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The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence
of postsynaptic potentials to last till the neuron fires. Vidybida (2008) in a refreshing departure has proposed models for binding
neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding
neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computermodeling.
This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical
characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model
in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass
network are presented.

1. Introduction

Several mathematical models of neurons have been devel-
oped so that the model neurons mimic biological neurons in
various abstract biological features that make these neurons
suitable for information processing. In this regard, models of
temporal integrator, coincidence detector, and leaky integrate
and fire (LIF) of the neuron are computed using the level
crossing of the membrane potential. The leak of the mem-
brane potential is at best accommodated using LIF models.
However, for the problem of the level crossing of the LIF
neuron with instant or curved boundaries, no closed form
solution is available and this value can only be computed
using numerical methods. Furthermore, the LIF models do
not take into account the frequency of the inputs, thereby
assuming that the membrane potential integrates the inputs,
however large is the interval between them. But it has been
observed that during the processing of sensory signals the
spiking statistics of individual neurons changes substantially
when the signal travels from periphery to more central areas.

This aspect lends credence to the point of view of information
condensation and supports the theory of finite lifetime of
input signals.

Inspired by the findings of numerical simulation of
Hodgkin-Huxley [1] neurons as well as LIF models [2],
Vidybida [3] proposed models of binding neurons with
instantaneous feedback. These are model neurons which
mimic real neurons in many biophysical mechanisms. In a
binding neuron, any input impulse is stored for a fixed time
period 𝜏 after which it is lost forever. When the number
of stored inputs crosses a fixed threshold Σ, the neuron
sends a spike while the stored inputs are erased and the
neuron starts receiving fresh inputs with a clean state. One
obtains the binding neuron with feedback by the immediate
feeding of each output impulse to the neuron’s input. In this
case, the neuron after the spike has one input stored with
life time 𝜏. Vidybida [3] using lengthy arguments derived
the analytical solution of interspike interval distribution and
other statistical characteristics in the limited case of Σ =

2 with inputs forming a Poisson process. He argued that
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the presence of both deterministic and stochastic (Poisson
inputs) dynamics in the system leads to fixed 𝜏.This approach
is to be contrasted with mass service theory [4], where 𝜏
can be visualised to be random. Furthermore, the Poisson
stream of inputs is realized as the sum of all Poisson
intensities in the synapses, which leads to a superposed
Poisson process with exponential input distributions. The
Markovian property of the input signals renders the analysis
simple and leads to analytical solutions. However, one could
replace the input distribution with any other distribution.
For instance, invoking central limit theorem will lead to
Gaussian input distributions [5]. Alternatively, the uniform
distribution is a potential candidate for the inputs. This
paper addresses the above-mentioned points and generalizes
Vidybida’s model of binding neurons with instantaneous
feedback. For the generalized model, we derive explicitly the
probability distribution aswell as the statistical characteristics
of the firing time of the neuron. We proceed in the sequel
to outline how to use these results for a neural network
composed of interconnected binding neurons. Towards this
end, we choose the hourglassmodel first proposed by Cottrell
et al. [6].

Experimental evidence has clearly shown that the analysis
of neural networks requires the spike timings of the neurons
connected to the network. Thus, the studies of the spiking
neuron models and the simulation of the associated net-
works have gained impetus in the literature [7–10]. Neuronal
networks are extremely complex and are randomly inter-
connected recurrent networks of neurons. These neurons
are connected by spike-driven synapses between excitatory
neurons and inhibitory neurons [11–16].The network models
can be broadly classified as simple synchronous and com-
plicated asynchronous models. In the synchronous models,
the counter is reset simultaneously for every connected
neuron. On the other hand, in the asynchronous models, the
connected neurons are updated only when they fire. Cottrell
[17] proposed an hourglass asynchronous model to describe
the neural activity in a network. While the classical single
neuron models focused entirely on the membrane potential
at any time 𝑡, the hourglass model associated at each time
𝑡 the expected time to fire. The expected time to fire of
any neuron in a network increases due to the firing of the
inhibitory connected neuron while the same is shortened by
the firing of a connected excitatory neuron. The utility of
Cottrell’s approach is that it enables us to model the behavior
of the network by the states of a time homogenous irreducible
and aperiodicMarkov chain.Thesemodels have subsequently
been analyzed, applied to real systems, and extended in
several directions [18–22].

