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Abstract
Automated epileptic seizure detection from ectroencephalogram (EEG) signals has attracted significant attention in the
recent health informatics field. The serious brain condition known as epilepsy, which is characterized by recurrent seizures,
is typically described as a sudden change in behavior caused by a momentary shift in the excessive electrical discharges in a
group of brain cells, and EEG signal is primarily used in most cases to identify seizure to revitalize the close loop brain. The
development of various deep learning (DL) algorithms for epileptic seizure diagnosis has been driven by the EEG’s non-inva-
siveness and capacity to provide repetitive patterns of seizure-related electrophysiological information. Existing DL models,
especially in clinical contexts where irregular and unordered structures of physiological recordings make it difficult to think
of them as a matrix; this has been a key disadvantage to producing a consistent and appropriate diagnosis outcome due to
EEG’s low amplitude and nonstationary nature. Graph neural networks have drawn significant improvement by exploiting
implicit information that is present in a brain anatomical system, whereas inter-acting nodes are connected by edges whose
weights can be determined by either temporal associations or anatomical connections. Considering all these aspects, a novel
hybrid framework is proposed for epileptic seizure detection by combined with a sequential graph convolutional network
(SGCN) and deep recurrent neural network (DeepRNN). Here, DepRNN is developed by fusing a gated recurrent unit
(GRU) with a traditional RNN; its key benefit is that it solves the vanishing gradient problem and achieve this hybrid frame-
work greater sophistication. The line length feature, auto-covariance, auto-correlation, and periodogram are applied as a
feature from the raw EEG signal and then grouped the resulting matrix into time-frequency domain as inputs for the SGCN to
use for seizure classification. This model extracts both spatial and temporal information, resulting in improved accuracy,
precision, and recall for seizure detection. Extensive experiments conducted on the CHB-MIT and TUH datasets showed
that the SGCN-DeepRNN model outperforms other deep learning models for seizure detection, achieving an accuracy of
99.007%, with high sensitivity and specificity.
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Introduction
The neurological system of the human brain is extremely
complicated. The diagnosis and treatment of numerous
neurological diseases, including epilepsy, alzheimer,
autism, encephalopathies, and others, usually make use of
the non-invasive technique known as electroencephalog-
raphy (EEG), which records electrical activity throughout
the patient’s skull and scalp. Despite having a lower
spatial resolution than methods for imaging the brain like
computed tomography (CT) and magnetic resonance
imaging (MRI), EEG is a well-liked diagnostic tool
among doctors because of its superior temporal resolution,
low cost, and non-invasive nature.1

According to estimates from the World Health
Organization (WHO), epileptic seizures impact about 65
million individuals globally.2 Early detection and timely
treatment are vital due to the potential mortality risk asso-
ciated with epilepsy. Electroencephalogram (EEG) record-
ings provide immediate measurement of the brain’s
electrical activity, allowing for the identification of abnor-
mal brain oscillations associated with epileptic seizures.
However, manually monitoring long-term EEG data can
be laborious. An automated seizure detection system can
be highly valuable in diagnosing epilepsy and enabling
early intervention for prompt medical assistance. Such a
system serves as a real-time alerting mechanism, facilitating
timely diagnosis and subsequent therapy.3

Automatic seizure identification using the deep learning
(DL) method is a two-stage procedure. The signals’ spectral
or temporal information, or maybe both, are used in this
feature extraction procedure. The retrieved features may
then be subjected to statistical analysis techniques before
being fed into a classifier in the subsequent stage. This two-
stage technique, despite producing outstanding results, is
nevertheless challenging and calls for a high level of deep
learning proficiency when preprocessing and attempting
to extract the most representative features from the raw
data. Finding a straightforward yet effective methodology
that can combine all seizure detection phases into a single
deep-learning automated system is therefore preferable.4

The majority of these deep learning-based methods were
developed using models of traditional neural networks,
such as the convolutional neural network (CNN), recurrent
neural network (RNN), long short-term memory (LSTM),

and gated recurrent unit (GRU). The ability to retrieve
seizure properties from a shallow neural network is typic-
ally somewhat limited. Seizures are caused by various
parts of the brain in different ways. It is necessary to distin-
guish between EEG data from various brain areas. As a
result, our focus is on creating a deep neural network that
can handle raw EEG data directly, distinguish between
data on different channels, and automatically identify sei-
zures and non-seizures.5

Deep learning methods for graph data have recently
attracted more and more attention. To handle the complex-
ity of graph data, new generalizations and definitions of
crucial operations have been rapidly developed over the
past few years, driven by CNNs, RNNs, and autoencoders
from deep learning. Existing machine learning algorithms
face substantial difficulties as a result of the complexity
of graph data. Because graphs can be asymmetric, they
may contain varying numbers of unordered nodes and
neighbors. For relational data between variables in these
applications, graphs may be a particularly useful encoding
approach because they naturally reflect relationships
between entities.6 Hence, a major area of study has been
the generalization of graph neural networks (GNN) into
structural and non-structural situations. Graph convolu-
tional networks (GCNs), which have enabled the use of
CNN’s representation learning capabilities for irregular
graph data, have advanced the theory of signal processing
on graphs. Through the use of graph convolutional net-
works, convolution is made applicable to non-Euclidean
graph data. Graph Attention Network (GAT), the important
variation of the graph-based neural network, can automatic-
ally assign weights to neighbouring nodes, capturing the
significance of connections between nodes within the
graph.7

The time-domain EEG data are directly translated into
their graph representations by the graph-based approaches.
Because of this, they are more susceptible to the phase
changes of various signals, which might result in undesir-
able intra-class variance. Thus, we propose a sequential
graph convolutional network (SGCN) to solve this issue
that first applies the Fast Fourier Transform to the time-
domain signal (FFT). With all EEG signals having the
same length and sampling rate, the outcome is an ordered
list of frequency-domain properties that are completely
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aligned. The problem of time domain phase shift is no
longer a problem for the complex networks formed from
these frequency-domain data. Additionally, these
frequency-domain complex networks might produce very
comprehensible results due to the extensive domain knowl-
edge regarding the relationship between epilepsy and EEG
components on particular frequencies.8

