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Abstract

Modeling biochemical reactions by means of differential equations often results in systems

with a large number of variables and parameters. As this might complicate the interpretation

and generalization of the obtained results, it is often desirable to reduce the complexity of

the model. One way to accomplish this is by replacing the detailed reaction mechanisms of

certain modules in the model by a mathematical expression that qualitatively describes the

dynamical behavior of these modules. Such an approach has been widely adopted for ultra-

sensitive responses, for which underlying reaction mechanisms are often replaced by a sin-

gle Hill function. Also time delays are usually accounted for by using an explicit delay in

delay differential equations. In contrast, however, S-shaped response curves, which by defi-

nition have multiple output values for certain input values and are often encountered in bis-

table systems, are not easily modeled in such an explicit way. Here, we extend the classical

Hill function into a mathematical expression that can be used to describe both ultrasensitive

and S-shaped responses. We show how three ubiquitous modules (ultrasensitive

responses, S-shaped responses and time delays) can be combined in different configura-

tions and explore the dynamics of these systems. As an example, we apply our strategy to

set up a model of the cell cycle consisting of multiple bistable switches, which can incorpo-

rate events such as DNA damage and coupling to the circadian clock in a phenomenological

way.

Author summary

Bistability plays an important role in many biochemical processes and typically emerges

from complex interaction patterns such as positive and double negative feedback loops.

Here, we propose to theoretically study the effect of bistability in a larger interaction net-

work. We explicitly incorporate a functional expression describing an S-shaped input-out-

put curve in the model equations, without the need for considering the underlying

biochemical events. This expression can be converted into a functional module for an

ultrasensitive response, and a time delay is easily included as well. Exploiting the fact that

several of these modules can easily be combined in larger networks, we construct a cell
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cycle model consisting of multiple bistable switches and show how this approach can

account for a number of known properties of the cell cycle.

Introduction

Cell division and the correct separation of genomic material among daughter cells is funda-

mental for the proper development, growth and reproduction of a living organism. The molec-

ular mechanisms that underlie these processes are highly evolutionarily conserved. Incorrect

cell division can have detrimental effects, ranging from developmental defects to the transfor-

mation of healthy somatic cells into cancer cells. Because of this, tight regulatory mechanisms

are established early in embryonic development to ensure the correct replication of DNA and

cell division. These control mechanisms, or cellular checkpoints, ensure that the cell cycle only

progresses to its next phase if appropriate intra- and extracellular conditions are fulfilled.

These conditions include the absence of DNA damage, proper alignment of the chromosomes

in the metaphase plane, and abundance of nutrients and growth factors [1]. The sequential

nature of cell cycle progression where the start of one phase depends on the completion of a

previous phase resulted in the view of the cell cycle as a ‘domino-like’ process [2, 3].

Over the years, both theoretical and experimental studies have demonstrated how the

mechanisms that control the ‘domino-like’ nature of cell cycle progression are centered

around bistable switches. Such bistability is often encountered in systems that possess an S-

shaped steady-state response curve (i.e. with multiple output values for certain input values)

and means that the system may settle in two different stable states depending on the initial

conditions (Fig 1A). These observable stable steady states correspond to the lower and top

branch of the S-curve, while the middle part of the S-curve is unstable and cannot be measured

experimentally. The full S-shaped response curve can therefore not be obtained experimen-

tally, and bistability typically manifests itself through sharp jumps and hysteresis in the mea-

surements. Hysteresis appears when the threshold for switching from low to high response

levels is different from the threshold for switching from high to low response levels. In the cell

cycle, these all-or-none responses ensure robust transitions between different cell cycle phases,

while hysteresis prevents the cell cycle from returning to previous phases without having been

through the whole cell cycle. Control mechanisms at checkpoints can prevent such transitions,

either by keeping the input at sub-threshold levels or by shifting the right threshold to higher

input levels [4–6].

One of the first cell cycle transitions for which the role of an underlying bistable switch was

established, is mitotic entry in early embryonic cells of Xenopus frogs. This cell cycle transition

is characterized by the switch-like phosphorylation of numerous proteins, referred to as

mitotic substrates. Throughout interphase, cyclin B (CycB) molecules are gradually produced

and bind to cyclin-dependent kinase 1 (Cdk1). At the onset of mitosis, the phosphorylation

state of these CycB-Cdk1 complexes abruptly changes, resulting in their switch-like activation

and subsequent phosphorylation of the mitotic substrates [7]. The sudden changes in phos-

phorylation state of CycB-Cdk1 are generated by positive and double negative feedback loops

with the phosphatase Cdc25 and kinase Wee1, respectively [8]. Theoretical work proposed

that bistability, resulting from these feedback loops, plays an important role in cell cycle pro-

gression [9, 10]. Afterwards, this was experimentally validated [11–13]. Not only CycB-Cdk1,

but also counteracting phosphatases such as PP2A help in regulating the phosphorylation state

of mitotic substrates, and thus entry into and exit from mitosis. Recent findings showed how

PP2A too is regulated in a bistable manner [14–16]. Furthermore, the phosphatases PP1 and
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Fcp1 have been implicated in regulating the exit from mitosis, but how exactly these phospha-

tases interact with the different cell cycle regulators remains a topic of active research [17, 18].

The observation that, just like M phase entry, other phase transitions of the cell cycle are

irreversible under normal physiological conditions, suggested that these too are built on bis-

table switches. For example, the transition from G1 to S phase is governed by a complex

interplay between extracellular signals, CycD-Cdk4/6, the transcription factor E2F, retino-

blastoma protein (Rb) and CycE-Cdk2. These interactions lead to bistability in the activity of

E2F [19]. Appropriate conditions, such as a sufficient concentration of extracellular growth

factors and nutrients, will push the cell across the threshold of the switch to a ‘high E2F’ state.

At this point the cell irreversibly commits to the cell cycle, i.e. it will finish the started round

of cell division even if nutrient levels drop [5, 20]. Another cell cycle transition for which bist-

ability has been proposed to fulfill an important role is the metaphase-to-anaphase transition

Fig 1. Modularity in the cell cycle. (A) An S-shaped response is characterized by the coexistence of two stable and one unstable steady states for a certain range of

input levels (blue shaded area). Cell cycle transitions can be described as sudden jumps from the lower to upper branch of the curve (or vice versa). Checkpoints act by

fixing the input at sub-threshold levels (x) or shifting the threshold value to a different input level (blue curve). (B) Different phase transitions in the cell cycle have

been shown to be centered around bistable switches for which S-shaped response curves have been experimentally measured. (C) Entry into mitosis (and other cell

cycle transitions) can be isolated as a biological module from the bigger network of other cell signaling events in the cell (i). Whereas the dynamical features of these

modules have been studied extensively by considering detailed reaction schemes (ii), we propose a phenomenological approach based on three easily combinable

‘functional modules’: time delay, ultrasensitive and S-shaped responses (iii).

https://doi.org/10.1371/journal.pcbi.1009008.g001
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and the accompanying spindle assembly checkpoint (SAC). During this transition, microtu-

bules in the mitotic spindle need to correctly attach to the sister chromatids. Once these are

correctly attached, the cohesin rings that are keeping the sister chromatids together can be

cleaved, upon which the chromatids are separated by the mitotic spindle. Although some

experimental studies question the all-or-none nature of the SAC [21, 22], indirect experimen-

tal and theoretical findings support the idea that this transition is also centered around a bis-

table switch [23–26]. Given the recurring occurrence of all-or-none transitions throughout

the cell cycle, the latter has been envisioned as a chain of interlinked bistable switches (Fig

1B) [26, 27].

Although a chain of bistable switches can account for control mechanisms at cell cycle tran-

sitions and checkpoints, an additional mechanism is still needed to drive the cycle forward and

reset it back to its initial state at the end—thus putting the dominoes back up after toppling

them. This is provided by the periodic production and degradation of cyclins [28]. The

CycB-Cdk1 complexes that accumulate during interphase are activated at mitotic entry. In

turn, they will activate the Anaphase-Promoting Complex/Cyclosome (APC/C), a ubiquitin

ligase. This protein complex then induces the degradation of the cyclins [29]. APC/C regula-

tion is believed to be a complex multi-step mechanism in which time delays play an important

role, hence introducing a delayed negative feedback loop in the reaction network [30, 31]. The

latter is generally known to allow for robust and sustained oscillatory behavior of dynamical

systems [32]. Even when the cellular checkpoints are absent, this negative feedback loop can

drive autonomous biochemical oscillations in a ‘clock-like’ manner, as for example seen in

Xenopus and sea urchin eggs which rapidly alternate between phases of DNA replication

(S phase) and segregation of the chromosomes (M phase) [3, 33].

The cell cycle is a complex process with many interacting parts. Dividing it into a sequence

of discrete modules such as bistable switches might seem artificial. However, since its intro-

duction in biology by Hartwell et al., [34], such a modular approach describing biological pro-

cesses has been justified by advances in synthetic biology, genomics, cell signalling and single-

cell techniques [35–38]. Furthermore, studying the cell cycle based on discrete modules is war-

ranted by the temporal segregation of the different cell cycle phases, and the presence of bist-

ability itself [39, 40].

Even though separating the full system into different modules greatly reduces the complex-

ity, understanding the dynamical behavior of those modules often requires mathematical mod-

els instead of mere intuition [41]. Even for a single module, a biochemically detailed study

results in a large number of variables and parameters, many of which are difficult to determine

experimentally. As this might hamper interpretation of the results, it is often desirable to

reduce the complexity of the mathematical model. One way to accomplish this is by focusing

on a core subnetwork and omitting all other reactions, thus (hopefully) capturing the key qual-

itative behavior of the system [42]. Although this approach certainly has its merits, some

dynamical properties such as bistability may be lost when reducing the model too much [43,

44]. Of note, this does not mean that models of small reaction networks imply less interesting

dynamical features: for example, even a system containing a single molecule can behave in a

bistable manner [45].

Another strategy to reduce the complexity of a model, while retaining much of the system’s

dynamical behavior, is by making certain simplifying assumptions about the underlying reac-

tions, rather than omitting them. For example, using timescale separation methods, one can

identify variables that evolve on a much faster timescale than others. The equations for these

variables can be replaced by expressions for the steady-state response curves, which can be

introduced into the equations for the slow variables. This process is often responsible for the

introduction of nonlinearities in a reaction system. Examples include Michaelis-Menten
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enzyme kinetics, zero-order ultrasensitivity, multisite phosphorylations, cooperative binding

events and stoichiometric inhibition [46], whose net result is often summarized by their

steady-state response curve. These steady-state response curves can be described by reaction-

specific formulas, such as the Michaelis-Menten equation for enzyme-kinetics [47] or the

Goldbeter-Koshland function for zero-order ultrasensitivity [48]. Alternatively, steep

responses —of different molecular origins— can often be adequately approximated by a Hill

function [49–51]. The Hill function is therefore used to introduce steep responses, without

regarding the underlying reactions that generated them. Another example of dynamical behav-

ior that can be explicitly incorporated are time delays, which arise in biochemical reactions

due to the non-zero time to complete physical and/or biochemical processes, such as

molecular transport or intermediate reactions [52, 53]. Such delays can be accounted for via

delay differential equations. In addition to being simpler than mechanistic models, a phenom-

enological model based on explicit mathematical expressions is often the sole option to

describe experimentally observed responses whenever the underlying molecular mechanisms

are unknown.