Keeping the aforesaid observations in view, we discuss a
modified hourglass model for a neural network composed of
binding neurons with instantaneous feedback. The outline of
the paper is as follows. A model for the probability density
function of the interspike intervals for a single binding
neuronwith instantaneous feedback is proposed in Section 2.
Here, we extend Vidybida’s binding neurons for the case
Σ = 2 for any renewal counting process of the input
impulses. The Poisson process arises as a special case of our
formulation. Following the mass service theory of Khinchin

[4], we generalize 𝜏 to be a random variable which allows
us to get Vidybida’s deterministic case of 𝜏 as a special case.
The statistical characteristics of the spike distribution are
obtained explicitly. In Section 3, we utilize the results of
Section 2 to analyse a neural network composed of binding
neurons in which the spiking dynamics of each neuron is
represented by an hourglass metaphor. While the description
of the behaviour of the network is similar to that of Cottrell
et al. [6], the delay parameter 𝑤

𝑖𝑗
is modeled based on

the interconnecting neuron’s characteristics. The results of
a limited simulation study which may not be conclusive to
analyse the activity levels of the neurons in the network are
also presented. We present some observations in the last
section.

2. Binding Neuron with
Instantaneous Feedback

2.1. Model Description. Traditional neuron models consider
a single neuron, which is excited by external stimulations
occurring at random. In the classical integrate and fire neuron
models, the membrane potential gets excited with successive
stimulations and the neuron fires when the potential level
crosses a threshold. These models assume, even with the
leak of the membrane potential, that successive stimulations
contribute to the firing, however wide these stimulations are
separated. The frequency of stimulations in the case of a
leaky membrane plays a role in the firing rate. However, this
aspect is largely ignored in the classicalmodels. In this regard,
binding neurons which are model neurons can adequately
describe the signal processing in neural systems [3]. In this
section, we develop such a neuron model which will be used
to develop a modified hourglass model for interconnected
neurons in the later section.

Let us consider a single neuron without lateral connec-
tions which is excited by stationary external stimulations.
These stimulations occur at random and follow a renewal
counting process characterized by the interval probability
density function 𝑓(𝑡). We wish to observe that the Poisson
process input stream available in the literature is a par-
ticular case of the present model. The binding neuron is
characterised by the following assumptions. Any arriving
impulse has a random lifetime 𝜏 with distribution function
𝐺(⋅) during which it is stored but is completely lost after
its lifetime. When the number of stored inputs reaches a
threshold 𝐾, the neuron fires sending out a neural spike.
Note that under the present assumption, for a neuron to fire,
there must be at least 𝐾 impulses in a length of 𝜏. For a
binding neuron, the number of stored inputs immediately
after a firing is reset to zero. However, one obtains a binding
neuron with feedback by immediately feeding each output
impulse to the neuron’s input. In this case, just after firing,
the neuron starts with one impulse in its memory which has
a life time 𝜏. One needs to observe the analogy between the
threshold of themembrane potential for level crossing so that
the neuron can fire and the threshold of the number of stored
inputs 𝐾. We also wish to observe that the present model
maps the sequence of input impulses on to the sequence of
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neuronal firing outputs determined by the threshold 𝐾. The
two sequences are related by a one-to-one correspondence
and may be reconstructed from each other. This leads us to
the process of information condensation.