Recurrent neural networks were created as a deep learn-
ing technique for handling sequential input. It is made up of
cyclic-connected feedforward neural networks. By utilizing
the temporal correlations between the data at each point in
time, it maps the whole history of input in the network to
anticipate each output. RNNs with sophisticated recurrent
hidden units, such as the LSTM unit and the gated-recurrent
unit (GRU), have gained popularity in recent years as a
method for modelling temporal sequences.9 Recurrent
neural networks (RNNs) are well-liked designs for
sequence analysis that keep a hidden representation of the
signal at each point in time. Information from nearby time
points is combined via this concealed representation,
which is continuously updated depending on its previous
value. EEG data from one-second windows is input directly
into an RNN that is comparable to CNNs.10

Nonlinear functions that are frequently employed in the
development of conventional RNNs include the sigmoid or
a hyperbolic tangent function. The stochastic gradient
descent approach known as backpropagation training algo-
rithm to recurrent neural network applied to sequence data
like a time series (BPTT) is frequently used to estimate the
parameters of the RNN model. The “vanishing” or “explod-
ing” gradient problems, which frequently occurwhile training
RNNs using BPTT, have been addressed by two specific
models, the long-short term memory (LSTM), and the gated
recurrent unit (GRU). Utilizing the hidden state from the con-
ventional RNN as an intermediate candidate for an internal
memory cells and adding it as an element-wise weighted-sum
to the previous value of the internal memory state to produce
the current value of the memory cell, the combination of
LSTM-RNN and GRU-RNN transforms the conventional
RNN into DeepRNN. The “vanishing” or “exploding” gradi-
ent problem can be solved and the DeepRNN characteristics
are achieved by using the additive memory unit in LSTM
and GRU.11

Feature extraction in deep learning is the process of auto-
matically extracting meaningful and relevant features from
raw data. It involves transforming the input data into a more
compact representation that captures the most important
information required for the task at hand. It helps to
reduce the complexity of the data and increase the effi-
ciency and accuracy of the model. By automatically extract-
ing meaningful features, the model can focus on learning
the important patterns in the data, rather than being over-
whelmed by irrelevant information. In deep learning,
feature extraction is often performed by intermediate
layers of a neural network, which extract higher-level

features that are more relevant to the task.12 Line length,
auto-covariance, auto-correlation, and periodogram as
feature extraction techniques we used in this experiment.
Line length is a simple feature that measures the length of
a signal and can provide information on the shape and amp-
litude of the signal.13 Auto-covariance and auto-correlation
are statistical measures that capture the relationship
between different segments of the signal, providing infor-
mation on the variability and periodicity of the signal.14

Periodogram is a spectral analysis technique that decom-
poses the signal into its frequency components, providing
information on the frequency content of the signal. These
features can be combined in various ways to capture the
unique characteristics of the signal and improve the per-
formance of deep learning models.15

The diagnosis of seizures is an important element of
addressing neurological illnesses, and the use of deep learn-
ing models has shown encouraging results in improving
accuracy. In this paper, we present SGCN-DeepRNN, a
novel technique for EEG-based seizure detection that capi-
talizes on the characteristics of the sequential graph convo-
lutional network (SGCN) and Deep Recurrent Neural
Network (DeepRNN) architectures. Instead of digging
into technical details, we focus on the practical applications
of SGCN and RNN algorithms for EEG data processing.
The proposed technique employs SGCN to detect spatial
correlations among derived features from EEG data.
Because of the graph structure inherent in EEG, SGCN is
particularly well suited for such tasks. Following SGCN
processing, the data is sent onto a DeepRNN, which utilizes
its capacity to model temporal dependencies. The
DeepRNN employs gated recurrent units to update its
internal memory state depending on processed input to
determine the presence or absence of a seizure. In the fol-
lowing sections, we will look into particular applications
and examples of SGCN and RNN algorithms, proving
their uses in the context of EEG analysis. We hope to
offer a clear understanding on how these approaches con-
tribute to the proposed seizure detection framework by con-
centrating on practical applications.

For the rest of this paper, Section 2 explores previous
research and a comparative analysis of the state-of-the-art.
Section 3 demonstrates the proposed method and the
SGCN-DeepRNN based hybrid framework utilized in the
paper. Section 4 describes two datasets used in this work.
Section 5 provides the detail explanation of the result& experi-
ment analysis, patient-specific experiments, and comparison to
other state-of-the-art techniques. Finally, the future research
direction discussed, and the concluding remarks are addressed
in Section 6 and Section 7, respectively.

Related work
The detection of seizures is based on the assumption that the
seizure and non-seizure phases are fundamentally different.
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The majority of epilepsy research presently focuses on
using EEG data to detect seizures.

J. Wang et al.16 presented a study in which the frequency
domain representation of EEG signals has been used
sequential graph convolutional network (SGCN) architec-
ture to preserve sequential information. This approach can
reduce computation complexity without affecting classifi-
cation accuracy. We also present convergence results for
the proposed approach. Vidyaratne et al.17 employed a
deep recurrent neural network architecture for automated
patient-specific seizure detection using scalp EEG. This
network achieved superior performance to current
state-of-the-art methods with a higher detection rate and
low processing time, making it appropriate for real-time
use. An end-to-end deep learning model that combines a
CNN and a BiLSTM to efficiently detect epileptic seizures
in multichannel EEG recordings, outperforming conven-
tional feature extraction methods, and state-of-the-art deep
learning approaches. Craley et al.10 developed a model
that captures both short and long-term correlations in
seizure presentations and demonstrates strong generaliz-
ability to new patients. Their model mimics an in-patient
monitoring setting through a leave-one-patient-out cross-
validation procedure, attaining an average seizure detection
sensitivity of 0.91 across all patients. Golmohammadi
et al.18 developed a model that performed long short-term
memory units (LSTM) and gated recurrent units (GRU) in
seizure detection using the TUH EEG Corpus. The results
show that convolutional LSTM networks with proper ini-
tialization and regularization outperform convolutional
GRU networks, achieving 30% sensitivity at 6 false
alarms per 24 h. Talathi et al.19 discovered how recurrent
neural networks (RNNs) can aid in the development of
automated seizure detection and early seizure warning
systems. Abdelhameed et al.20 used a gated recurrent unit
(GRU) RNN, which achieved an impressive overall accur-
acy, detecting 98% of seizure events within the first 5 s of
the seizure duration. Their model diagnoses epilepsy with
an automatic seizure detection system based on raw EEG
signals, using a CNN-Bi-LSTM architecture with higher
accuracy in classifying normal and ictal cases, and overall
accuracy for normal, inter-ictal, and ictal cases, with
robust evaluation via k-fold cross-validation. Aliyu
et al.21 used discrete wavelet transform (DWT) prepro-
cessed EEG data to achieve good accuracy in epileptic
EEG signal classification, outperforming logistic regression
(LR), support vector machine (SVM), K-nearest neighbor
(KNN), random forest (RF) and decision tree (DT)
models. RMSprop with 0.20 dropout and four hidden
layers was found to be the optimal configuration. The dis-
crete wavelet transform (DWT) is used to eliminate noise
and extract 20 eigenvalue characteristics from the raw
EEG data that was collected from patients and healthy sub-
jects. The preprocessed data is then sent to the classifier in
the second stage to identify epilepsy. Several classification

techniques are models in the classifier, and the models are
trained and tested using the data.

