noise removal techniques without losing the signif-
icant edges can also be used to enhance the images [154].

4.2. Post-Processing. Post-processing generally directs to
improvement in the images after the model has given an
output, but in the case of medical image analysis, it mainly
involves generating inferences from the model outputs via
explainability measures.,e basis of most techniques is class
activation maps [137]. ,ese methods are used to pinpoint
the focus of the model and understand whether the output

generated is on the basis of the detection of the actual disease
and not any other factors. ,e extensions made to [137] are
discussed in Section 3.1.1. In [155], a method called the
Peekaboo training scheme was used, in which a two-stage
patch crop-and-drop strategy promotes the model to furnish
activation maps for every target concept.

5. Discussion

In this section, we discuss additional challenges faced while
conducting experiments and how the work done with re-
spect to COVID-19 can help the field of medical image
analysis in general.

5.1. Challenges Faced. Reviewing of multiple literature
samples led to the identification of multiple challenges
present in the domain, a few of which are already covered in
Section 3.1. In this section, another set of challenges that
have been discovered is elucidated.

(i) Interclass analogy and intraclass deviation of
pneumonia lesions: COVID-19 pneumonia, which
is also caused by viral infection, contains indicative
overlay of features and radiological image charac-
teristics with other viral pneumonia leading to the
interclass analogical problem. Another problem that
arises while dealing with the pulmonary medical
images is the intensity in-homogeneity problem
caused by the closeness of gray level between the
different soft tissues, resulting in segmentation and
detection difficulties [156]. Detecting the anomalous
features from the medical images becomes chal-
lenging due to the noise impedances from the tis-
sues and lesions. ,e infected region may still
contain some non-lesion regions with wide varia-
tions in tissues, which further makes it complicated
to differentiate.

(ii) Generalization and reproducibility: the COVID-19
detection algorithms proposed by various re-
searchers produce great results for the particular
small dataset used in that work. When these trained
classifier algorithms are implemented on larger
unseen data, they may not be able to generalize their
performance. Moreover, problems arise in repro-
ducing the similar performance on other multi-
center datasets. One such solution to this problem is
the use of vision transformers, which have dem-
onstrated superior performance and greater gen-
eralization prowess. ,ese are of paramount
importance in the context of a deployment scenario
[157].

(iii) Data source learning problem of ML and DL: on
applying neural network-based COVID-19 detec-
tion protocols to multicenter datasets, most of the
detection systems tend to learn the source of dataset,
their imaging protocols, mode, and so on, rather
than learning the discriminative features among the
various classes. Such kind of algorithms may not be

Sensitive Data Local Models Central Models

Data
Storage

Aggregrate

update

distribute

train

Figure 11: General federated learning pipeline.

ORIGINAL CLAHE

Figure 12: Original CT image versus CLAHE-processed CT image
[145].
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fair enough when generalized for different data
[158].

(iv) Spread and contamination: contamination of the
scanners is also an issue that needs to be considered.
,ere is a great possibility of disease spread during
scanning; hence, the radiologists must assure that
the scanners are maintained clean after every
scanning process.

5.2. Future Scope: Utilizing COVID-19 Medical Image
Analysis Research in Other Fields. As seen, enormous
amounts of effort take place to furnish newmethods through
deep learning strategy to tackle the problems of COVID-19
detection. A few potential avenues have been mentioned in
this section, which can in general help to extend the field of
medical image analysis.

(i) Medical model weights and baseline architectures:
utilizing model weights built upon disease-affected
scans has shown to improve the efficiency in models
[87]. Particular to COVID-19, CheXNet [159]
weights utilized in models instead of the usual
ImageNet weights have been shown to increase the
model [160], which can be utilized to detect other
diseases as well. General vision problems are quite
different when compared to dealing with medical
images such as MRIs, CTs, and PET scans. Training

models that are based on the weights gained from
training on such images should furnish more ac-
curate models. Apart from COVID-19, there are
many other diseases that can be detected from ra-
diographs. As DenseNet is seen to do well for
COVID-19 (both from pre-training and for cus-
tomized models), it should be fair enough for other
diseases as well and can act as a good starting point
for future researchers to expand existing works.

(ii) Expanding the community and model testing: there
are many introductory materials focused on
COVID-19 and medical image analysis. ,is can
help build the community further and attract novices
to the field. Testing models on scarce datasets make it
quite difficult to generate inference about the
model’s performance. With the massive open-source
data available, it also allows potential researchers to
realistically test their models and architectures. ,e
variety of data present also helps in testing the model
for generalizability, which is one of the biggest ob-
stacles to surmount while utilizing deep learning-
based methodologies.

6. Conclusion

A comprehensive description on the various COVID-19
detection techniques using medical image analysis has been

Original

Enlarging
the

Image
Before Interpolation A�er Interpolation No Interpolation

Figure 13: Depiction of a pipeline for enlarging an image through interpolation.

Table 8: List of preprocessing techniques used for analyzing radiological images.

Reference Technique Utilization

Pizer et al. [146] Adaptive histogram
equalization Improves contrasts in images.

Veldhuizen and Jernigan
[147] Wiener filter Produces an estimate of a desired or target random process.

Lehmann et al. [148] Interpolation Best estimation of a pixel’s color and intensity in context to the values at
neighboring pixels.

Tian et al. [149] Binarization Transforms data features of any entity into vectors of binary numbers.

Yadav et al. [145] CLAHE Amplifies the contrasts.
Works on small regions called tiles.

Prabha and Kumar [150] Smoothing filter Utilized in blurring regions.
Kociołek et al. [151] Normalization Changes the range of pixel intensity values.

Gungor [152] Wavelet transform Reduces noise in images.
Decomposes special patterns hidden in mass of data.
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described in this study. ,e cause, effect, challenges, limi-
tations, and other retrospective discussions on COVID-19
medical image analysis have been discussed through this
study to best feature the importance of carrying out more
research on this area to reduce the increased mortality count
faced by the world. DL can improve the disease diagnosis
efficiency by precisely locating the infections in the medical
images in a faster and accurate manner. ,e preceding
COVID-19 analysis methodologies proposed by various
researchers can be used only as a reinforcement technique to
assist the medical teams in highly populated areas and in
situations requiring quicker diagnosis. ,e problems such as
unavailability of enough and accurate labeled data, gener-
alization and reproducibility of preceding algorithms for
multicenter large datasets, and difficulty to isolate COVID-
19 against other pneumonia cases due to the closeness of
gray level of the soft lung tissues have been highly chal-
lenging to design a diagnostic system with high reliability
and accuracy. An intelligent and accurate computer-assisted
COVID-19 diagnostic system employing adaptive deep
learning models with active/incremental learning is the need
of the hour to combat the evolving coronavirus.
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