Notation

(i) 𝑍 : random variable denoting the time between
stimuli

(ii) 𝑓
𝑍
, 𝐹
𝑍
, 𝐹
𝑍
: pdf, cumulative distribution, and survival

functions of 𝑍
(iii) 𝜏: random variable denoting the lifetime of each

stimuli
(iv) 𝑔

𝜏
, 𝐺
𝜏
, 𝐺
𝜏
: pdf, cumulative distribution, and survival

functions of 𝜏
(v) 𝐾: threshold of the number of stored inputs for the

neuron to fire
(vi) 𝑇: random variable denoting the time between two

consecutive spikes
(vii) ℎ

𝑇
, 𝐻
𝑇
, 𝐻
𝑇
: pdf, cumulative distribution, and survival

functions of 𝑇
(viii) 𝐿

𝑓
(𝑠): Laplace transform of the density function𝑓(𝑡).

2.2.TheModel. Our proposed model for the firing of a single
binding neuron with instantaneous feedback is governed by
the following assumptions.

(1) A neuron without lateral connections is excited by
external stimuli. The times between the arrival of two
successive stimuli are assumed to be independently
and identically distributed with distribution function
𝐹
𝑍
(⋅).

(2) Each of the input impulses has a random lifetime 𝜏
during which time it is stored in the memory.

(3) The lifetime 𝜏 is a random variable with distribution
function 𝐺

𝜏
(⋅). It can be noted that the case of deter-

ministic lifetimes discussed in [3] can be obtained by
setting 𝐺(𝑡) = 𝐻(𝑡 − 𝜏), where 𝐻(⋅) is the Heaviside
unit function.

(4) The lifetime 𝜏 and the time between stimuli are
independent of each other.

(5) When the number of stored inputs reaches a threshold
value 𝐾, the neuron fires and the number of stored
inputs in thememory are reset to one input which has
a lifetime of 𝜏. In this sequel, we restrict our analysis
to the case 𝐾 = 2, although the governing equations
can be set up for the general case. But an analytical
solution seems intractable.

In order to derive the probability density function of 𝑇,
the interspike interval, we note that, during the interval [0, 𝑇],
a random number 𝑁 of impulses can occur of which the
last and penultimate impulses are separated by an interval of
length 𝜏. Thus, the interval 𝑇 is comprised of the sum of a
random number of intervals, each of which is greater than 𝜏
and one last interval whose duration is less than 𝜏. We first

define a sequence of independent and identically distributed
random variables 𝑋

𝑖
, 𝑖 = 1, 2, . . ., which are distributed as 𝑍

but conditioned on 𝑍 > 𝜏. Similarly, we define a conditioned
random variable 𝑌

𝑁
distributed as 𝑍 but conditioned on 𝑍 ≤

𝜏. Thus, 𝑇 can be expressed as

𝑇 =

𝑁−1

∑

𝑖=1

𝑋
𝑖
+ 𝑌
𝑁
. (1)

The value 𝑁 − 1 in (1) is a random variable representing
the number of impulses which do not contribute to the firing
in one spike interval. It is immediately seen that𝑁 follows the
geometric distribution given by

𝑃 (𝑁 = 𝑛) = 𝑞𝑝
𝑛
, 𝑛 = 0, 1, 2, . . . , (2)

where 𝑞 = 𝑃(𝑍 ≤ 𝜏) and 𝑝 = 1 − 𝑞.
We define the conditional distributions of𝑋

𝑖
and 𝑌

𝑁
as

𝛼 (𝑡) = 𝑃 (𝑡 < 𝑍 < 𝑡 + 𝑑𝑡 | 𝑍 > 𝜏) =

𝑓
𝑍 (
𝑡) 𝐺𝜏 (

𝑡)

𝑃 (𝑍 > 𝜏)

,

𝛽 (𝑡) = 𝑃 (𝑡 < 𝑍 < 𝑡 + 𝑑𝑡 | 𝑍 ≤ 𝜏) =

𝑓
𝑍 (
𝑡) 𝐺𝜏 (

𝑡)

𝑃 (𝑍 ≤ 𝜏)

.