Jaffino et al.22 applied grey wolf optimization (GWO)
based on the deep recurrent neural network (RNN) approach
for accurate detection of epileptic seizure in brainwaves. The
proposed method achieved a precision of 93.4% by decom-
posing brain waves into sub-bands using discrete wavelet
transform, extracting features, and applying a GWO-based
deep RNN for classification. Johnrose et al.23 proposed a
novel method using the rag-Rider optimization algorithm
(rag-ROA) and deep recurrent neural network (Deep
RNN) for EEG seizure detection. Kumar et al.24 focused
on discovering epileptic seizures automatically, which intro-
duces a method utilizing wavelet, sample, and spectral
entropy features extracted from EEG signals. Huang
et al.25 introduced an end-to-end deep neural network,
attention-based CNN-BiRNN that uses multi-scale convolu-
tion, attention models, and multi-stream bidirectional recur-
rent models to automatically detect seizures with high
sensitivity and specificity. Additionally, a channel dropout
method is proposed for training the model and handling
missing or different channels in EEG signals. Naderi
et al.26 presented a novel three-stage technique utilizing
spectral analysis and recurrent neural networks. Gayatri
et al.27 developed an automated diagnostic system for epi-
lepsy using an Elman Neural Network and ApEn as an
input feature. The proposed system can detect the stage,
type, and reason for epilepsy in patients, providing an effi-
cient alternative to traditional analysis methods. Minasyan
et al.28 constructed a patient-specific method for automatic
seizure detection using recurrent neural networks and scalp
electroencephalogram features. The proposed pre-onset
detection achieves a median time of 51 s and a low false-
positive rate, suggesting its potential for a non-invasive
and reliable epilepsy diagnosis.

Epilepsy can be debilitating, and predicting seizures
accurately is crucial to improving patients’ lives. Borhade
et al.29 proposed an innovative technique, the Modified
Atom Search Optimization-based Deep Recurrent Neural
Network that uses electroencephalogram signals to detect
epileptic seizures automatically. Fukumori et al.30 utilized
a convolutional layer and a CNN or RNN model, a fully
data-driven approach that achieves an exceptional perform-
ance in spike and non-spike classification. The results of
this study have important implications for early diagnosis
and treatment of epilepsy in clinical settings, highlighting
the potential for this novel method to improve patient out-
comes. The authors31 proposed a cutting-edge method for
automatic seizure/non-seizure classification using inde-
pendently recurrent neural networks (IndRNNs) with a
dense structure and attention mechanism. The study also
sheds light on the significance of segment length on classi-
fication accuracy, further enhancing our understanding of
this critical factor. Automated EEG analysis can improve
diagnosis and reduce manual errors in brain-related
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disorders such as epilepsy. To identify abnormal brain
activity, the paper32 proposes a novel recurrent neural
network architecture called ChronoNet, which outperforms
previous studies on the TUH Abnormal EEG Corpus
dataset by 7.79%. ChronoNet is also shown to have
domain-independent applicability, successfully classifying
speech commands. Researchers33 introduce an innovative
method utilizing recurrent neural networks (RNNs) with
long-short term memory (LSTM) networks to automate
EEG interpretation. With no need for pre-processing, this
approach effectively models temporal patterns from raw
EEG data, boosting a low computational complexity and
memory requirement. The system impressively achieved
an average validation accuracy of 95.54% and an average
AUC of 0.9582, highlighting the tremendous potential of
deep learning in both clinical applications and neuroscience
research. The authors34 developed a long short-term
memory (LSTM) based recurrent artificial neural network
(RNN) to classify EEG signals and predict epileptic sei-
zures. The proposed network achieved high accuracy and
sensitivity in detecting ictal regions but was unable to
accurately classify pre-ictal regions. Additionally, it
demonstrated excellent specificity in its classifications.

Dataset
We analyze our methods using the TUH dataset and the
CHB-MIT dataset. Boston Children’s Hospital (CHB) and
the Massachusetts Institute of Technology (MIT) provided
a publicly available EEG dataset, which is called CHB-MIT
dataset. There are 17 females, ranging in age from 1.5 to 19,
and 5 men, ranging in age from 3 to 22. The sampling fre-
quency for the signals is 256 Hz. The signals last for a total
of 958 h, of which 198 h are taken up by seizures. We used
the International 10–20 system to get these signals. Our
investigations make advantage of the 16 bipolar electrodes’
common EEG signals, including “FP1-F7,” “F7-T7,”
“T7-P7,” “P7-O1,” “FP1-F3,” “F3-C3,” “C3-P3,”
“P4-O2,” “FP2-F4”, “F8-T4”, “FZ-CZ,” and “CZ-PZ”.35

The second data source is a public EEG dataset called
TUH (Temple University Hospital).36 This dataset consists
of more than 30,000 EEG recordings that were made at
TUH beginning in 2002. Patient ages, diagnoses, medica-
tions, channel setups, and sample frequencies all differ
between recordings. The TUH EEG Abnormal Corpus is
a derived corpus made up of recordings from the TUH
EEG that have been extensively annotated by specialists
as either “normal” or “abnormal” (TUAB). For this experi-
ment, we have used 16 channels. To obtain a total of 1385
EEGs from 1385 different patients, we only use the TUAB
recordings that are annotated as “normal” and disregard
those that are “abnormal” for our research. The TUH
EEG Corpus contains data from 504 patients with epilepsy.
This data includes EEG recordings from both interictal

(periods between seizures) and ictal (during seizures)
states.37

Here are some of the differences in EEG patterns
between normal with eyes open and pure epileptic seizures:

• Alpha waves: Alpha waves are typically more pro-
nounced in the eyes-open condition in normal indivi-
duals. However, they may be suppressed or absent
during epileptic seizures.