S-shaped responses typically emerge from regulatory mechanisms like positive or double

negative feedback loops [54]. Many cell cycle models include these feedback loops to gener-

ate the S-shaped response [10, 55–57]. Steep responses and time delays have been explicitly

included in cell cycle models using a simple mathematical form. Given the recurring occur-

rence of bistable switches in the cell cycle, it is remarkable that such a direct mathematical

formulation of S-shaped response curves has never been, as far as we know, explicitly

incorporated into cell cycle models. Here we want to close this gap (Fig 1C) by providing

an easily tunable, phenomenological expression for such an S-shaped response. This

expression can easily be converted into a functional module for ultrasensitivity by tuning a

few parameters, and can be combined with a time delay. As such, we provide a toolbox of

three functional modules (ultrasensitive response, S-shaped response, time delay) that

can be combined in different configurations to model a variety of biological processes. We

will illustrate this approach with models that include different bistable switches in the cell

cycle.

Results

Ultrasensitive responses, S-shaped responses and delay as functional

modules

Before considering actual models of the cell cycle, we start with a general overview of the

functional modules that will be used in the rest of the paper: ultrasensitivity, S-shaped response

and delay. Nonlinear response curves are often described by a Hill function of the form

Output ¼ Inputn

Kn þ Inputn. For n> 1, this gives a sigmoidal response curve, with higher values of n
corresponding to steeper responses (Fig 2A). Such steep responses are often said to be ‘ultra-

sensitive’ [51]. Our ultrasensitive module thus consists of a Hill function.

In order to produce a mathematical expression for our second module, the S-shaped

response, we would like to ‘bend’ the ultrasensitive curve just described such that it becomes S-

shaped (Fig 2B). Mathematically, this can be achieved by starting from a Hill function, and

multiplying the threshold value K with a scaling function ξ(Out):

Out ¼
Inn

Kn þ Inn ) Out ¼
Inn

½xðOutÞ � K�n þ Inn : ð1Þ
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Fig 2. Ultrasensitive responses, S-shaped responses and delay as functional modules. (A) An ultrasensitive input-output response is characterized by the threshold

value K and the Hill exponent n. (B) An ultrasensitive function can be converted into an S-shaped response of different widths: for α = 0, an ultrasensitive response is

obtained, while increasing α increases the width of the S-shaped region. These plots were generated by calculating the inverse of Eq 1. (C) A certain lag time τ between

input and output is encountered in several biochemical reactions. (D) Several combinations of the three functional modules, always in the presence of negative

feedback, to describe oscillations in the cell cycle.

https://doi.org/10.1371/journal.pcbi.1009008.g002
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Note that the latter expression does not define a function—which is impossible, as per defi-

nition an S-shaped response has multiple outputs for one input. Instead, it should be inter-

preted as the steady-state response of an ordinary differential equation (ODE):

dOut
dt
¼

Inn

½xðOutÞ � K�n þ Inn � Out: ð2Þ

Although different options for ξ are possible (see S1 Fig), a straightforward choice in anal-

ogy with, for example, the FitzHugh-Nagumo model would be a cubic function [58]:

xðOutÞ ¼ 1þ a �OutðOut � 1ÞðOut � rÞ:

Changing the parameter α allows for a smooth transition between an ultrasensitive and S-

shaped response: for α = 0 we retrieve the original ultrasensitive response, while increasing its

value results in wider S-shaped regions (Fig 2B). The parameter r can be used to alter the sym-

metry of the response curve. In the remainder of the text, we keep r = 0.5 (resulting in a sym-

metric response as in Fig 2B), and we will not interpret the parameter r further biologically.

The effect of the different parameters on the shape of the scaling function is discussed in more

detail in S1 Text and S2 Fig.

For the last module, i.e. delay, a lag time τ between input and output of the system (Fig 2C)

can be introduced. Replacing In(t) by In(t − τ) then converts Eq 2 into a delay differential

equation. In what follows, we will combine these three functional modules in several configu-

rations, always in combination with a negative feedback (Fig 2D), to model different aspects of

the cell cycle. We will explain how changing the mathematical properties and function param-

eters influence the overall dynamical behavior of the model.

S-shaped, but not ultrasensitive, responses cause a two-dimensional system

of the cell cycle to oscillate

The most straightforward strategy for combining the different functional modules into actual

cell cycle models, would be to start with a simple—but biologically relevant—reaction network

and gradually add additional modules to increase the scope of the model. The simplest cell

cycle models arguably describe the ‘clock-like’ cell cycle oscillations in Xenopus laevis eggs,

compared with the more complex ‘domino-like’ mechanism in somatic cells. Indeed, the early

embryonic cell cycle in X. laevis simply cycles between S phase and M phase and lacks check-

points and gap phases [33]. Furthermore, cell cycles 2 till 12 after fertilization of the egg are

characterized by an increased activity of the phosphatase Cdc25 relative to the kinase Wee1,

resulting in quick activation of CycB-Cdk1 and subsequent APC/C activation [59]. Taken

together, the reaction network at the core of the early embryonic cell cycle can be simplified by

a negative feedback loop, where active CycB-Cdk1 phosphorylates and activates APC/C, which

then causes degradation of CycB molecules. A two-variable phenomenological model of this

system is given by (Fig 3A):

d½Cdk1�
dt

¼ bsyn � bdeg½Cdk1� � ½APC�
�

d½APC��

dt
¼

1

�apc

½Cdk1�n

Kn
cdk;apc þ ½Cdk1�

n � ½APC�
�

 !

8
>>>><

>>>>:

_ ðsystemði-aÞÞ

Here, the two variables [Cdk1] and [APC]� represent the concentrations of activated

CycB-Cdk1 complexes and the ratio of activated APC/C to total APC/C, respectively. The first
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equation describes the rate of change of activated CycB-Cdk1 complexes and consists of two

terms: the constant synthesis of cyclins and their APC/C-dependent degradation. In this

model all synthesized cyclin immediately binds to Cdk1 and activates it. This is why cyclin syn-

thesis is directly included in the equation for [Cdk1]. The second equation in system (i-a)

Fig 3. S-shaped, but not ultrasensitive, responses cause a two-dimensional system of the cell cycle to oscillate. Parameter values as indicated in the figure. (A)

Block diagram of the ultrasensitive, negative feedback system (i-a). (B) Effect of relative synthesis c on the location of the [Cdk1] nullcline in the phase plane. (C) Time

traces for two different initial conditions of system (i-a), denoted by either continuous or dotted line. Only one steady state exists. (D) Block diagram of the bistable,

negative feedback system (i-b). (E) For wide S-shaped [APC]� nullclines, three intersections in the phase plane can exist, resulting in bistability of the overall ODE

system. Closed black dots depict stable steady states, while open dots denote unstable steady states. (F) Time traces for system (i-b). Depending on the initial

conditions, the system will settle in one of two stable steady states. (G) Number and position of the steady states for system (i-b). Osc = oscillations, Bi = bistable, Mono

Low = one stable steady state on lower branch of [APC]� nullcline, Mono Top = one stable steady state on top branch of [APC]� nullcline. (H-I) If the [Cdk1] nullcline

intersects the [APC]� nullcline in between its folds, one unstable steady state exists, resulting in oscillations.

https://doi.org/10.1371/journal.pcbi.1009008.g003
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states that the rate of change of [APC]� is proportional to the difference between the experi-

mentally determined [APC]� ultrasensitive steady-state response and its current level (similar

as in Eq 2) [30, 59], which it approaches with a rate constant 1=�apc . Note thus how positive and

negative terms in this ODE are not to be interpreted as actual production and degradation

terms, respectively.

Because system (i-a) has two variables, its behavior can be conveniently studied in the

phase plane. To determine the steady-state behavior of system (i-a), one needs to find the

number and location of intersections of the [Cdk1] and [APC]� nullclines. These are the

curves in the [Cdk1]-[APC]� phase plane for which d½Cdk1�=dt ¼ 0 and d½APC��=dt ¼ 0 respectively.

Here, only one intersection can exist, whose location is determined by the relative position of

both nullclines (Fig 3B and 3C). Moreover, this steady state is stable, as seen from the linear-

ized system (see S1 Text for details). While parameters n and Kcdk,apc affect the ultrasensitive

[APC]� nullcline, the location of the [Cdk1] nullcline is determined by the ratio of bsyn and

bdeg. However, after non-dimensionalizing the system to facilitate mathematical analysis (see

Materials and methods for details), this ratio can be re-expressed as the product of Kcdk,apc

with a newly introduced dimensionless parameter c:

c ¼
bsyn

Kcdk;apc � bdeg
:

In what follows, we will refer to the cyclin production terms in the non-dimensionalized

ODEs as the ‘relative synthesis rate’, which for system (i-a) (and system (i-b) and system (ii)

below) is given by parameter c. Changing c changes the location of the [Cdk1] nullcline in the

phase plane: whereas low values shift it to the left, high c values shift the [Cdk1] nullcline to the

right (Fig 3B). It is mainly this parameter that will be used in the remainder of the text when

assessing the effect of the [Cdk1] nullcline on the dynamical behavior of the overall system.

As the steady state is stable, this system can not serve as a basic model to describe cell cycle

oscillations. To make the system oscillate, either a time delay or an S-shaped response can be

introduced. The effect of a time delay in combination with ultrasensitivity has previously been

studied in detail [60] (see also S3 Fig). Here we will focus on the effect of converting the ultra-

sensitive module from system (i-a) into an S-shaped module, which is in line with recent

experimental findings that showed the existence of hysteresis in APC/C response curves [15].

As discussed above, the threshold Kcdk,apc can be multiplied with a cubic scaling function

ξ([APC]�) = 1 + αapc[APC]�([APC]� − 1)([APC]� − r) (Fig 3D):

d½Cdk1�
dt

¼ bsyn � bdeg½Cdk1� � ½APC�
�

d½APC��

dt
¼

1

�apc

½Cdk1�n

ðxð½APC��Þ � Kcdk;apcÞ
n
þ ½Cdk1�n

� ½APC��
 !

8
>>>><

>>>>:

_ ðsystemði-bÞÞ

Note that by multiplying the threshold Kcdk,apc with ξ in system (i-b), the [APC]� null-

cline becomes S-shaped when αapc > 0 (as introduced in Eq 2 and Fig 2B). Systems exhibit-

ing such an S-shaped response are good candidates for showing bistability, in which case the

system can evolve over time to two steady states. Whether this behavior is indeed observed,

depends on the number of intersections between the [Cdk1] and [APC]� nullclines in the

two-dimensional phase plane. As the [APC]� nullcline is now S-shaped instead of sigmoidal,

either one or three intersections can exist with the [Cdk1] nullcline (Fig 3E, 3G and 3H).