(3)

Now,

ℎ
𝑇 (
𝑡) = 𝑃 (𝑡 < 𝑇 < 𝑡 + 𝑑𝑡)

=

∞

∑

𝑛=1

𝑃 (𝑡 < 𝑇 < 𝑡 + 𝑑𝑡 | 𝑁 = 𝑛) 𝑃 (𝑁 = 𝑛)

=

∞

∑

𝑛=1

(𝛼
(𝑛−1)

∗ 𝛽)𝑃 (𝑍 ≤ 𝜏) [𝑃 (𝑍 > 𝜏)]
𝑛−1

,

(4)

where 𝛼
(𝑛−1)

∗ 𝛽 is the convolution of the (𝑛 − 1)-fold
convolution of 𝛼(𝑡) and 𝛽(𝑡).

Taking the Laplace transform on both sides of (4) yields

𝐿
ℎ (
𝑠) =

𝐿
𝑓𝐺
(𝑠)

1 − 𝐿
𝑓𝐺 (

𝑠)

, (5)

where 𝐿
𝑓𝐺
(𝑠) and 𝐿

𝑓𝐺
(𝑠) are the Laplace transforms of the

functions 𝑓
𝑍
(𝑡)𝐺
𝜏
(𝑡) and 𝑓

𝑍
(𝑡)𝐺
𝜏
(𝑡), respectively. Given the

specifications of the distributions 𝐹 and 𝐺, one might be able
to invert (5) to obtain the probability density function ℎ(𝑡). In
cases where a closed form inversion of 𝐿

ℎ
(𝑠) is not possible,

one can use the algorithms proposed by Abate and Whitt
[23] for numerically inverting Laplace transforms which are
designed especially for probability density functions.

One of the statistical characteristics in neuronal studies
is the mean time between neural spikes which is used in
constructing interval histograms. In our model, 𝐸(𝑇), the
mean time between two firings, is obtained by differentiating
𝐿
ℎ
(𝑠) with respect to 𝑠 and setting 𝑠 = 0, so that

𝐸 (𝑇) =

𝐸 (𝑍)

𝑃 (𝑍 ≤ 𝐷)

. (6)
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Also differentiating twice and setting 𝑠 = 0 yield

Var (𝑇) =
𝐸 (𝑍
2
)

𝑃 (𝑍 ≤ 𝐷)

+

2𝐸 (𝑍) 𝐸 (𝑍 | 𝑍 > 𝐷)𝑃 (𝑍 > 𝐷) − 𝐸
2
(𝑍)

𝑃(𝑍 ≤ 𝐷)
2

.

(7)

Hereafter, we will consider the lifetime 𝜏 to be a constant
to illustrate our model. Let us first assume that the stimuli
arrive according to exponential density 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 and

𝐺
𝜏 (
𝑡) = {

0, 0 ≤ 𝑡 < 𝜏,

1, 𝑡 ≥ 𝜏.

(8)

Using (5) and after some computation, we get the Laplace
transform of the probability density function of interspike
interval 𝑇 as

𝐿
ℎ (
𝑠) =

𝜆

𝑠 + 𝜆

1 − 𝑒
−(𝑠+𝜆)𝜏

1 − (𝜆/ (𝑠 + 𝜆)) 𝑒
−(𝑠+𝜆)𝜏

=

∞

∑

𝑛=1

(

𝜆

𝑠 + 𝜆

)

𝑛

[𝑒
−(𝑠+𝜆)(𝑛−1)𝜏

− 𝑒
−(𝑠+𝜆)𝑛𝜏

] .

(9)

Inverting the above Laplace transform, we get density func-
tion of 𝑇 as

ℎ (𝑡)

= 𝜆𝑒
−𝜆𝑡

∞

∑

𝑗=1

𝜆
(𝑗−1)

(𝑗 − 1)!