• Beta waves: Beta waves are typically more pronounced
in the eyes-open condition in normal individuals.
However, they may be increased or decreased during
epileptic seizures.

• Theta waves: Theta waves may be more pronounced in
the eyes-closed condition in normal individuals.
However, they may be increased or decreased during
epileptic seizures.

• Delta waves: Delta waves are typically more pro-
nounced in the eyes-closed condition in infants and
young children. However, they may be increased or
decreased during epileptic seizures.

In addition to these changes in the frequency bands, epilep-
tic seizures may also be characterized by other features,
such as:

• Spikes: Spikes are short, sharp waves that are typically
associated with epileptic seizures.

• Waves: Waves are longer, more rhythmic waves that are
also associated with epileptic seizures.

• Ictal patterns: Ictal patterns are specific patterns of EEG
activity that are associated with epileptic seizures.

In Figures 1 and 2, we show the comparative EEG pattern
for eyes open and eyes closed state of pure epileptic seizure.

Proposed method
This paper proposed a hybrid deep learning method for the
EEG signal of epileptic seizure patients so as to automatically
detect seizure with high efficiency. In this section, we demon-
strate all components of our comprehensivemodel which will
give a clear understanding about proposed method.

SGCN-DeepRNN based system model

The proposed hybrid deep learning framework combining
with sequential graph convolutional neural network
(SGCN) and deep recurrent neural networks (DeepRNN)
can potentially provide improved performance of seizure
detection in EEG signals. This network combines the
strengths of two state-of-the-art deep learning models: i)
sequential graph convolutional Network (SGCN) and ii)
deep recurrent neural network (DeepRNN). The SGCN
component captures the spatial relationships between
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electrodes and captures the spatial distribution of EEG
activity,16 while the DeepRNN formulate the temporal
dynamics of EEG signals and captures the temporal infor-
mation.38 By combining these two components, the

SGCN-DeepRNN hybrid network is able to combine both
spatial and temporal information, providing a more com-
plete understanding of the EEG signals. The final detection
is made by feeding the outputs of the SGCN and DeepRNN

Figure 1. DeepRNN classifier.

Figure 2. Detailed about proposed method of SGCN-DeepRNN based seizure detection.
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components into a fully connected layer. Figure 3 depicts
the flow diagram of the proposed approach.

Pre-processing of EEG signal

EEG signals can be acquired using electrodes placed on the
scalp to record electrical activity from the brain. The
acquired raw EEG signals usually undergo preprocessing
steps, such as filtering, artifact removal, and re-referencing
to reduce noise and improve the signal-to-noise ratio. These
preprocessing steps are crucial for improving the quality of
the EEG signals and for ensuring the accuracy of subse-
quent analysis and modeling. In this work, bandpass filter-
ing approach is used to preprocess EEG signals. After data
segmentation, it breaks down into a number of distinct time
periods using a sliding window with a period of 1 s and an
overlap rate of 0.5. For instance, an EEG signal of 60 s in
duration and a sampling frequency of 1 Hz would be repre-
sented as a vector 60 s in length. Filter the EEG signal to the
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and beta
(13–24 Hz) bands. Remove artifacts from the EEG signal
using baseline correction.

Feature extraction

Seizure identification in EEG signals, line length character-
istics, auto-covariance and auto-correlation, and

periodogram features have all been demonstrated to be
very effective. In EEG signals, line length feature is
useful in capturing changes in signal amplitude and can
provide information on the presence of spikes and sharp
waveforms, which are often associated with epileptic sei-
zures. Auto-covariance and Auto-correlation features
capture the similarity and regularity of a time series
signal. In EEG signals, these features can provide informa-
tion on the periodicity and stability of the signal, which are
important indicators of epileptic activity. Periodogram
feature captures the frequency content of a signal by trans-
forming it into the frequency domain. Moreover, high-
frequency oscillations, such as those linked to epileptic con-
vulsions, may be detected using periodogram features.

(i)Line length feature: The line length function is uti-
lized to provide an amplitude-frequency analysis of the
EEG signal because it responds to changes in EEG signal
amplitude and frequency. The line function is computed
by taking into account the amount of standing interval in
subsequent samples of the sub-band decomposed wave.
The line length feature is defined as follows:

LL = 1
N − 1

∑N−1

J=1

abs(Xj+1 − Xj) (1)

Where X is the sub-band decomposed signal, N is the total
number of signal values, and abs is the symbol for the

Figure 3. Values obtained for normal with eyes open and pure epileptic seizures (TUH dataset).
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absolute value. The extraction of line length features has a
minimal computational complexity. So real-time apps can
take into consideration this capability.

(ii)Auto-covariance and Auto-correlation: To assess
the similarity of the EEG signal, the auto-correlation con-
siders both the lagged sample value and the current
sample value. By taking into account both the current
sample value and the previous sample value, the auto
covariance feature calculates the covariance of the EEG
signal.

Let x(m) be the EEG signal recorded during the period
[0, M-1].

Using the equation, the autocorrelation Rx[n] function is
calculated:

Rx[n] = 1
M

∑M=1

h=0

x(n+ h)x(h) (2)

The autocovariance function Cx [n] is defined as

Cx[n] = 1
M

∑M=1

h=0

{x[n+ h]− �x}{x[h]− �x} (3)

Here the mean of the signal x which is inclined by

�x = 1
M

∑M−1

m=0

x(m) (4)

The average degree to which a signal differs from its prior
values is reflected in the auto-correlation feature value Rx.

(iii) Periodogram: The auto-correlation function of the
signal is used to determine the probable spread of the
brain wave. The mathematical definition of the periodo-
gram function is

Psx[e
jω] =

∑∞
h=−∞

rx(h)e
−jhω (5)

Measurements are made of the input EEG signal x(m)
during a finite period of time n where m= 0, 1,…,M-1. In
order to express the auto-correlation function for finite
interval period,

r̂x(h) = 1
M

∑M−1

m=0

x(mm+ h)x∗(m) (6)

The signal’s periodogram, also known as the discrete
Fourier transform of the finite interval auto-correlation
function, results in an assessment of the power spectrum.

Pex[e
jω] =

∑M−1

h=−−M+1

r̂x(h)e
−jhω (7)

Graph representation

Graph representation in graph neural networks (GNNs) is
essential for processing and understanding graph-structured

data. In GNNs, nodes and edges are represented mathemat-
ically as feature vectors and relationships, respectively. The
graph representation can be represented mathematically as
G= (V, E, X ), where V is the set of nodes, E is the set of
edges, and X is the feature matrix of the nodes.