The system is bistable when three intersections exist, with one steady state being unstable

and the other two stable. It is the initial condition of the system that determines in which of
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the two stable ones the system will settle (Fig 3F). Whenever the system has only one steady

state (i.e. one intersection of the nullclines), the latter can either be stable (on the upper or

lower branch of the S-shaped nullcline) or unstable. Only in the latter case, which happens

if �apc is small enough and both nullclines intersect in between the fold points of the [APC]�

nullcline (Fig 3H), sustained oscillations around this steady state appear. These oscillations

can be thought of as ‘orbiting around the nullclines’, i.e. they show increasing [Cdk1] levels

on the lower branch of the response curve until the [APC]� activation threshold is reached.

At this point, [APC]� levels jump to a higher value, which triggers the decrease of [Cdk1].

The system then proceeds along the upper branch until the inactivation threshold is reached

and the cycle is complete. These oscillations, characterized by slow progress along the

branches of the nullclines and quick jumps between them, are called relaxation oscillations.

They are similar to oscillations observed in, for example, the FitzHugh-Nagumo equations

[58].

From the observation that the system oscillates if the nullclines have a single intersection in

the middle, we can derive some qualitative conditions for oscillations to exist: the [APC]� null-

cline should not be too wide and the [Cdk1] nullcline should not be located too far to the left

nor to the right (relative to the other nullcline). Indeed, from Fig 3G, we see that oscillations

are favored for c values around 0.5 and narrow S-shaped regions. As the S-shaped region

becomes wider, the period of oscillations and [Cdk1] amplitude increases (S4 Fig), but the

range of relative synthesis c for which oscillations can be sustained decreases. For [APC]�, the

effect of the width of the S-shaped region on the amplitude is more moderate, and the ampli-

tude is near-maximal for most oscillations. From the time profiles, we further see that the over-

all shape of the oscillations has a typical sawtooth-like waveform (Fig 3I). It is interesting to

note that, in this system, the effect of the S-shaped response is mixed: on the one hand, it is

required for the system to oscillate, but on the other hand a wider S-shaped region makes oscil-

lations less likely, as in that case the system settles in a steady state on the upper or lower

branch.

The S-shaped module reproduces the behavior of mass-action models

In the previous section, we showed how the S-shaped module can be used to conveniently

model oscillatory systems and showed that the obtained oscillations resemble those of the

early embryonic cell cycle in a qualitative way. The way we introduced the S-shaped response,

through the modified Hill function, is artificial, and not based on biochemical interactions.

To show that our approach can represent the behavior of an actual biochemical system, we

compare our module-based system to an existing cell cycle model based on mass-action

kinetics. For this purpose, we first extended a previously described mass-action model of the

PP2A-ENSA-GWL network [61], by incorporating synthesis and APC/C-mediated degrada-

tion of CycB (Fig 4A). This system is known to generate S-shaped APC/C response curves via

a double negative feedback loop. More specifically, GWL (which is phosphorylated by

CycB-Cdk1) indirectly inhibits PP2A-B55 by phosphorylating ENSA, which is both substrate

and inhibitor of PP2A [62]. PP2A itself, when active, dephosphorylates and inactivates GWL,

thus closing the double negative feedback loop. This leads to an S-shaped response of PP2A

activity as function of CycB-Cdk1 activity. As APC/C is a substrate of PP2A, the S-shaped

steady-state response of PP2A is translated into a similar response for APC/C as function of

CycB-Cdk1.

Once the S-shaped steady-state response curve of the mass-action model (for a fixed param-

eter set, Table 1 in Materials and methods) was calculated, we approximated this response
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Fig 4. The S-shaped module reproduces the behavior of mass-action models. Parameter values as given in Table 1 or as indicated in the figure/caption. (A) Mass-

action model of the PP2A-ENSA-GWL network in which double negative feedback can lead to an S-shaped response of APC/C. (B) Steady-state response curve for

mass-action model and fitted S-shaped module. (C,D) Time traces of the system, in the phase plane (C) and time domain (D). Note how the time traces closely follow

the steady-state response curve. (E,F) Oscillatory region as a function of CycB synthesis and degradation rates for the piecewise fit and mass-action model. Black dot

denotes values used for the time traces in panels C,D,G,H,I. (G,H) Time traces of the system, in the phase plane (G) and time domain (H). All mass-action rate

constants (except from synthesis and degradation) from Table 1 were divided by a constant factor (i.e. 16.5), leading to less separated timescales and reduced

correspondence between the time traces of both models. (I) By further decreasing the mass-action parameters from panels G,H (i.e. factor 100), the correspondence

between the mass-action and phenomenological system becomes even worse, irrespective of the choice of �.

https://doi.org/10.1371/journal.pcbi.1009008.g004
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using a piecewise linear scaling function ξ([APC]�) (Fig 4B and S1 Fig, see Materials and meth-

ods for details). Using the same cyclin synthesis and degradation constants for both models,

the oscillatory period of the phenomenological model can be adjusted to match that of the

mass-action model by simply changing the time constant � (Fig 4D). From Fig 4C, it is seen

how the time traces stay close to their steady-state response curve. Accordingly, the phenome-

nological model will approach the mass-action-model as good as one can fit the steady-state

response. Because the synthesis and degradation rates of CycB do not affect the steady-state

curve, their values can be changed while maintaining a good correspondence between both

models (Fig 4E and 4F).

As alluded to above, a necessary condition for letting the phenomenological model cor-

respond to the mass-action model by fitting the steady-state responses, is the close approxi-

mation of the time traces to the steady-state curves. In the example just given, this was

achieved by choosing the synthesis and degradation rates smaller than the other reaction

rates in the mass-action model [13]. However, the assumption that the timescale of synthe-

sis and degradation is well separated from that of the other reactions in the system is not

necessarily a valid one [13]. When this condition is not satisfied, the phenomenological

approach of fitting the steady-state response curves can lead to inaccurate results. Indeed,

when scaling all reaction rates (except from synthesis and degradation) in the mass-action

model such that the timescales are less clearly separated, the trajectory in the phase plane

does no longer follow the outer branches of the S-shaped curve (Fig 4G). As such, a good fit

of the latter does not guarantee a good correspondence of the time traces (Fig 4H). As an

additional example, consider Fig 4I, where the mass-action system settles in a steady state,

whereas the phenomenological approximation either oscillates or settles in a different

steady state.

It should be emphasized that similar validity conditions apply when using the ultrasensitive

module, as here too, the system only approximates the steady-state response curve when the

timescales are well separated. In fact, such timescale separation is the basis for other model

reduction and approximation methods (e.g. the well-known quasi steady-state approxima-

tion), which too are valid only under the right circumstances [63]. Our method is different

from others in that we substitute the fast dynamics by a manually tunable response curve

which is not directly derived from the original equations.

Delay increases the period, amplitude and robustness of oscillations

So far, we have described the regulation of APC/C by CycB-Cdk1 as a module in which

changes in CycB-Cdk1 immediately affect APC/C activity. In reality, however, this regulation

is believed to be a complex multi-step mechanism in which time delays play an important role

[30]. The effects of these delays can be modeled in a phenomenological way by using delay dif-

ferential equations. Here, we will focus on a basic example with two types of delays, but it

should be noted that the way a delay is implemented in a model can drastically affect the out-

come [60]. First, a delay τ1 between the activation of CycB-Cdk1 and the subsequent activation

of APC/C can exist, i.e. a lag time between [Cdk1] levels reaching the right fold of the [APC]�

nullcline and [APC]� levels actually jumping to the upper branch (Fig 5C, 5D, 5E and 5F). Sec-

ondly, a delay τ2 might occur between the inactivation of CycB-Cdk1 and APC/C. The delays

τ1 and τ2 can either be the same (τ = τ1 = τ2) or they can take different values (if for example,

in the biological system the activation of APC/C were to take much longer than its inactiva-

tion, delay τ1 would have a larger value than τ2 [60]). The case where τ1 6¼ τ2 can be imple-

mented into the mathematical equations by expressing the delay τ as a function of the [APC]�

levels, so that τ = τ1 when APC/C activity is low (i.e. [APC]� < 0.5) and τ = τ2 when APC/C
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activity is high (i.e. [APC]� > 0.5). Taken together, we arrive at the following system:

d½Cdk1�
dt

¼ bsyn � bdeg½Cdk1� � ½APC�
�

d½APC��

dt
¼

1

�apc

½Cdk1�nðt � tÞ
ðxð½APC��Þ � Kcdk;apcÞ

n
þ ½Cdk1�nðt � tÞ

� ½APC��
 ! ðsystemðiiÞÞ

8
>>>><

>>>>:

with t ¼ t1 ¼ t2

or t ¼ tð½APC��Þ ¼ t1 þ ðt2 � t1Þ
½APC��p

0:5p þ ½APC��p
:

Fig 5. Delay increases the period, amplitude and robustness of oscillations. Parameter values as indicated in the figure/caption. (A) Block diagram of the bistable,

delayed negative feedback network. (B) Oscillatory regions, located above and to the left of the plotted lines, as a function of the time delay and width of the S-shaped

response for different values of the relative synthesis rate c. (C) Phase plane representation of the oscillations for different values of τ. Note how one can only conclude

that τ1 = τ2 from time traces, not directly from the phase plane. (D,E) Time traces for parameter values indicated in panel B and c = 0.5. τ1 denotes the delay between

activation of [Cdk1] and activation of [APC]�, while τ2 represents the delay between their inactivations. Dashed lines depict the [Cdk1] levels at the folds of the bistable

[APC]� nullcline. (F) State-dependent time delays can account for differences in the activation and inactivation delays (c = 0.5, p = 5).

https://doi.org/10.1371/journal.pcbi.1009008.g005

PLOS COMPUTATIONAL BIOLOGY A modular approach for modeling the cell cycle based on functional response curves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009008 August 11, 2021 13 / 39

https://doi.org/10.1371/journal.pcbi.1009008.g005
https://doi.org/10.1371/journal.pcbi.1009008


Here, the Hill function in τ([APC]�) approaches a step function (for high values of the Hill

exponent p) with τ� τ1 if [APC]� is smaller than 0.5 (as the Hill function approaches zero)

and τ� τ2 when [APC]� activity is larger than 0.5 (as the Hill function approaches one), as is

desired (recall that τ1 represents the ‘activation delay’ and τ2 the ‘inactivation delay’).

For ξ([APC]�) = 1 (i.e. αapc = 0) we retrieve the combination of a delay and ultrasensitive

module (S3 Fig). As before, increasing αapc converts the ultrasensitive response into an S-

shaped one. Without a time delay, oscillations can be observed for intermediate values of the

relative synthesis c (c = 0.5) whenever the S-shaped region is not too wide (as otherwise the

overall system becomes bistable). Low or high c values result in one stable steady state and no

oscillations (compare Figs 5B and 3G). However, adding a sufficiently large time delay τ can

cause the system to start oscillating, even for widths of the S-shaped region and values of c
where the system is mono- or bistable if τ = 0. The oscillator thus becomes more robust against

changes in the width of the S-shaped response curve. The wider the S-shaped region becomes,

the larger the delay required to induce oscillations. A maximal width exists beyond which no

oscillations can be sustained, independent of the time delay, corresponding to the right vertical

boundary of the oscillatory region in Fig 5B (especially clear for c = 0.2).