× [(𝑡 − (𝑗 − 1) 𝜏)
(𝑛−1)

𝑈
(𝑛−1)𝜏

−(𝑡 − 𝑗𝜏)
(𝑛−1)

𝑈
𝑛𝜏
] ,

(10)

where 𝑈
𝑐
(𝑡) is the Heaviside unit step function. It should be

noted that the series given above is a finite series terminating
with 𝑛 = [𝑇/𝜏]. 𝐸(𝑇) is obtained from (6) as

𝐸 (𝑇) =

1

𝜆 (1 − 𝑒
−𝜆𝜏

)

. (11)

The variance and coefficient of variation of 𝑇 are given by

Var (𝑇) = 1 + 2𝜆𝜏𝑒
−𝜆𝜏

𝜆
2
(1 − 𝑒

−𝜆𝜏
)
2
,

CV (𝑇) =
√
1 + 2𝜆𝜏𝑒

−𝜆𝜏
.

(12)

These results coincide with those of Vidybida [3] (see (7), (9),
and (10) of his paper).

As a second example, if the stimuli arrival distribution is
uniform so that

𝑓 (𝑡) =

1

𝑏 − 𝑎

, 𝑎 < 𝑡 < 𝑏 (13)

and with constant lifetime 𝜏, we obtain

𝐿
ℎ (
𝑠) =

𝑒
−𝑠𝑎

− 𝑒
−𝑠𝜏

𝑠 (𝑏 − 𝑎) − 𝑒
−𝑠𝜏

+ 𝑒
−𝑠𝑏

,

𝐸 (𝑇) =

𝑏
2
− 𝑎
2

2 (𝜏 − 𝑎)

.

(14)

The coefficient of variation of 𝑇 is given by

CV (𝑇) =
√

2𝜇
2 (
𝜏 − 𝑎) + 𝜇1

(𝑏
2
− 2𝜏
2
+ 𝑎
2
)

𝜇
1
(𝑏
2
− 𝑎
2
)

,
(15)

where 𝜇
1
and 𝜇

2
are the first and second moments of 𝑓(𝑡).

In the final example, we assume that the lifetime of the
stimuli 𝜏 is a random variable with exponential distribution
𝑔(𝑡) = 𝜇𝑒

−𝜇𝑡 and the stimuli arrival distribution is also
exponentially distributed with density function 𝑓(𝑡) = 𝜆𝑒

−𝜆𝑡

for 𝑡 > 0. Then, from (5), we have

𝐿
ℎ (
𝑠) =

𝜆 (𝑠 + 𝜆)

𝑠
2
+ 𝑠 (2𝜆 + 𝜇) + 𝜆

2

=

𝜆 (𝑠 + 𝜆)

(𝑠 − 𝑟
1
) (𝑠 − 𝑟

2
)

.

(16)

Inverting the above equation, we get the density function of
𝑇 as

ℎ (𝑡) =

𝜆

𝑟
1
− 𝑟
2

[(𝜆 + 𝑟
1
) 𝑒
𝑟
1
𝑡
− (𝜆 + 𝑟

2
) 𝑒
𝑟
2
𝑡
] , (17)

where 𝑟
1
and 𝑟
2
are the real roots of the equation 𝑠2 + 𝑠(2𝜆 +

𝜇) + 𝜆
2
= 0. The mean and coefficient of variation of 𝑇 are

given by

𝐸 (𝑇) =

𝜆 + 𝜇

𝜆

,

CV (𝑇) = √

𝜆 + 4𝜆𝜇 − 𝜇

𝜆 + 𝜇

.

(18)

An important property of the interspike intervals in the
present model that will prove useful in our analysis, which
can be intuitively verified, is as follows.

Assertion. If 𝑇𝜏 is the random variable of the firing intervals,
based on the lifetime 𝜏, then 𝑇𝜏1 > 𝑇

𝜏
2 , where 𝜏

1
< 𝜏
2
, in the

stochastic ordering sense.The above assertion implies that for
decreasing lifetime 𝜏, the probability of firing for a fixed 𝑡 is
increasing. Also as 𝜏 → ∞, every stimuli gives rise to a firing
while as 𝜏 → 0, the neuron cannot fire.