X ∈ Rn×d Representing the feature vectors of nodes in V,
the output feature matrix
Y ∈ Rn×h Can be computed as:
Y= σ (A ×W),

Where A ∈ Rn×n the adjacency matrix of the graph is, W ∈
Rd×h is a weight matrix, and σ is a non-linear activation
function. Nodes are updated using message passing,
where information from neighboring nodes is aggregated
using a neural network. Graph convolutional networks
(GCNs) learn a function that maps the graph representation
to a new representation for tasks like node classification,
graph classification, or node representation learning. The
output feature matrix is computed using the adjacency
matrix, weight matrix, and activation function. The graph
convolution operation is performed multiple times to
learn hierarchical representations, and normalization func-
tions like Laplacian or symmetrical normalized adjacency
matrices are used to ensure the operation is well-defined.35

Sequential graph convolutional network

The architecture of sequential graph convolutional network
(SGCN) is designed to retain sequential information within
the graph neural network (GNN) framework. Most trad-
itional GNNs consist of two main components: multi-hop
aggregation of node neighbors and graph-level readout.
The multi-hop aggregation updates the feature of each
node by iteratively aggregating the features of its neighbors,
while the graph-level readout summarizes the node features
into a graph-level representation using sum or pooling
operations. However, this process of readout often results
in the loss of node-level sequential information, making
traditional GNNs unsuitable for learning from complex net-
works. To overcome this limitation, the SGCN architecture
incorporates an improved sequential convolution operation
into the GNN framework. This operation is key to preserv-
ing sequential information, as it enables the model to
capture the relationship between node features at different
time steps. The working process of the sequential graph
convolutional network (SGCN) involves the following
steps:

1. Graph Construction: The first step is to convert the
input data into a graph representation. This involves
defining the nodes and edges in the graph based on
the relationships between the data points.

2. Node Feature Extraction: In this step, features are
extracted from the nodes in the graph. This involves
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defining a set of local node features that capture the
properties of each node.

3. Multi-Hop Aggregation: The features of each node are
updated by aggregating the features of its neighboring
nodes in this step. This process is repeated multiple
times to aggregate the features from multiple hops.

4. Graph-Level Readout: The final step is to learn a graph-
level representation from the node features. This is typ-
ically done using pooling or summing operations to
obtain a fixed-length vector that represents the graph.

The mathematical formulation of the SGCN can be repre-
sented as follows:

Let G= (V, E) be the graph with V being the set of nodes
and E being the set of edges. The node features can be
represented as a matrix X= [x1, x2… xn], where xi is the
feature vector of node i. The node feature update can be
represented as follows:

hl+1
i = f hli,

∑
jNi

Wah
l
j

( )
(8)

Where hli is the feature vector of node i at layer l, f is a non-
linear activation function, Ni is the set of neighbors of node
i, and Wa is the aggregation weight matrix.

The graph-level readout can be represented as follows:

Z = frac
∑n
i=1

hLi

( )
(9)

Where z is the graph-level representation, L is the number of
layers, and n is the number of nodes in the graph. The archi-
tecture of sequential graph convolutional network is given
in Figure 4.

Deep recurrent neural network (DeepRNN)

Deep recurrent neural network (DeepRNN) is a latest idea
of neural network knowledge architecture that performs
better than conventional tuning-based learning techniques.
When compared to other classifiers, the deep recurrent
neural network (RNN) algorithm has a high learning
rate.22 To categorize seizures, we specifically employed
DeepRNN by using gated recurrent unit (GRU) as a
hidden unit. Recurrent neural networks (RNNs) with
complex recurrent hidden units, such the long-short-term
memory (LSTM) unit and the gated-recurrent unit
(GRU), have recently gained popularity as a method for
modeling temporal sequences.32–34 Due to the well-known
vanishing or expanding gradient difficulties, standard
RNNs are challenging to train. The gated recurrent
network topologies, such as gated recurrent unit (GRU),

Figure 4. Values obtained for normal with eyes closed and pure epileptic seizures (TUH dataset).
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were presented as a solution to the vanishing gradient
problem.

∂W
∂L

≈ ΠT
i=1 (U

Tφ′(Wxi + Uyi)) (10)

Where W and U are the transition and input matrices, xi
and yi are the input and output vectors at time step i, T is
the length of the sequence, and φ′ is the derivative of the
element-wise nonlinear activation function. The product
term represents the accumulation of these small gradients
over time, leading to the vanishing gradient problem.

A RNN is a discrete dynamical system with an output of
yt, a hidden state of ht, and an input of xt. The definition of
the dynamical system is

ht = F(ht−1, xt)

yt = G(ht)
(11)

Where F and G are the state transition function and the
output function, respectively.

The transition function and output function of a trad-
itional RNN are defined as

ht =F(ht−1, xt) = ϕh(W
Tht−1 + UTxt)

yt =G(ht) = ϕ0(V
Tht)

(12)

Where ϕh and ϕo are element-wise non-linear functions,
and W, U, and V are the transition, input, and output matri-
ces, respectively. The stochastic gradient descent approach
known as back propagation through time (BPTT) is fre-
quently used to estimate the RNN model’s parameters.
The “vanishing” or “exploding” gradient problems, which
frequently occur while training RNNs using BPTT, have
been addressed by two specific models, the LSTM-RNN
and the GRU RNN. Both LSTM-RNN and GRU-RNN
take the hidden state from traditional RNN as an intermedi-
ate candidate for internal memory cell, say c̃t, and add it in a
(element-wise) weighted-sum to the previous value of the

internal memory state, ct−1. This results in the current
value of the memory cell (state) ct. The “vanishing” or
“exploding” gradient problem can be resolved using the
additive memory unit in LSTM and GRU. The following
discrete dynamical equations are provided to represent the
LSTM or GRU RNN:

c̃t = tanh(WT (rt ⊙ ht−1)+ UTxt)

zt = σ(WT
z ht−1 + UT

z xt + vTz ct−1)

ct = ft ⊙ ct−1 + it.c̃t
ht = ot ⊙ ϕ0(ct)

(13)

In this case, z= {i, f, o, r} denotes the gating functions
input, forget, output, and internal gates, while denotes the
sigmoid function. The parameters of the trainable model
are: {W , Wz, U, Uz, Vz}

In Figure 5 we give the basic architecture of the gated
recurrent unit that is adjoined to the RNN to form the
DeepRNN.