Both the period and [Cdk1] amplitude grow as the time delay increases (Fig 5C, 5D, 5E and

S5 Fig). Activation of [APC]�, on the other hand, is an all-or-none process for the majority of

parameter values, with longer delays prolonging the time during which the [APC]� activity is

at its maximal/minimal level, resulting in plateau phases in the time profiles (Fig 5C, 5D, 5E

and S5 Fig).

Large amplitude oscillations are facilitated by two bistable switches

In the previous section we considered CycB-Cdk1 activity to be equivalent to CycB levels. This

is justified for cycles 2–12 of the embryonic cell cycle of X. laevis, where all CycB quickly binds

to Cdk1 and the complexes are rapidly activated by the phosphatase Cdc25 whose activity is

dominant over the inhibitory kinase Wee1 [59]. However, in the first embryonic cycle and

extracts of Xenopus eggs, a bistable response of CycB-Cdk1 activity with respect to total CycB

concentrations is typically observed [11, 12, 59]. Hence, a logical next step in adjusting our cell

cycle model is to add a separate S-shaped module (or as it will appear, a slightly modified ver-

sion of it) for this regulation (Fig 6A):

d½CycB�
dt

¼ bsyn � bdeg½CycB� � ½APC�
�

d½Cdk1�
dt

¼
1

�cdk
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� �
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h in
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dt
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1

�apc

½Cdk1�n
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n
þ ½Cdk1�n

� ½APC��
 !

8
>>>>>>>>>>>>><
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Here, the variable [CycB] represents the total concentration of CycB molecules, [Cdk1] rep-

resents activated CycB-Cdk1 complexes and [APC]� the ratio of active APC/C molecules to

the total amount of APC/C. Note how for the rate of change of [Cdk1], the S-shaped module is

slightly modified compared with the one used in system (i-b): the Hill-like expression for

the S-shaped response is multiplied by [CycB]. The reason for this is explained in detail in

Materials and methods, and for now, it suffices to mention that this multiplication does not
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compromise the applicability of the approach. In fact, it is required to obtain the correct shape

of the response curve as experimentally determined [11].

Adding this second module for CycB-Cdk1 regulation greatly affects the position and shape

of the nullclines, which now become surfaces in the three dimensional space (although they

Fig 6. Large amplitude oscillations are facilitated by two bistable switches. Parameter values as indicated in the figure. (A) [Cdk1] amplitude for system (iii-a). The

green contour represents the oscillatory region for system (i-b). (B) [Cdk1] amplitude for system (iii-b) and (iii-c). System (iii-b) corresponds to a horizontal cross-

section at Wcdk,apc = 0. (C-D) [Cdk1] amplitudes for the different system configurations as a function of the threshold values K. Parameters as in panel B or as

indicated, with c = 0.5. (F-I) Phase plane representation showing the relationship between the oscillations of the system and its steady-state response. Parameter values

and colors (yellow vs purple) correspond to panels C-E.

https://doi.org/10.1371/journal.pcbi.1009008.g006
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can be projected in a 2D plane). As a result, the parameter space sustaining oscillations changes

compared with system (i-b), even if the added response of [Cdk1] as a function of [CycB] is

only ultrasensitive, as in system (iii-a) (Fig 6A, note how this latter system can be derived from

system (iii) by setting the prefactor αcdk in xð½Cdk1�=
½CycB�Þ equal to zero). In particular, oscilla-

tions can be observed for larger widths of the S-shaped response curve. Whenever the [Cdk1]

response as a function of [CycB] becomes S-shaped by making αcdk in system (iii) greater than

zero, the behavior of the system drastically changes, with two distinct types of oscillations

emerging, corresponding to either low or high [Cdk1] amplitudes (purple vs yellow regions in

Fig 6B respectively; system (iii-b) for Wcdk,apc = 0 and (iii-c) for Wcdk,apc > 0). These distinct

types of behavior are not solely determined by the width of the response and the relative syn-

thesis c (as in Fig 6B), but also by the relative position of both nullclines. Indeed, whereas sys-

tem (iii-a) and (iii-b) show either low or high amplitude [Cdk1] oscillations, independent of

the threshold values K (Fig 6C and 6D), small changes of these thresholds in system (iii-c) can

entail a prompt transition between low and high amplitude oscillations (Fig 6E).

To clearly visualize the different types of oscillations just discussed, consider the phase-

plane representations in Fig 6F, 6G, 6H and 6I. For system (iii-a) (Fig 6F), the time trajectory

closely follows the [APC]� nullcline in the [Cdk1]-[APC]� plane, similar as was the case for

system (i-b), resulting in relatively small [Cdk1] amplitudes. For system (iii-b) on the other

hand (Fig 6G), the oscillations are dominated by the [Cdk1] nullcline, as seen from the projec-

tion in the [CycB]-[Cdk1] plane. As the [Cdk1] nullcline keeps rising indefinitely, large

[Cdk1] amplitudes are established. For system (iii-c), both the [Cdk1]-[APC]� and [CycB]-

[Cdk1] plane are shown (Fig 6H and 6I). It can now be appreciated that, depending on the rel-

ative position of the nullclines, the oscillations are either dominated by the [APC]� nullcline

(i.e. small amplitude oscillations in purple) or by the [Cdk1] nullcline (i.e. large amplitude

oscillations in yellow).

From a biological perspective, the high amplitude oscillations generated by two bistable

switches induce a sufficiently large increase in CycB-Cdk1 activity followed by sufficiently

large inactivation required for correct entry into and exit from mitosis. Furthermore, the two

bistable switches allow the occurrence of such oscillations for a larger set of parameter values

(compare the larger yellow region in Fig 6E with that in Fig 6D). This means that cell cycle

oscillations can be ensured even if physiological conditions within the cell (e.g. enzyme activ-

ity) would fluctuate, a situation which might otherwise disrupt correct cell cycle progression.

The cell cycle can be represented as a chain of interlinked bistable switches

The results on the G2-M transition coupled to a (delayed) negative feedback in the previous

sections are mainly applicable to the early embryonic cell cycles that rapidly cycle between S

phase and M phase without intermittent gap phases. Many insects, amphibians and fish that

lay their eggs externally carry out multiple rounds of such rapid cell cycles following fertiliza-

tion. However, all of them then pass through the so-called midblastula transition (MBT) after

approximately ten cell cycles [64–67]. This transition is characterized by the establishment of

gap phases and slowing down of the cell cycle, resulting in a higher resemblance to the cell

cycle as typically studied in yeast and mammalian somatic cells. Remarkably, many of the tran-

sitions between these additional cell cycle phases are—just like the G2-M transition—governed

by bistable switches [26].

During the G1-S transition in cultured mammalian cells for example, it is the activity of the

E2F transcription factor that is regulated in a bistable manner. The external presence of growth

factors can induce the expression of CycD and the activation of CycD-Cdk4/6 complexes, fol-

lowed by the activation of E2F. E2F then induces the expression of several target genes, one of
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which is CycE. As CycE can further enhance the activation of E2F, a positive feedback loop is

established, ultimately leading to the bistable response of E2F [19]. Consequently, the G1-S

transition can be depicted as an S-shaped module, similar as was done for the G2-M

transition.

It is possible to combine the different transitions—each represented by an S-shaped

module—into a phenomenological model of the overall cell cycle. For this, we still need to link

the ‘input’ and ‘output’ of each module in a suitable way. We link E2F activity (the output of the

G1-S switch) to CycB (the input of the G2-M switch) by recognizing that CycA, which is a tar-

get of E2F, drives the activation of the transcription factor FoxM1, which subsequently induces

the expression of CycB [68] (Fig 7A, see Materials and methods for associated equations). Simi-

lar as before, cyclins then need to be degraded to reset the system to the lower branch of the S-

shaped response curves, after which a new round of cell division can start. Here, it is assumed

that the degradation of all cyclins is induced in M phase by activated APC/C.

As seen from Fig 7B, this modular representation of the cell cycle can produce oscillations

in the concentration levels of the biochemical components. Synthesis of [CycD] (here used to

directly model the effect of external growth factors), results in a linear increase of its

Fig 7. The cell cycle can be represented as a chain of interlinked bistable switches. Parameter values from Table 2 or as indicated in the figure. (A) Block scheme of

interlinked S-shaped modules representing the overall cell cycle. (B) Oscillating time traces of the cell cycle model. (C,D) Time traces from panel B orbiting around the

bistable response curves. As in panel B, concentrations are normalized for their maximal value. (E,F) Overall period of the oscillations as a function of CycD (E) or

CycB (F) synthesis and degradation rates. No oscillations exist in the white regions. Grey regions represent irregular oscillations. White dots denote parameter values

used in panels B-D.

https://doi.org/10.1371/journal.pcbi.1009008.g007
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concentration levels. Once [CycD] levels reach the [E2F]� activation threshold, [E2F]� activity

suddenly rises (Fig 7B and 7C). Activated [E2F]� then (indirectly) induces the expression of

[CycB], followed by the activation of [Cdk1] when [CycB] levels cross the [Cdk1] activation

threshold (Fig 7B and 7D). As in the previous model of the G2-M transition, active CycB-Cdk1

induces APC/C activation and subsequent degradation of the cyclins (Fig 7C and 7D, S1

Video).

The oscillatory behavior of this system depends on the synthesis and degradation rates of

the cyclins, together with the shape of the response curves themselves. For certain combina-

tions of parameters, no (white regions in Fig 7E and 7F) or irregular (grey regions in Fig 7E

and 7F) oscillations are observed. With irregular oscillations, we mean that the system might

get stuck on either the upper or lower branch of one of the S-shaped response curves, either

transiently or permanently (see also S6 Fig). The duration of the different phases depends on

the values of production and degradation rates. A smaller synthesis rate dsyn of [CycD] and

larger degradation rate ddeg, entails a longer time needed for [CycD] levels to reach the thresh-

old value for [E2F]� activation. This leads to oscillations with elongated G1 phases and thus

longer overall periods (Fig 7E and S7 Fig). A decrease in the synthesis rate bsyn or degradation

rate bdeg of [CycB] brings about oscillations with increased periods (Fig 7F). Whereas the effect

of the synthesis rate can mainly be attributed to an elongation of the S-G2 phase, a diminished

degradation rate causes an extension of the M phase (S7 Fig).

The modular approach adopted here allows for easy extension of the model by additional

bistable switches. In S8 Fig for example, we incorporate a switch of FoxM1 activity with respect

to CycA levels, which has been proposed based on similarities with the E2F reaction network

[69]. However, as the existence of this switch has not been experimentally validated, we do not

include it in our further analysis.

Control mechanisms affecting the bistable switches shape the dynamics of

the cell cycle

Unlike the early embryonic cell cycle, the somatic cell cycle is no ‘clock-like’ oscillator with a

fixed period, but instead a ‘domino-like’ oscillator in which tight control mechanisms or

‘checkpoints’ have been established that safeguard correct DNA replication and cell division.