3. Perspectives on the Passage from a Single
Binding Neuron to a Network

In order to study the role of inhibitory and excitatory con-
nections amongst neurons with a mathematically tractable
model, Cottrell et al. [6] introduced the hourglass model.The
main idea behind the hourglass model [17, 24] is to associate,
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at each time 𝑡, the expected time 𝑋(𝑡) that remains for the
neuron to fire. This is to be contrasted with the traditional
models, where the membrane potential level 𝑉(𝑡) is the vari-
able of interest. If 𝑈 denotes the random variable denoting
the interspike interval, the stochastic process {𝑋(𝑡), 𝑡 ≥ 0}

satisfies the spike train as follows:

𝑋(𝑡 + 𝑑𝑡) = 𝑋 (𝑡) − 𝑑𝑡 if 𝑋 (𝑡) > 0,

𝑋 (𝑡 + 𝑑𝑡) = 𝑈 − 𝑑𝑡 if 𝑋 (𝑡) = 0.

(19)

{𝑋(𝑡), 𝑡 ≥ 0} is Markov process which decays linearly with
slope −1 in between firings. The model is called hourglass
model because one can visualize an hourglass being refilled
with an amount 𝑈 after each firing. With our success in
finding the expected time to fire for the binding neurons,
the above model is completely specified. The above-said
hourglass model for a single neuron can be extended to a
network of connected binding neurons along the lines of
Cottrell et al. [6].

Consider a network of 𝑛 binding neurons which are
interconnected. Each of the neurons in the network has its
own spiking activity due to external stimulations, as modeled
in Section 2. Consider a typical neuron 𝑖 in the network. Let
us denote by 𝐼

𝑖
and 𝐸

𝑖
, respectively, the set of neurons in

the network which are inhibited and excited by neuron 𝑖. We
assume that when each time neuron 𝑖 fires, it triggers a short
input to all its connected neighboring neurons. In the case
of inhibitory connections, the effect of such an input is to
reset the expected firing time for every neuron in 𝐼

𝑖
. Note that

this results in an increase 𝑤
𝑖𝑗
in the expected firing time of

all neurons 𝑗 in the set 𝐼
𝑖
. Similarly, in the case of excitatory

connections, the effect of such an input is to reset the expected
firing time of every neuron in 𝐸

𝑖
, which leads to a decrease

𝑤
𝑖𝑗
in the expected firing times of all neurons 𝑗 in the set 𝐸

𝑖
.

Thus, the positive or negative delays 𝑤
𝑖𝑗
in the sets 𝐼

𝑖
and 𝐸

𝑖

are functions of the lifetime 𝜏 of the neurons.
Following Cottrell et al. [6], the behavior of the network

can now be written for every neuron 𝑖 in the network as
follows. Let𝑋

𝑖
(𝑡) be the remaining expected time to fire of the

neuron 𝑖 in the network at time 𝑡 and let 𝑈
𝑖
be the expected

time to fire. If 𝑤
𝑖𝑗
is the amount of increase (or decrease)

in the interconnected inhibitory (excitatory) neuron 𝑗 in the
network, then we have the following.

If𝑋
𝑖
(𝑡) ̸= 0,

𝑋
𝑖 (
𝑡 + 𝑑𝑡) = 𝑋𝑖 (

𝑡) − 𝑑𝑡; ∀𝑖. (20)

If𝑋
𝑖
(𝑡) = 0,

𝑋
𝑗 (
𝑡 + 𝑑𝑡) =

{
{

{
{

{

𝑈
𝑖
− 𝑑𝑡, for 𝑗 = 𝑖,

𝑋
𝑗 (
𝑡) + 𝑤𝑖𝑗

− 𝑑𝑡, if 𝑗 ∈ 𝐼
𝑖
,

max {0, 𝑋
𝑗 (
𝑡) − 𝑤𝑖𝑗

− 𝑑𝑡} , if 𝑗 ∈ 𝐸
𝑖
.