Architecture of DeepRNN. Deep RNN is a network structural
design that consists of various recurrent hidden layers in the
network design’s layer of hierarchy. The recurrent connec-
tion remains at the hidden layer in Deep RNN. Because of
the recurrent feature, the Deep RNN was extremely effect-
ive in working with the features. Deep RNN is regarded as
an excellent classifier among traditional deep learning strat-
egies due to the chronological pattern of information.

The setup of Deep RNN is created by taking the input
vector of wth layer at xth time as A(w,x) =
{A(w,x)

1 , A(w,x)
2 , . . .A(w,x)

a , . . .A(w,x)
f } and the output vector

of wth layer at xth time as O(w,x) =
{O(w,x)

1 , O(w,x)
2 , . . .O(w,x)

a , . . .O(w,x)
f } respectively. The

unit is the pair of each input and output vector element.
In this case, a represents the arbitrary unit number of the
wth layer, and f indicates the total amount of wth layer units.

Figure 5. SGCN-DeepRNN based system model for seizure detection.
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Furthermore, the arbitrary unit number and total number
of units of the (w− 1)th layer are denoted as v and U,
respectively. At this point, the input propagation weight
from (w− 1)th layer to wth layer is denoted by
ω(w) ∈ L f×U , and the recurrent weight of wth layer is
denoted by W (w) ∈ L f×f . Ldenotes the set of weights in
this case. The components of the input vector, on the
other hand, are written as,

A(w,x)
i =

∑U
k=1

P(w)
amO

(w−1,x)
m +

∑f
a

o(w)aa O
(w−1,x)
a (14)

Where P(w)
am and o(w)aa represent the elements ω(w) andWw. An

is the arbitrary unit number of the wth layer. The elements of
wth layer’s output vector is represented as,

O(w,x)
a = γ((w))(F(w,x)

a ) (15)

Where γ(w) is the activation function. However, the activa-
tion functions such as the sigmoid function as
γ(F) = tanh(F), the rectified linear unit function (ReLU)
as β(F) = max(F, 0), and the logistic sigmoid function as
γ(F) = 1

(1+e−F ) are the most commonly used activation

functions.
To ease the process, the 0th weight is symbolized as Pw

a0
and the 0th unit as O(w−1,x)

0 , and thus the bias is defined as,

O(w,x) = γ(w) · (ω(w)O(w−1,x) +W (w) · O(w,x−1)) (16)

In this case, O(w,x) denotes the classifier’s output.
In Figure 6 we outline the architecture of the Deep RNN

classifier.
In Figure 7 shows the detailed system flow diagram of

proposed SGCN-DeepRNN based seizure detection
method.

Loss function

Loss function measures the difference between the desired
output and actual output of a deep learning model. The goal
of training a model is to minimize the loss function, which
guides the adjustment of the model’s parameters during
training. Common loss functions include MSE, MAE, cat-
egorical cross-entropy, binary cross-entropy, and negative
log likelihood, and the choice depends on the task and data.

In a graph classification task, where the goal is to predict
the label of the entire graph, the binary cross-entropy or the
categorical cross-entropy loss can be used, depending on
whether the labels are binary or categorical. Other loss

Figure 6. SGCN model.

Algorithm 1. SGCN-DeepRNN Seizure Detection Model

Input: Raw EEG data.

Output: Seizure or non-seizure label of the EEG signal.

1. Preprocess the raw EEG data to obtain the sample X.
2. Split the samples X into training samples Xtrain and testing

samples Xtest.
3. Construct the graph representation of the samples Xtrain

based on their relationships using the Pearson
correlation method.

4. Implement the sequential graph convolutional network
(SGCN) on Xtrain and Ytrain to extract the node features.

5. Implement the deep recurrent neural network (DeepRNN)
on the node features extracted from step 4 to learn the
graph-level representation.

6. Use the graph-level representation from step 5 as input to
the classification layer to predict the seizure or
non-seizure label of the EEG signal.

7. Train the SGCN-DeepRNN model using back-propagation
and gradient descent.

8. Repeat steps 4–7 multiple times to fine-tune the model.
9. Use the trained SGCN-DeepRNN model to classify the

samples Xtest.
10. Return the final SGCN-DeepRNN model.
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functions such as mean squared error or mean absolute error
can be used for regression tasks, where the goal is to predict
continuous values rather than discrete labels.

In general, the loss function for SGCN can be written as:

L(θ) = 1
N

∑
i

l( f (xi; θ), yi) (17)

Where θ is the model parameters, N is the number of data
points in the dataset, l is the specific loss function for the
task, f is the SGCN model, xi is the input graph data, and
yi is the corresponding label or target value.

Experiment & result
In this section we present the details of our experiments and
explain the experimental outcomes that clearly establish our
proposed method.

Experimental setup

Here we demonstrate four extensive experiments. To carry
out the experiments, PyTorch was utilized, a powerful tool
for deep learning. The computations were carried out on a
high-performance server equipped with an Intel i7-12700k
CPU @3.6 GHz and four NVIDIA Titan XP GPUs and 24
GB RAM ensuring reliable and efficient results.

The parameters were adjusted throughout a range of
values to set the best DeepRNN parameters for the model.
Performance was tested for dropout, number of layers,
and number of units, learning rate, and activation function.
Experiment 1 had two layers with 64 units in each layer and
a dropout rate of 0.2, while Experiment 4 had five layers

with 512 units in each layer and a dropout rate of 0.5.
From the table, we can see that increasing the number of
layers and units generally improved the accuracy of the
model, although there were diminishing returns beyond a
certain point. The choice of activation function also had
an impact on performance, with leaky ReLU achieving
the highest test accuracy in Experiment 3, where learning
rate is 0.005 and dropout rate is 0.4.

Evaluation indicators

By comparing the labels given by the proposed model and
the experts for each epoch, the performance of the proposed
model is evaluated on an epoch-based basis. As evaluation
markers, sensitivity, specificity, accuracy, AUC (Area
under the Curve of ROC), and F1 are used.

Sensitivity: It is the proportion of correctly classified
positive samples defined as:

Sensitivity = TP

TP+ FN

Specificity: It is the proportion of correctly classified nega-
tive samples defined as:

Specificity = TN

TN + FP

Accuracy: It represents the proportion of all correctly clas-
sified samples defined as:

Accuracy = TP+ TN

TP+ FN + TN + FP

Figure 7. Basic architecture of GRU.
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F1-score and precision are calculated as:

F1− Score = 2 ∗ precision ∗ recall
precision+ recall

Precision = TP

TP+ FP

The F1-score, known as the harmonic mean of precision and
recall, represents a comprehensive evaluation of the accuracy
of binary classification models. Precision is the ratio of the
number of true positive samples to all samples predicted as
positive, while recall is the ratio of the number of true posi-
tive samples to all actual positive samples. Figure 8 shows
the seizure signal detected by proposed method.