Hence, the cell cycle representation from the previous section—in which no such checkpoints

were considered—needs to be refined. Interestingly, the bistable nature of the cell cycle transi-

tions itself can provide the means for this regulation by shifting the (in)activation thresholds

(i.e. folding points) of the S-shaped response curves to lower or higher levels [13, 70, 71].

In Fig 7 and S7 Fig, we showed how a change in the synthesis or degradation rate of cyclins

entails a change in the duration of a specific cell cycle phase, and thus the duration of the over-

all cell cycle. Although these findings are in line with experimental results in [72], others have

reported how alterations in the duration of one phase can be compensated by an opposite

change in other phases, rendering the overall cell cycle period unchanged [73]. Even without

considering molecular details, the phenomenological model allows the description of such

behavior. A decline in the overall cell cycle period due to enhanced [CycD] synthesis for exam-

ple (Fig 8A,1–2), can be compensated by widening the S-shaped response of the subsequent

phase (Fig 8A,2–3).

Next, let us consider the so-called restriction point (RP). The traditional view of this check-

point states that cells in G1 phase are predetermined to stay in this phase and not enter S

phase. Only if sufficiently high concentrations of growth factors are present in the extracellular

environment, leading to sufficiently high synthesis rates of CycD, the cell will progress into S

phase and irreversibly commit to complete the started round of cell division [74]. Interlinked
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Fig 8. Control mechanisms affecting the bistable switches shape the dynamics of the cell cycle. Parameter values as in Table 2 or as indicated. (A) Potential

changes in the overall cell cycle period, for example due to increased [CycD] synthesis (1–2), can be compensated by changes in subsequent phases, such as altering

the width of the S-shaped responses (2–3). (B) Time traces comparing unperturbed cell cycle progression (bottom) with progression after reduction of the [CycD]

synthesis rate. In line with the classical interpretation of the RP, a started round of cell division can still be completed (as seen from the activation of [APC]�) even if

[CycD] synthesis is reduced (grey area). (C) Time traces comparing unperturbed cell cycle progression (bottom) with progression after DNA damage in G1 phase.
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bistable switches can account for such behavior as—once activated—[E2F]� activity can

remain high even if [CycD] synthesis is strongly reduced (grey area in Fig 8B). This high

[E2F]� activity then further induces [CycB] expression to reach the [Cdk1] activation thresh-

old followed by activation of [APC]�.

Another example of cellular control is the way cells preserve genomic integrity by arresting

the cell cycle whenever deleterious DNA lesions are encountered. During G1 phase, DNA

damage can prevent further cell cycle progression by inducing the degradation of CycD [75].

This behavior can be understood in our model by looking at the bistable switch governing the

G1-S transition. The increased degradation of [CycD] (grey area in Fig 8C) keeps its levels

below the [E2F]� activation threshold, thus blocking S phase entry, until DNA repair re-estab-

lishes normal degradation rates and [CycD] levels can rise beyond the threshold. The extent to

which interphase is lengthened depends on when in G1 the damage was imposed, the duration

of the damage and the time required to reach the [E2F]� activation threshold after the damage

was repaired (Fig 8C and 8D).

DNA repair mechanisms during G2 phase have been associated with the activation of the

kinase Wee1, which plays an important role in inactivating CycB-Cdk1 complexes and thus

preventing entry into M phase (Fig 8G) [76]. Exploiting the fact that increased Wee1 activity

shifts the Cdk1 activation threshold to higher CycB levels [13, 59], the effect of DNA damage

can straightforwardly be implemented by tuning the α parameter of the S-shaped module. As

long as DNA damage is present, the [Cdk1] activation threshold is shifted to the right (grey

area in Fig 8E) and [CycB] levels keep rising until a steady state is reached. When extensive

damage is encountered, a permanent raise of the threshold might result in permanent cell

cycle arrest. However, if DNA damage is repaired, Wee1 gets inhibited again, the activation

threshold shifts back to lower [CycB] levels and [Cdk1] is activated, resulting in subsequent

[APC]� activation. From the time traces (Fig 8E), it can be observed that cells enter mitosis

with higher [CycB] levels (and thus also higher [Cdk1] levels) when recovering from DNA

damage in comparison with unperturbed cells. Consequently, a longer time period is required

to reach the [APC]� inactivation threshold and M phase is prolonged. In contrast with the

DNA checkpoint in G1 phase, modification of the bistable response curve in G2 can keep the

total duration of interphase unaffected after DNA damage. If the damage is repaired before

[CycB] levels reach the original [Cdk1] activation threshold, shifting it to higher levels has no

effect on interphase duration (Fig 8F).

These examples show that a modular description can be used to implement biological

events such as DNA damage in a phenomenological way: by adjusting the overall effect on

the shape of the S-shaped response, without needing to know the exact molecular mecha-

nisms. We provide another example of this approach by linking the cell cycle to the 24h circa-

dian clock. Such coupling between the circadian clock and cell cycle has been studied

extensively, both experimentally as well as theoretically (e.g. [77, 78]). Here, we use the fact

that the expression of the Wee1 kinase is not only affected by DNA damage but also tightly

regulated by the Clock-Bmal1 transcription factor complex, a master regulator of the circa-

dian clock (Fig 8G) [79]. We explored the dynamics of such unidirectional coupling by

Dotted line represents the [E2F]� activation threshold and grey area marks region of increased [CycD] degradation. (D) Elongation of interphase after DNA damage

in G1. (E) Time traces comparing unperturbed cell cycle progression (bottom) with progression after DNA damage in G2 phase. Dotted line represents the [Cdk1]

activation threshold. Similar as in A and B, concentrations are normalized for their maximal value in the unperturbed case. (F) Elongation of interphase after DNA

damage in G2. (G) The kinase Wee1 is controlled by DNA damage and circadian rhythms and affects the Cdk1 activation threshold. (H) Regions of p:q phase

locking between [Cdk1] oscillations and the circadian clock. The coupling strength Acdk represents the amplitude of the sine wave used to model the periodically

changing value of αcdk. The annotations i, ii, and iii refer to panel I. (I) Time traces of phase locking for constant circadian frequency (i.e. 2p=24
h� 1

) but different

natural frequencies of the cell cycle ((i)ocdk �
2p=24

h� 1
, (ii)ocdk �

2p=32
h� 1

, (iii) ocdk �
2p=19

h� 1
).

https://doi.org/10.1371/journal.pcbi.1009008.g008

PLOS COMPUTATIONAL BIOLOGY A modular approach for modeling the cell cycle based on functional response curves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009008 August 11, 2021 20 / 39

https://doi.org/10.1371/journal.pcbi.1009008.g008
https://doi.org/10.1371/journal.pcbi.1009008


introducing the circadian regulation of Wee1 into the model. More specifically, the [Cdk1]

activation threshold—which is regulated by Wee1—was periodically shifted between its basal

[CycB] level and a predefined maximal level by explicitly modeling parameter αcdk as a sine

wave (see Materials and methods for details and ODEs). When two oscillators are coupled

like this, one can expect to observe so-called p:q phase locking, meaning that p cycles of the

cell cycle are completed for q cycles of the circadian clock. Whether such behavior indeed

occurs depends on two factors [80]: (1) the relative frequencies of the circadian clock and the

unforced cell cycle (i.e. the frequency in the absence of any circadian control, also called the

natural frequency), and (2) on the strength of the coupling (here Acdk, i.e. the amplitude of

the sine wave used to model αcdk).

A commonly used approach to visualize phase-locking of two coupled oscillators, is plotting

the regions where locking occurs as function of their frequency ratio and coupling strength.

When represented like this, these regions of locking (referred to as Arnold tongues) are typi-

cally wedge-shaped (at least below a certain critical coupling strength) [80]: for low coupling

strengths, p:q phase locking would only occur when the natural frequency of the cell cycle is

close to the frequency of the circadian clock, whereas a larger mismatch between the two fre-

quencies may still result in synchronization if the coupling strength increases. In our case, we

do find these regions (see S9 Fig for time traces), but the Arnold tongues solely widen to the

left hand side (Fig 8H). This indicates that the circadian clock only seems capable of lengthen-

ing the cell cycle and not shorten it. Indeed, examining the time traces in Fig 8I shows that a

constant circadian rhythm of 24h elongates cell cycles with a natural period of 24h (i), 32h (ii)

and 19h (iii) to forced periods of 48h, 48h and 24h, respectively. Considering that the circadian

clock in our model only shifts the [Cdk1] activation threshold to higher [CycB] levels, relative

to those of the unforced cell cycle, explains why the forced cell cycle period cannot become

shorter than the unforced one. This observation is in agreement with the findings in [81],

where unidirectional regulation of Wee1 by the circadian clock was analyzed using a mecha-

nistic model. There too, Arnold tongues were found to only widen to the left, at least when a

basal Wee1 synthesis rate was included. It should be emphasized that the unidirectional cou-

pling between circadian clock and cell cycle as discussed here, merely functions as a conceptual

example of our phenomenological modeling approach. Indeed, in reality, the situation is much

more complex, as coupling happens in a bidirectional manner [77, 78] and also the circadian

clock itself includes bistable switches [82]. Nevertheless, as with the other examples discussed,

certain key aspects of the system’s dynamical behavior can be described using the approach

proposed here.

Discussion

In an attempt to unravel the complexity of living systems, it is convenient to envision them as

a hierarchical structure of interlinked biological modules. Under the premise that the func-

tionalities of these individual modules do not change when combined with each other, know-

ing their behavior allows to predict the behavior of the overall system [35]. Although it has

been recognized for a long time [83] that complex living systems cannot always be understood

as the sum of their constituent parts, many examples of modularity do exist. Two proteins (or

protein domains), for example, can be combined to generate recombinant proteins such as

fused fluorescent reporters. Additionally, transcriptional promoters can be combined in syn-

thetic networks that possess desired dynamical features, such as the oscillatory behavior of the

‘repressilator’, which consists of three negative feedback modules [84]. Furthermore, solutions

have been proposed to overcome potential invalidity of the modular approach in engineered

biological circuits [35]. Regarding the modules considered in this work, bistability itself has
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been shown to allow for a modular approach [39, 40], whereas the validity of coupling ultra-

sensitive modules has been described elsewhere [85].

To gain insight into the dynamics of individual or interlinked modules that are difficult to

understand in an intuitive way, mathematical models can be very useful. As such, they also

provide helpful tools to guide the design of synthetic biological systems [86]. One way to set up

a mathematical model is to start from known biochemical interactions and use the law of mass

action to derive kinetic rate equations for the concentrations of the biochemical components.

However, such mechanistic models often contain a large number of variables and parameters,

many of which can be difficult to measure experimentally. This can impede generalization of

the obtained results, which might strongly depend on the particular set of chosen parameter

values. Therefore, techniques for reducing the complexity of mathematical models while pre-

serving their most fundamental characteristics have been a topic of great interest for several

decades, ranging from the well-established quasi-steady-state assumption to more advanced

mathematical algorithms [87–90].