(21)

It can be shown that the process {𝑋
𝑖
(𝑡), 𝑖 = 1, 2, . . . 𝑛}

is an irreducible aperiodic Markov chain. To visualize the
behavior of this Markov chain, we construct a discrete-event
simulation model of a neural network composed of one
hundred neurons organized in a grid of 10 × 10. Each neuron

in the network is connectedwith its laterally adjacent neurons
(left, right, up, and down). Following themodelmentioned in
Cottrell et al. [6], we build this example assuming that all the
lateral connections are inhibitory.

Given the above mentioned network characteristics, the
behavior of a single neuron 𝑖 in this grid is modeled as
follows. At each unit of time, the remaining time until firing
𝑋
𝑖
(𝑡) is reduced by one unit (showing the behavior of the

hourglass model of a single neuron). When 𝑋
𝑖
(𝑡) reaches

zero, neuron 𝑖 fires and therefore sends stimuli to all of
its laterally connected neurons. When this occurs the value
of 𝑋
𝑖
(𝑡) is refilled with expected time for the neuron to

fire. In our simulation studies, we use the case of constant
lifetime 𝜏 so that the refill amount is given by (11) with
𝜆 = 15 second−1. We note that with such a formulation,
the remaining time to fire of any neuron in the network is
a function of the parameters 𝜏, the input lifetime, and 𝑤

𝑖𝑗
,

the increment (decrement). Each neuron of this network is
simulated in a submodel following the hourglass structure.
In each individual neuron submodel, the transmitters arrive
at the neuron in the form of simulation model entities and
reduce its remaining time to fire. A module within each
submodel keeps track of the remaining time to fire and
updates this value each time a transmitter arrives. Eventually,
when the value of the remaining time to fire reaches zero,
the neuron fires and immediately after firing, the hourglass
is refilled. Once the neuron fires, the stimulus reaches the
adjacent neurons. To model the connection of each neuron
with the rest of the network, we build a submodel to control
the connections. Upon firing a signal by each neuron, the
stimulus is received by the sub model of connections. This
submodel distributes the signal to the laterally connected
individual neurons in the network which are governed by a
similar submodel for the individual neurons. In this example,
for computational purposes we take, 𝑤 = 𝑤

𝑖𝑗
to be constant

for all neurons 𝑖 and 𝑗; we present our results for the three
cases, where we evaluate the effect of changing 𝜏 and 𝑤 for
values of 𝜏 = 1, 5, 7 and 𝑤 = 4, 15, 30. In order to interpret
the results, we categorize the neurons within this network
depending on their spike activity. If a neuron has less than
5 spikes, it is considered a silent neuron (colored white),
between 6 and 200 spikes is considered a medium activity
neuron (gray), and above 200 spikes is considered a high
activity neuron (blue).

In each case (i.e., 𝜏 = 1, 5, 7), we show results beginning
with𝑤 = 4, where all the neurons are active.Then, we present
the matrix for the first value of𝑤 at which we start observing
silent neurons and we also present the results for 𝑤 = 30.
These results, for Case 1 (𝜏 = 1), are shown in Figure 1.
In this case, the neurons that constitute the network are all
active until 𝑤 takes the value of 30, where we can observe
two silent neurons which are not on the matrix borders. In
Figure 2, results for Case 2 are presented when 𝜏 = 5. In
this case, at 𝑤 = 10, the neurons start becoming inactive.
In this case, the number of silent neurons is 32, all located
in the middle part of the matrix and their adjacent neurons
are all active. However, the level of activity decreases on
the borders. When we increase the value of 𝑤 to 30, some
silent neurons start appearing on the borders of the matrix.



6 Computational and Mathematical Methods in Medicine

w = 4 w = 15 w = 30

Figure 1: Simulation results of the 10 × 10-neuron network with 𝜏 = 1.

w = 4 w = 10 w = 30

Figure 2: Simulation results of the 10 × 10-neuron network with 𝜏 = 5.