Figure 8. Detection of seizure signal.

Figure 9. The influence of different thresholds on the performance of the SGCN-DeepRNN model on CHB-MIT.
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The influence of different thresholds on the performance
of the SGCN-DeepRNN model on CHB-MIT dataset and
TUH dataset are given in Figures 9 & 10.

Evaluation of hyperparameters

To fully understand the impact of the SGCN-DeepRNN
hybrid model, we conducted patient-specific separate
experiments using the SGCN model, the DeepRNN
model, and our proposed hybrid SGCN-DeepRNN model.
We ensured the fairness of the experiments by setting the
models to the same parameters. The results, shown in
Table 1, prove the superiority of our proposed
SGCN-DeepRNN model over the other models in all
three-evaluation metrics. This demonstrates the robustness
and effectiveness of our model in EEG signal processing.
By combining the advantages of both models and lever-
aging SGCN to extract spatial features followed by

DeepRNN to extract temporal features and classify the
signals, we fully utilize the temporal and spatial relation-
ships between EEG channels. As a result, the learning
ability of our model is significantly enhanced. As a result,
the proposed SGCN-DeepRNN model offers a superior
solution to epileptic seizure detection shown in Table 2.

Patient by patient experiments

To ensure the reliability and stability of the results, the
experiments were repeated 10 times and validated using
5-fold cross-validation on CHB-MIT dataset in Table 3.
The average results for all patients are nothing short of
remarkable, with an overall accuracy of 99.007%, a sensi-
tivity of 98.058%, and a specificity of 95.025% in
Table 2. Only 3 patients had a specificity score of less
than 90%, which can be attributed to the fact that some
patients had fewer epileptic seizures and their scalp EEG

Figure 10. The influence of different thresholds on the performance of the SGCN-DeepRNN model on TUH.

Table 1. Performance accuracy of SGCN-DeepRNN with CHB-MIT and TUH dataset.

Experiment
Number of
Layers

Number of
Units

Dropout
Rate

Learning
Rate

Activation
Function

Accuracy
(CHB-MIT)

Accuracy
(TUH)

1 2 64 0.2 0.001 ReLU 98.3% 96.01%

2 3 128 0.3 0.0001 tanh 96.8% 87.99%

3 4 256 0.4 0.005 Leaky ReLU 99.007% 98.1%

4 5 512 0.5 0.00001 sigmoid 97.76% 89.97%
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Table 2. Experimental results of SGCN, DeepRNN and the proposed SGCN-DeepRNN model on two dataset.

Method

Accuracy Specificity Sensitivity

CHB-MIT TUH CHB-MIT TUH CHB-MIT TUH

SGCN 96.28% 97.77% 93.03% 94.5% 92.75% 97.33%

DeepRNN 94.16% 87.98% 88.23% 92.76% 75.00% 87.97%

SGCN-DeepRNN 99.007% 98.08% 95.025% 94.99% 98.058% 95.13%

Table 3. Experimental results on our CHB-MIT dataset using the proposed SCGN-DeepRNN architecture.

Patients Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)

1 99.73 99.39 99 99.2 99.44

2 100 100 100 100 100

3 99.9 99.8 99.6 99.7 99.78

4 97.37 90.03 95 92.68 96.44

5 98.73 99.38 98 95.77 96.44

6 99.8 89.1 92.45 90.74 95.09

7 98.33 96.6 96 95.05 97.4

8 98.67 98.94 93 95.88 96.4

9 99.67 99 99 99 99.4

10 99.83 100 99 99.49 99.5

11 99.2 100 95.2 97.47 97.6

12 96.67 100 88 98 98

13 97.47 98.17 88.92 92.02 94.24

14 97.87 95.71 82.76 94.21 97.04

15 99.83 100 99 99.5 99.5

16 99.47 100 96.88 98.41 98.44

17 99.5 98.99 98 98.49 98.9

18 99.83 100 99 99.5 99.5

19 98.44 99.28 91.69 95.05 95.57

20 99.83 96.77 90 93.26 94.7

Mean(+/-) 99.007% 98.058% 95.025% 96.671% 97.669%
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records were greatly affected by external noise.
Impressively, the F1-score and AUC of the proposed
method were 96.671% and 97.669%, respectively, under-
scoring the model’s outstanding accuracy and stability.
Moreover, the p-values of all cases were less than 0.005.
The proposed SGCN-DeepRNN architecture has demon-
strated robustness and effectiveness in EEG signal process-
ing, surpassing the performance of both the SGCN and
DeepRNN models in all indicators.

In Table 4 shows the experimental performance on TUH
dataset by using SGCN-DeepRNN method. The mean
results for all patients are impressive, with an overall

accuracy of 98.08%, a sensitivity of 95.13%, and a specifi-
city of 94.99%. Only three patients had a specificity score of
less than 90%, which may be due to external noise affecting
their EEG records. The F1-score and AUC of the model
were 97.88% and 97.95%, respectively, demonstrating its
outstanding accuracy and stability. The p-values of all
cases were less than 0.005, indicating that the decision vari-
ables learned by the model are significantly different.
Overall, the SGCN DRNN model has demonstrated robust-
ness and effectiveness in EEG signal processing, surpassing
the performance of both the SGCN and DeepRNN models
in all indicators.

Table 4. Experimental results on our TUH dataset using the proposed SCGN-DeepRNN architecture.