A conceptually easy approach to reduce the complexity of biochemical equations is to

replace the detailed reaction mechanisms of certain biological modules by a mathematical

function that explicitly describes their resulting dynamical behavior. Such a functional or

phenomenological approach not only reduces the complexity of mathematical models, but

it can also be a valuable alternative to model biochemical networks for which the underly-

ing interaction patterns have not been identified completely. Furthermore, parameters of

functional modules correspond directly to observable measurements that are often easier to

determine experimentally than the values of biochemical rate constants. In our example of

a bistable switch, the parameter α correlates with the width of the bistable region. By choos-

ing the function ξ appropriately, the activation and inactivation threshold can thus be set

directly in accordance with a response curve obtained in the lab. Moreover, the fact that

these features are directly tunable allows us to answer questions such as ‘how does the acti-

vation threshold influence the period of oscillations?’. In a mechanistic model, answering

such questions would depend on knowledge about what biochemical parameters determine

the activation threshold, which might be less straightforward. The same argument holds for

other properties, such as steepness of a response or a time delay. Thus, a direct intuitive

link between the model and experimentally determined response curves exists when using

functional modules. This is an important advantage of this strategy over other frameworks

that are suitable for modeling biochemical reactions without considering mechanistic

details, such as Boolean networks [91], especially for biologists without mathematical

background.

Functional modules based on the Hill function have been extensively used to describe steep

sigmoidal response curves, which can originate from various biochemical mechanisms (e.g.

multisite phosphorylations, cooperative binding events and stoichiometric inhibition) and the

validity of which has been recently reviewed in [63]. All of the molecular details that may

generate such a response are then hidden in a few parameters such as the exponent n and a

threshold K. In contrast, S-shaped response curves are typically not included explicitly in

mathematical models. An important reason for this might be that an S-shaped response is not

a function, because there are multiple output values for a single input. One contribution of this

paper is to show that, in fact, a Hill function can be smoothly changed into an S-shaped

response curve by making the threshold dependent on the output variable. In this way, the

equation

dY
dt
¼

Xðt � tÞn

ðKxðYÞÞn þ Xðt � tÞn
� Y ð3Þ
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provides an easy way to model a system with input X and output Y that includes the three

modules of ultrasensitive, S-shaped and time delayed responses. If the function ξ is equal to 1,

we recover an ultrasensitive response for the steady state of Y as function of X. By choosing

and tuning ξ, many different shapes of S-shaped response curves can be obtained. Whenever

an experimentally determined steady-state curve is available, the function ξ could also be fitted

to such data (similar as what we did when fitting the S-shaped module to the mass-action

model). An important condition for this phenomenological equation to correctly describe the

dynamics of the overall system, is the separation of timescales so that the time traces closely

follow the (ultrasensitive or S-shaped) steady-state response curves, at least in the absence of

any time delay. In the case of time delays, validity criteria for modeling them in a phenomeno-

logical way remain largely absent, although it has been argued that the way a delay is imple-

mented in a model should be chosen carefully [60].

In the first part of the paper, we used this extended Hill function in combination with a

negative feedback loop to model the early embryonic cell cycle oscillator and showed how

the shape of the steady-state response affects the oscillations. For ultrasensitive responses,

no oscillations can be observed unless a sufficiently large time delay is present (S3 Fig, [60]).

On the other hand, a system containing an S-shaped module readily sustains oscillations.

Whether oscillations occur depends on the width of the S-region, and oscillations are more

likely if there are time delays in the system. A second bistable switch can also facilitate oscil-

lations and furthermore gives rise to two distinct ‘oscillatory regimes’, i.e. high vs low

[Cdk1] amplitude oscillations. These findings are in line with previous work showing how

ultrasensitivity, bistability and delay embedded in a negative feedback loop promote oscil-

latory behavior of a system [13, 46, 54]. Whereas most of this earlier work has studied these

different modules in isolation, we provided a straightforward method to study their com-

bined effect.

In the second part, we extended the phenomenological model of the early embryonic cell

cycle with an additional bistable switch for the G1-S transition. Furthermore, these bistable

switches were exploited to model several cell cycle checkpoints, thus making the model repre-

sentative for the somatic cell cycle. Even if the molecular underpinnings of these checkpoints

are not incorporated into the model, the functional approach can give some basic understand-

ing of events such as the restriction point (RP), DNA damage checkpoints and even coupling

of the cell cycle with the circadian clock.

The restriction point as depicted here corresponds to the classical interpretation where

newborn cells have to cross a threshold in order to activate E2F and commit to S phase. It

should be noted that such representation is a simplification, as it is known that additional

bistable switches control entry into S phase [92–94]. Furthermore, some cells retain hyper-

phosphorylated Rb proteins, which are incapable of inhibiting E2F, after division. These

cells can directly start S phase even in suboptimal conditions, challenging the classical view

of the RP [74]. Interestingly, irregular cell cycle progression in which E2F activity remained

high could also be observed for several combinations of parameters in our phenomenologi-

cal model (S6 Fig). It would be interesting to see whether the biochemical mechanisms

enabling cells to bypass the RP correspond with changes in functional responses identified

here.

By implementing DNA damage in G2 via manipulation of the Cdk1 activation threshold,

we found that cells enter M phase with higher CycB-Cdk1 levels after DNA damage in G2

phase. This is in line with recently published experimental results [95]. Whether the subse-

quent M phase takes longer than in unperturbed cells, as is predicted by the model, was

not assessed in the cited study. If this would not be the case, it could indicate that either
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CycB degradation is accelerated after DNA damage or that the inactivation threshold too is

shifted to higher CycB levels. Another interesting study which looked at the effects of DNA

repair mechanisms was published by Chao et al., [96]. There, the authors found that elonga-

tion of interphase after DNA damage in G2 depends on the severity of the damage, but is

independent of when the cells were damaged within G2. This finding is in contrast with our

model predictions that DNA damage in G2 can actually be repaired without interphase

elongation. It should be noted that here we supposed that DNA damage can be detected and

repaired at any time during G2, not only at a checkpoint at the end of G2 phase. Further-

more, our model does not account for regulatory processes such as decreased CycB synthe-

sis [97] or increased CycB degradation [98], which might explain the discrepancies. Even if

we cannot account for molecular details and nuances, the possibility to incorporate DNA

damage in a phenomenological manner can be helpful to understand these events in a quali-

tative way.

The early embryonic cell cycle can be considered as a ‘clock-like’ oscillator, which from a

dynamical systems viewpoint consists of an autonomous limit cycle oscillator [3, 99]. For

more complex cell cycles, on the other hand, such as the mammalian cycle with its check-

points, the dynamical nature is not entirely clear yet. Some authors suggest that the latter too,

is a limit cycle in which the ordering of different cell cycle phases and the activity of different

Cdk’s naturally emerge from the underlying biochemical interaction network [100]. Another

viewpoint regards the cell cycle as a series of irreversible transitions, each one generated by a

bistable switch. In that case, changes in the—what we called—input variable of the switches

drive the system forward and a cell cycle transition happens whenever a certain input thresh-

old is reached. The input variable can be several things, such as mitogen concentrations, cyclin

levels or cell mass [55]. Whether autonomous limit cycle oscillations can or cannot be

observed, then depends on whether the dynamics of the driving force is or is not implemented

in the system equations, respectively.

Our model contains elements from both the viewpoint of the cell cycle as a limit cycle and

as a chain of bistable switches. The equations we used describe changes in cyclin levels, which

drive the cell through the different transitions. The cell cycle emerges as an autonomous limit

cycle with a fixed period. It is, however, a complicated limit cycle that conceptually differs

from a simple oscillator, as the trajectory jumps between distinct states (corresponding to cell

cycle phases). Moreover, our model allows for the implementation of checkpoints, i.e. tempo-

rarily pausing the spontaneous oscillations, by altering the rate constants or the underlying S-

shaped responses themselves. Granted, this checkpoint action is then generated by an external

input or perturbation, which makes the cycle non-autonomous. As such, our model shows fea-

tures of both domino-like and clock-like behavior, and is similar in spirit to, for example, the

model studied by Gonze and Goldbeter [101].

Although in this work we combined the S-shaped/ultrasensitive/delay modules to generate

a phenomenological model of the overall cell cycle, these modules are also applicable for

modeling other processes based on their experimentally determined response curves. Bistable

switches for example, are known to play a role during epithelial-to-mesenchymal transition

[102] and differentiation in cell types ranging from embryonic stem cells [103] to osteogenic

precursors [104] and Drosophila eyes [105]. Furthermore, the convenient way of combining

several functional modules can be exploited to reconstitute interaction patterns with complex

dynamical behavior, such as a combination of the ‘repressilator’ with bistable switches that has

been observed during neural tube development [106].

The modeling strategy based on functional modules put forth in this work fits in the mind-

set of reducing the complexity of mathematical models and has the advantage of preserving an
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intuitive link with the experimentally measured response curves. Furthermore, the modular

approach provides the flexibility for combining the modules in a multitude of different

ways. As such, it can provide a toolbox for other researchers who want to generate phenome-

nological modular models, not only of the cell cycle but also of many other biological

processes.

Materials and methods

Converting an ultrasensitive function into an S-shaped one

Starting from an (increasing) ultrasensitive response curve, one can obtain an S-shaped

response by shifting the lower and upper part of the curve to the right and left respectively. For

APC/C, the ultrasensitive response curve can be expressed as a Hill function representing the

fraction of activated APC/C to total APC/C molecules as a function of [Cdk1] (Fig 9A):

½APC�� ¼
½APC=C�
½APC=C�tot

¼
½Cdk1�n

Kn
cdk;apc þ ½Cdk1�

n ð4Þ

The S-shaped [APC]� response cannot be expressed as a function of [Cdk1] (since it would

have multiple [APC]� values for a certain range of [Cdk1]). However, even if the function is S-

shaped, there would be only one [Cdk1] value for each [APC]� value. This motivates us to

Fig 9. An ultrasensitive response curve of variable Y normalized for its total concentration Ytot (A) can be converted

into an S-shaped one (D) by inverting the product (E) of a scaling function (C) with the inverted ultrasensitive

response (B).

https://doi.org/10.1371/journal.pcbi.1009008.g009
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invert the function (Fig 9B):

½Cdk1� ¼ Kcdk;apc
½APC��

1 � ½APC��
� �1=n

Subsequently, this inverted response can be multiplied by the scaling function ξ([APC]�)

(Fig 9C), such that [Cdk1] values increase for low [APC]� values and decrease for high [APC]�

(Fig 9E):

½Cdk1� ¼ xð½APC��Þ � Kcdk;apc
½APC��

1 � ½APC��
� �1=n

ð5Þ

with ξ([APC]�) = 1 + αapc � [APC]� ([APC]� − 1) ([APC]� − r). Rearranging Eq 5 leads to an

expression for an S-shaped response (Fig 9D), analogous with Eq 1 in the main text. This is not

a function, but the expression can be put in a differential equation such that the steady state of

this equation follows the S-shaped response:

½APC�� ¼
½Cdk1�n

ðxð½APC��Þ � Kcdk;apcÞ
n
þ ½Cdk1�n

)
d½APC��

dt
¼

1

�apc

½Cdk1�n

ðxð½APC��Þ � Kcdk;apcÞ
n
þ ½Cdk1�n

� ½APC��
 ! ð6Þ

A similar approach can be followed for the bistable switch from [CycB] to [Cdk1]. The

ultrasensitive response is given by

½Cdk1�
½CycB�

¼
½CycB�n

Kn
cyc;cdk þ ½CycB�

n ð7Þ

This is similar to Eq 4. Indeed the amount of active CycB-Cdk1 complexes is normalized for

the total amount of CycB-Cdk1 complexes, which is given by the amount of CycB molecules

because Cdk1 is present in excess and it is assumed that free CycB molecules immediately bind

free Cdk1 molecules [107]. Rearranging and multiplying by xð½Cdk1�=½CycB�Þ ¼ 1þ acdk �

½Cdk1�=½CycB�ð
½Cdk1�=½CycB� � 1Þð½Cdk1�=½CycB� � rÞ gives:

½CycB� ¼ x ½Cdk1�
�

½CycB�

� �
� Kcyc;cdk

½Cdk1�
�

½CycB�

1�
½Cdk1�

�

½CycB�

 !1=n

)
½Cdk1�
½CycB�

¼
½CycB�n

x ½Cdk1�
�

½CycB�

� �
� Kcyc;cdk

� �n
þ ½CycB�n

ð8Þ

This means that

½Cdk1� ¼
½CycB�n

x ½Cdk1�
�

½CycB�

� �
� Kcyc;cdk

� �n
þ ½CycB�n

½CycB� ð9Þ
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Again, this is not a function, but can be made the steady state of a differential equation (sys-

tem (iii) in the main text):

d½Cdk1�
dt

¼
1

�cdk

½CycB�n

x ½Cdk1�
�

½CycB�

� �
� Kcyc;cdk

� �n
þ ½CycB�n

½CycB� � ½Cdk1�

0

B
@

1

C
A

It needs to be emphasized that both Eqs 4 and 7 describe an ultrasensitive response of

which the output is given by the concentration level of a compound Y, normalized for the total

amount Ytot. Accordingly, both expressions are limited to the interval Y=Ytot 2 ½0; 1� (Fig 9A).

Similarly, Eqs 6 and 8 describe S-shaped responses for Y=Ytot 2 ½0; 1� (Fig 9D). When incorpo-

rating these steady-state expressions into the differential equations however, a distinction

should be made. As [APC/C]tot is a constant, the ratio ½APC�� ¼ ½APC=C�=½APC=C�tot can directly be

incorporated into the ODE for the rate of change of [APC]�. In contrast, [CycB] is not a con-

stant and therefore, the rate of change of ½Cdk1�=½CycB� would need to be given by the quotient rule

for differentiation, as both numerator and denominator are variables. Alternatively, [CycB]

can first be moved to the right hand side of Eq 8, resulting in Eq 9. Subsequently, this expres-

sion for the steady state of [Cdk1] can be incorporated into an ODE describing the rate of

change of [Cdk1]. Of note, Eq 9 does no longer saturate at [Cdk1] = 1 (as was the case for Eq 8

at ½Cdk1�=½CycB� ¼ 1) but keeps rising indefinitely (see for example Fig 6G and 6H).

Non-dimensionalization of system equations

To facilitate mathematical analysis, the system equations for the two-variable models described

in the main text were non-dimensionalized by introducing the new variables:

½Cdk1�� ¼
½Cdk1�
Kcdk;apc

½APC�� ¼
½APC=C�
½APC=C�tot

t� ¼ bdeg � t t� ¼ bdeg � t

where bdeg [min−1] is the reaction rate of the first order degradation of CycB-Cdk1 complexes

(i.e. variable [Cdk1]) by [APC]�. As an example, system (ii) then becomes:

d½Cdk1��

dt�
¼

bsyn

bdeg � Kcdk;apc
� ½Cdk1�� � ½APC��

d½APC��

dt�
¼

1

�apc � bdeg

½Cdk1��nðt� � t�Þ
xð½APC��Þn þ ½Cdk1��nðt� � t�Þ

� ½APC��
� �

8
>>>><

>>>>:

ð10Þ

after which we can define c ¼ bsyn
bdeg�Kcdk;apc

, ��apc ¼ �apc � bdeg and ξ([APC]�) remains unaffected:

xð½APC��Þ ¼ 1þ aapc � ½APC�
�
ð½APC�� � 1Þð½APC�� � rÞ

The positive production term in the ODE for [Cdk1] is referred to as the ‘relative synthesis

rate’ and here equals c. Standard parameter values used are: ��apc ¼ 0:01, n = 15, bdeg = 0.1

min−1, Kcdk,apc = 20 nM, of which the latter three are based on experimental observations in

Xenopus laevis eggs [15, 30]. Obtained simulation results were scaled back to dimensional val-

ues where possible. For APC/C however, no experimental estimates for the total amount

[APC/C]tot were found and results are presented as [APC]�.
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The system containing two S-shaped response (system (iii)) was non-dimensionalized in a

similar way:

½CycB�� ¼
½CycB�
Kcyc;cdk

½Cdk1�� ¼
½Cdk1�
Kcdk;apc

½APC�� ¼
½APC=C�
½APC=C�tot

t� ¼ bdeg � t

d½CycB��

dt�
¼

bsyn

bdeg � Kcyc;cdk
� ½CycB�� � ½APC��

d½Cdk1��

dt�
¼

1

�cdk � bdeg

Kcyc;cdk

Kcdk;apc
�

½CycB��nþ1

x ½Cdk1��
�

d�½CycB��

� �n
þ ½CycB��n

� ½Cdk1��

0

B
@

1

C
A

d½APC��

dt�
¼

1

�apc � bdeg

½Cdk1��n

xð½APC��Þn þ ½Cdk1��n
� ½APC��

� �

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð11Þ

If
Kcyc;cdk
Kcdk;apc

¼ d, we get
bsyn

bdeg�Kcyc;cdk
¼ c

d. For the scaling functions we have ξ([APC]�) as before and

x ½Cdk1��
�

d�½CycB��

� �
¼ 1þ acdk �

½Cdk1��

d � ½CycB��
½Cdk1��

d � ½CycB��
� 1

� �
½Cdk1��

d � ½CycB��
� r

� �

Note how the relative synthesis rate (again the positive production term of cyclins) is given

by c
d= for this system, rather than c. The same standard parameter values as the two-dimen-

sional system were used, with the additional parameters being: bdeg �cdk = bdeg �apc = 0.01 and

Kcyc,cdk = 40 nM [11].

Conversion of parameter α to the width of the S-shaped region

All screens for which the width of the bistable region was altered, were performed by screening

different values of α and linking this value to the width of the S-shaped region. The expression

for the non-dimensionalized S-shaped response curve, i.e.

y ¼
xn

xðyÞn þ xn
with

( x ¼ ½Cdk1��; y ¼ ½APC��

x ¼ ½CycB��; y ¼ ½Cdk1��
�

d�½CycB��

;

can be inverted, resulting in:

x ¼ xðyÞ
y

1 � y

� �1=n

with

( x ¼ ½Cdk1��; y ¼ ½APC��

x ¼ ½CycB��; y ¼ ½Cdk1��
�

d�½CycB��

The width of the S-shaped region is given by the difference of x-values at the local extrema of

this inverted S-shaped response, which can be calculated as the roots of the derivative. For the
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cubic scaling function ξ(y) = 1 + α[y3 − (1 + r)y2 + r � y], we have:

dx
dy
¼

dx
dy
�

y
1 � y

� �1=n

þ xðyÞ
d
dy

y
1 � y

� �1=n
" #

¼ a 3y2 � 2ð1þ rÞyþ r½ �
y

1 � y

� �1=n

þ 1þ ay y � 1ð Þ y � rð Þ½ �
1

nð1 � yÞ2
y

1 � y

� �1� n
n

The roots of this function on the interval y 2 [0, 1] were calculated numerically and used to

determine the values of x at the local extrema of the inverted S-shaped response. Either two

extrema were found for which x> 0 (this was ensured by the choice of parameter α, see S1

Text), in which case the width of the S-shaped response curve was determined by their differ-

ence, or no extrema were found, in which case the width equaled zero.

It should be noted that in case x = [CycB]� and y ¼ ½Cdk1��
�

d�½CycB�� , we calculate the derivative

of x with respect to y while y is expressed as a function of x. As shown in S1 Text, this has no

consequences for finding the local extrema of x.

Mass-action model for the PP2A-ENSA-GWL network

The model of the PP2A-ENSA-GWL network was largely based on the network described in

[61], where the double negative feedback between GWL and PP2A can give rise to bistability.

GWL indirectly inhibits PP2A by phosphorylating ENSA, which is both a substrate and inhibi-

tor of PP2A and binds it in a complex C [62]. Here, the model was converted into an oscillator

by incorporating synthesis and degradation of [Cdk1]:

d½Cdk1�
dt

¼ bsyn � bdeg½Cdk1�½APC�
�

d½GWLp�
dt

¼ kpg½GWL�½Cdk1� � kdg½GWLp�½PP2A�

d½C�
dt

¼ kass½ENSAp�½PP2A� � ðkdis þ kcatÞ½C�

d½ENSAp�
dt

¼ kdis½C� þ kpe½ENSA�½GWLp� � kass½ENSAp�½PP2A�

d½APC��

dt
¼ kpað1 � ½APC�

�
Þ½Cdk1� � kda½APC�

�
½PP2A�

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð12Þ

with conservation of mass giving:

½GWL� ¼ ½GWLtot� � ½GWLp�

½PP2A� ¼ ½PP2Atot� � ½C�

½ENSA� ¼ ½ENSAtot� � ½ENSAp� � ½C�

Parameter values were manually screened to obtain a steady-state response curve centered

around [Cdk1]� 20 nM (to be in line with Kcdk,apc = 20 nM used elsewhere in this paper) and
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obtain oscillations with biologically relevant periods (Table 1). Concentration levels of

ENSAtot are based on [108], and are five-fold higher than those of PP2Atot [62]. Steady-state

response curves were determined via a custom Python script performing numerical continu-

ation [109].

Fitting the S-shaped module to the mass-action model

Once the steady-state response of the mass-action model was determined, we manually fitted a

piecewise linear scaling function ξ([APC]�), that was subsequently incorporated into the non-

dimensionalized system (i-b). Letting x = [APC]�, and denoting the [APC]� value were ξ
reaches its local maximum ξmax as xmax (similar for the minimum xmin) (see Fig 9C for a plot

of the ξ function), we have:

x ¼

xmax � 1

xmax
xþ 1 if x � xmax

xmin � xmax

xmin � xmax
ðx � xmaxÞ þ xmax if xmax < x � xmin

1 � xmin

1 � xmin
ðx � xminÞ þ xmin if xmin < x

8
>>>>>>>>>>><

>>>>>>>>>>>:

For Fig 4B, 4C and 4D, the best fit was obtained for xmin = 0.60, xmax = 0.36, ξmin = 0.75,

and ξmax = 1.28. The location of the upper branch was manually shifted by multiplying the

Hill-like term in system (i-b) (with n = 5) by a correction factor equaling 0.95. For the time

traces, ��apc was manually screened to give the best correspondence with the mass-action

model. To reduce the separation of timescales in Fig 4G and 4H, the rate constants (except

from synthesis and degradation) in Table 1 were divided by 16.5, a value as large as possible

that still resulted in oscillations of the system. In Fig 4I, a divisor of 100 (rather than 16.5)

was used.