In Figure 3, the results of Case 3 with 𝜏 = 7 are presented. In
this case, the value of 𝑤 at which neurons become inactive
is lower than that of the two previous cases which occurs
at 𝑤 = 7. Also, the number of silent neurons increases at
a higher rate than that of the last two cases as we observe
silent neurons in the matrix border even at 𝑤 = 7. Results
similar to Case 3 were observed in all cases of 𝜏 with higher
valueswhichmeans that by incrementing the value of𝑤,more
silent neurons appear in the network. The early neurons that
become inactive are the ones in the middle of the matrix
and as the value of 𝑤 increases, border neurons also start to
become silent. Comparing Figures 1, 2, and 3 also reveals that
as we increase the value of 𝜏 and keep the value of𝑤 constant
(as seen in all instances with 𝑤 = 30), the number of silent
neurons grows. This means that 𝜏 and 𝑤 are proportional in
terms of the number of silent neurons. These observations,
although not conclusive, are consistent with the example
presented in [6], where increasing the value of𝑤decreases the
activity of the network, and this inactivity starts appearing in
themiddle of thematrix first, and as𝑤 increases, it propagates
to the borders as well.

Finally, let us compare our approachwith that of Vidybida
[3] and Cottrell et al. [6] whose works have been the basis
of the present work. Vidybida’s model moves away from
the existing models of physiochemical quantities towards
models operating in terms of input impulses and their
lifetimes. This approach encompasses the LIF models. We
seek to generalize his approach taking the model neurons

more towards biological neurons. The renewal process of
assumptions of the input impulses is a step in that direction,
although we still are in the regime of independence of input
events. In our view, a realistic neuron model should take into
account the autocorrelational structures of the input. Another
element of realism is the randomness of the lifetimes of
the input events. In real neurons, electrochemical transience
supports deterministic lifetime of impulses, however, in mass
service theory the service time which is the counterpart
of lifetime 𝜏 is random. Further, the deterministic 𝜏 can
easily be obtained as a particular case of random 𝜏. The
present approach otherwise retains all the other ingredients
of Vidybida’s approach.

Existing network models operate from two ends; at one
end, they use physiochemical properties like ion conduction,
propagation of signals through axons, and so forth. At
the other end there are models dealing with firing rates
and histograms only. However, Cottrell’s hourglass model
takes a middle path in which the variable of interest is the
remaining time to fire for the neuron. Armedwith probability
distribution and mean time to firing of individual binding
neurons, our approach integrates Vidybida’s model neuron
and Cottrell’s hourglass model. As contrasted with Cottrell’s
model in which the activity of neurons in the network is
based on the input 𝑤

𝑖𝑗
only, our approach uses both 𝑤

𝑖𝑗

as well as 𝜏, the lifetime of the input impulses as factors
contributing to the network activity. Our limited simulation
study conforms to the results of Cottrell that the increasing
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w = 4 w = 7 w = 30

Figure 3: Simulation results of the 10 × 10-neuron network with 𝜏 = 7.

values 𝑤
𝑖𝑗
decrease the neuronal activity and this inactivity

starts to appear in the centre of the network and propagates
to the boundaries as well with the increasing𝑤

𝑖𝑗
. However, an

in-depth simulation study is needed to understand neuronal
activity. In this regard, we wish to mention that 𝑤

𝑖𝑗
could be

made to depend on the Euclidean distance between neurons
𝑖 and 𝑗 in the network.

4. Conclusion

This paper generalizes the binding neuronmodel of Vidybida
in several aspects.The input stimuli are governed by a renewal
process which gives the modeler flexibility in modeling.
The lifetime of the inputs which depends on the location
of the neuron under consideration is naturally assumed to
be random variables. A noteworthy aspect is the explicit
analytical expressions for the probability distribution and
statistical characteristics of the time to firing of the neuron.
This will be very useful in the study of neuronal networks.
The paper also attempts to carry forward the modeling from
single binding neuron to a network of such neurons using the
hourglass model.
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tex cérébelleux: Simulation de l’inhibition par collatrales
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Sciences—Series III, pp. 301–304, 1985.