Patient Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)

1 99.5 97.65 99.61 99.2 99.44

2 99.32 99 98 99.89 100

3 98 98.82 99.6 99.7 99.78

4 97.37 88 96.27 94.49 96.44

5 98 97.23 99 97.86 96.44

6 99.2 89.9 89.69 95 95.09

7 97.12 90.38 97.74 95.05 97.4

8 98.67 94.37 94 95.88 98.25

9 97.2 94.29 92.84 99 99.4

10 99 94.86 96.64 99.49 99.5

11 98 97.49 98.34 97.47 97.6

12 96.67 96 93.1 99.39 96.84

13 97.47 98.17 90.15 96.74 96

14 97.1 95.71 94.52 96.24 97.04

15 98.65 97 98 99.5 99.5

16 98.8 96.52 92.34 98.41 98.54

17 96.15 98 88.83 98.49 98.9

18 98.24 96.41 99 99.5 99.5

19 98 86 87.59 97.82 95.57

20 99.1 96.7 94.6 98.45 97.83

Mean(+/-) 98.08% 95.13% 94.99% 97.88% 97.95%
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Discussion
We compare the proposed SGCN-DeepRNN model with
other five state-of-art models. The SGCN-DeepRNN
model achieved an impressive accuracy of 99.007%, with
a sensitivity of 98.06% and a specificity of 95.025% on
CHB-MIT dataset. On the other hand, In TUH dataset
98.08% accuracy with sensitivity of 95.13% and specificity

is 94.99%. This indicates that the model can accurately
detect seizures in patients with epilepsy. This is further sup-
ported by the high F1-score and AUC values on CHB-MIT
dataset of 96.671% and 97.669%, respectively for TUH
dataset 97.88% and 97.95% respectively. The next best-
performing model was the Wavelet-SVM model, which
achieved an accuracy of 96.87% and a specificity of
98.13%, but had a much lower sensitivity of 72.99%.

Table 5. Comparisons of the proposed method and other methods.

Author Method Dataset Accuracy (%) Sensitivity (%) Specificity (%)

Omar39 CNN+ SOC CHB-MIT 96.74 82.35 100

Selvakumari40 PCA+ hybrid classifier CHB-MIT 95.63 95.70 96.55

Hu X41 BiLSTM CHB-MIT 93.61 91.85 92.66

S. Janjarasjitt42 Wavelet+ SVM CHB-MIT 96.87 72.99 98.13

Hussain W43 1 D-convolutional LSTM Freiburg 95.75 95.77 95.93

Proposed method (TUH Dataset) SGCN-DeepRNN TUH 98.08 97.88 97.95

Proposed method (CHB-MIT Dataset) SGCN-DeepRNN CHB-MIT 99.007 98.06 95.025

Figure 11. AUC curves for six different model where SGCN+ DeepRNN get maximum area 97.67%.
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This suggests that the Wavelet-SVMmodel may struggle to
accurately detect epileptic seizures in patients with mild
symptoms. The 1D-convolutional-LSTM model achieved
an accuracy of 95.75%, with a sensitivity of 95.77% and
a specificity of 95.93%. This model performed well, but
not as well as the SGCN-DeepRNN model. The BiLSTM
model had an accuracy of 93.61%, with a sensitivity of
91.85% and a specificity of 92.66%, indicating that it is
less accurate than the SGCN-DeepRNN model. The
PCA-hybrid classifier model had an accuracy of 95.63%,
with a sensitivity of 95.70% and a specificity of 96.55%.
This model performed well, but again, not as well as the
SGCN-DeepRNN model. The CNN-SOC model had an
accuracy of 96.74%, with a sensitivity of 82.35% and a spe-
cificity of 100%. This model had a high specificity but a low

sensitivity, which indicates that it may miss epileptic sei-
zures in some patients.

The comparison we mentioned in Table 5 clearly shows
that our proposed method performs better than the other
three state-of-the-art methods. It should be noted here that
we have applied our method to both datasets TUH
Dataset and CHB-MIT Dataset.

Figures 11 & 12 show the AUC and ROC curve of our
experiments. The detail description of figures is mentioned
in the figure title.

Figure 13 shows the losses regarding the experiment
through DeepRNN to different hidden batch size of EEG
Signal. Figures 14 & 15 provide the graphical comparison
of our proposed model (SGCN-DeepRNN) with other five
state-of-art model.

Figure 12. ROC curves of the proposed models. Mean (red line), standard deviation (blue shaded area), and median (blue line) ROCs are
calculated using the obtained ROC curves of each EEG recording for models based on CNN-SOC (left), BiLSTM (middle), and PCA+ hybrid
classifier (right).

Figure 13. Loss with regard to the DeepRNN hidden batch size.
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Figures 16 & 17 show the result of F1 score in our pro-
posed model (SGCN-DeepRNN) while experiment with two
different datasets CHB-MIT and TUH EEG Seizure Corpus.

Our analysis depicts that the SGCN-DeepRNN model
outperforms all of the other models in terms of accuracy,
sensitivity, and AUC.

Future work
The impressive results from our proposed SGCN-
DeepRNN model in both ablation experiments and

patient-by-patient experiments demonstrate its superiority
in epileptic seizure detection. However, there is still much
room for improvement in this field. Future work could
focus on enhancing the model’s performance by exploring
new techniques for feature extraction, such as sparse graph
convolutional networks or attention mechanisms.
Additionally, the proposed model could be applied to
other neurological disorders, such as Parkinson’s disease,
to investigate its effectiveness in different contexts.
Furthermore, investigating the interpretability of the
model could provide insight into the underlying

Figure 14. Graphical representation for comparing five model with SGCN-DeepRNN (CHB-MIT).

Figure 15. Graphical representation for comparing five model with SGCN-DeepRNN (TUH).
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Figure 16. F1 scores of SGCN-DeepRNN on CHB-MIT with various polynomial orders.

Figure 17. F1 scores of SGCN-DeepRNN on TUH with various model capacities.
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mechanisms of epileptic seizures and aid in developing per-
sonalized treatment plans for patients.

Conclusion
In this paper, we propose SGCN and DeepRNN based
hybrid framework for seizure detection. We have created
an innovative approach for seizure detection which pro-
vides excellent experimental result. The proposed
SGCN-DeepRNN hybrid architecture integrates the
strengths of spatial and temporal relationships between
EEG channels, resulting in better accuracy and perform-
ance. The F1-score and AUC values, which demonstrate
the model’s accuracy and consistency, further reinforce its
effectiveness. It is one of the strengths of our method that
we conducted experiments on two popular public datasets
CHB-MIT and TUH. When compared to other cutting-edge
approaches, our SGCN-DeepRNN model outperformed all
others in terms of accuracy, sensitivity, and AUC. This
represents a significant breakthrough in the field of
seizure detection and provides medical professionals with
an invaluable tool for accurately diagnosing in epileptic sei-
zures. Our dedication to advancing the field of seizure
detection through continued research and development is
steadfast. With the remarkable results of our proposed
SGCN-DeepRNN hybrid model, we are confident that our
approach will pave the way for further advancements in
the field, ultimately leading to better care and outcomes
for patients with epilepsy.
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