Table 1. Default parameter values for the mass-action model of the PP2A-ENSA-GWL network.

Parameter Value Units Description

kpg 0.07 1/(nM min) Phosphorylation constant of GWL

kdg 7.08 1/(nM min) Dephosphorylation constant of GWL

kpe 3.98 1/(nM min) Phosphorylation constant of ENSA

kpa 0.63 1/(nM min) Phosphorylation constant of APC/C

kda 1.58 1/(nM min) Dehosphorylation constant of APC/C

kass 5.01 1/(nM min) Association constant of ENSA and PP2A

kdis 28.18 1/min Dissociation constant of ENSA-PP2A complex C

kcat 15.85 1/min Catalytic constant of ENSA-PP2A complex C

GWLtot 40 nM Total GWL concentration

ENSAtot 200 nM Total ENSA concentration

PP2Atot 40 nM Total PP2A concentration

https://doi.org/10.1371/journal.pcbi.1009008.t001
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System equations for interlinked switches

The equations for the interlinked switches were derived following the same principles as

described before, resulting in:

d½CycD�
dt

¼ dsyn � ddeg½CycD�ð½APC�
�
þ ddÞ

d½E2F��

dt
¼

1

�e2f

½CycD�n

ðxð½E2F��Þ � Kcyc;e2fÞ
n
þ ½CycD�n

� ½E2F��
 !

d½CycB�
dt

¼ bsyn � ½E2F�
�
� bdeg½CycB�ð½APC�

�
þ dbÞ

d½Cdk1�
dt

¼
1

�cdk

½CycB�n

x ½Cdk1�
�

½CycB�

� �
� Kcyc;cdk

� �n
þ ½CycB�n

½CycB� � ½Cdk1�

0

B
@

1

C
A

d½APC��

dt
¼

1

�apc

½Cdk1�n

ðxð½APC��Þ � Kcdk;apcÞ
n
þ ½Cdk1�n

� ½APC��
 !

ð13Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

with

xð½APC��Þ ¼ 1þ aapc½APC�
�
ð½APC�� � 1Þð½APC�� � rÞ

x ½Cdk1�
�

½CycB�

� �
¼ 1þ acdk �

½Cdk1�
½CycB�

½Cdk1�
½CycB�

� 1

� �
½Cdk1�
½CycB�

� r
� �

xð½E2F��Þ ¼ 1þ ae2f ½E2F�
�
ð½E2F�� � 1Þð½E2F�� � rÞ

As before, ½APC�� ¼ ½APC=C�=½APC=C�tot and similarly ½E2F�� ¼ ½E2F�=½E2F�tot . For all other variables

and parameters, the original dimensions were retained. Note how we introduced a basal,

[APC]�-independent degradation of the cyclins here (i.e. −ddeg δd[CycD] and −bdeg δb[CycB]),

as some regulatory aspects of the cell cycle act upon these parameters (see below). Default

parameter values were manually screened so that oscillations with biologically relevant periods

were obtained (Table 2). As before, the thresholds Kcyc,cdk and Kcdk,apc were chosen in line with

the experimental values reported in [11, 15]. The threshold value Kcyc,e2f at which [CycD] acti-

vates [E2F]� was assumed to be 3 times higher than the threshold Kcyc,cdk at which [CycB] acti-

vates [Cdk1], i.e. 120 nM, based on simulations from [56] where CycD levels are about three

times higher than CycB levels and on simulations from [19] where CycD levels rise up

to * 100 nM.

To distinguish the different cell cycle phases in this model, cells were considered to be in M

phase wherever [APC]� > 0.95, in G1 wherever [E2F]� < 0.95 and [APC]� < 0.95, and in S/G2

wherever [E2F]� > 0.95 and [APC]� < 0.95.

To model the effect of the restriction point, reduced levels of external growth factors were

incorporated into the model by reducing the synthesis rate dsyn of [CycD] by a factor 10. This

number was chosen as the intermediate value of experimental measurements that demon-

strated how growth factor stimulation increases CycD levels between 4 and 20 fold [110, 111].

DNA damage during G1 phase was accounted for by increasing the basal degradation rate of

[CycD] (i.e. δd) by a factor 3 and damage in G2 phase was modeled by increasing the width of

the bistable [Cdk1] response (i.e. αcdk = 30) to shift the right fold of the curve to higher [CycB]
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levels. The value of αcdk = 30 was chosen so that the steady state of [CycB] in the standard

model is below the [Cdk1] activation threshold.

Simulations and analysis

All simulations were performed in Python 3.7. Ordinary differential equations were solved

using the Python Scipy package solve_ivp (method = Radau). For equations including a delay,

the JITCDDE package was used [112]. The amplitudes and periods were numerically deter-

mined from the local extrema in the time series via a custom Python script. Small amplitude

oscillations and damped oscillations were omitted from the analysis.

Coupling of the cell cycle to the circadian clock

Phase locking occurs when the ratio of periods (or frequencies) from two oscillators equals a

rational number p:q, meaning that p cycles of one oscillator are completed while the second

oscillator completes q cycles. To check for phase locking between the cell cycle and circadian

clock, the system of interlinked switches (Eq 13) was reanalyzed (again with parameters from

Table 2), but this time the prefactor αcdk in xð½Cdk1�=½CycB�Þ was periodically shifted between its

basal level and a predefined maximal level (i.e. αcdk + 2Acdk) at a forcing frequency ωcircadian

ranging from 1/3 to 3 times the natural frequency of the [Cdk1] oscillations:

x ½Cdk1�
�

½CycB�

� �
¼ 1þ a�cdk

½Cdk1�
½CycB�

½Cdk1�
½CycB�

� 1

� �
½Cdk1�
½CycB�

� r
� �

with a�cdk ¼ ½acdk þ Acdk þ Acdk sinðocircadiantÞ�. Custom Python code was used to find a repeat-

ing pattern in the forced [Cdk1] oscillations, based on the difference between the simulated

time series and a time shifted version of itself (similar to calculating the autocorrelation). The

ratio of the periods from this repeating pattern and the circadian clock was compared with p:q

ratios for p and q in {1,2,3,4,5} to decide whether phase locking occurred.

Table 2. Default parameter values for modeling the cell cycle as interlinked bistable switches.

Parameter Value Units Description

r 0.5 As defined in ξ
αe2f 5 As defined in ξ
αcdk 5 As defined in ξ
αapc 5 As defined in ξ
n 15 Hill exponent

�e2f 0.01 Time constant E2F reaction

�cdk 0.01 Time constant Cdk1 reaction

�apc 0.01 Time constant APC/C reaction

δd 0.05 Determining basal CycD degradation

δb 0.05 Determining basal CycB degradation

Kcyc,e2f 120 nM Threshold of E2F activation by CycD

Kcyc,cdk 40 nM Threshold of Cdk1 activation by CycB

Kcdk,apc 20 nM Threshold of APC/C activation by Cdk1

dsyn 0.15 nM/min Synthesis rate of CycD

ddeg 0.009 1/min First order degradation of CycD

bsyn 0.03 nM/min Synthesis rate of CycB

bdeg 0.003 1/min First order degradation of CycB

https://doi.org/10.1371/journal.pcbi.1009008.t002
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Supporting information

S1 Text. Supplementary information. This file contains additional mathematical analysis of

the models and the supplemental figures listed below.

(PDF)

S1 Fig. Alternative definitions of the scaling function ξ. (A-D) Except from the cubic defini-

tion of ξ in the main text, alternative definitions can be used. An example of a quadratic func-

tion would be ξ([APC]�) = 1 + αapc([APC]� − 1)([APC]� − r). For a linear function, one

possible definition would be xð½APC��Þ ¼ 1� aapc
r� 1
ð½APC�� � 1Þ þ aapc: The equation for the

piecewise linear approximation is given in the Methods section of the main text. In each case,

r = 0.5. (E-H) Corresponding response curves obtained by multiplying a Hill function (K = 20,

n = 15) with the scaling functions in panels A-D.

(TIFF)

S2 Fig. Effect of parameters on the cubic scaling function and system response. (A-C) Effect

of parameter r on the scaling function ξ (A), S-shaped response curve in the phase plane (B)

and oscillatory region in the parameter space (C). (D-F) Effect of the Hill coefficient n on the

original ultrasensitive response (D), the derived S-shaped response curve in the phase plane

(E) and oscillatory region in the parameter space (F). (G-I) Effect of threshold K on the origi-

nal ultrasensitive response (G), S-shaped response curve in the phase plane (H) and oscillatory

region in the parameter space (I).

(TIFF)

S3 Fig. Oscillations for a time delayed, ultrasensitive cell cycle model. (A) Block diagram of

the ultrasensitive, delayed negative feedback network. (B) Oscillatory regions for different val-

ues of the Hill coefficient n. (C) Period of the [Cdk1] oscillations as a function of the relative

synthesis rate c and time delay. (D,G) [Cdk1] and [APC]� amplitudes as a function of the rela-

tive synthesis rate c and time delay. (E,F,H,I) Time traces and phase planes for indicated

parameter values.

(TIFF)

S4 Fig. Oscillation period and amplitude for the S-shaped module. (A) [Cdk1] period as a

function of the relative synthesis c and the width of the S-shaped region. (B) [Cdk1] amplitude

as a function of the relative synthesis c and the width of the S-shaped region. (C) [APC]�

amplitude as a function of the relative synthesis c and the width of the S-shaped region.

(TIFF)

S5 Fig. Oscillation period and amplitude for the delayed S-shaped module. (A) [Cdk1]

period as a function of the width of the S-shaped region and delay. (B) [Cdk1] amplitude as a

function of the width of the S-shaped region and delay. (C) [APC]� amplitude as a function of

the width of the S-shaped region and delay.

(TIFF)

S6 Fig. Irregular cell cycle oscillations in a chain of bistable switches. In Fig 7 in the main

text we indicated grey regions in parameter space for which irregular oscillations were

observed. Here, we show time traces of [E2F]� for such irregular patterns.

(TIFF)

S7 Fig. Effect of synthesis and degradation rates of CycD and CycB on the duration of dif-

ferent cell cycle phases. In Fig 7 in the main text we showed the effect of changing synthesis

and degradation rates on the overall length of the cell cycle. Here, we separate the effects on

the different cell cycle phases. White areas represent regions where no oscillations can be
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observed, while for the grey areas irregular oscillations exist.

(TIFF)

S8 Fig. Extension of the cell cycle model by additional switches. In Fig 7 in the main text we

represented the cell cycle as a chain of three bistable switches. Here, we extended this model by

including the hypothetical switch of FoxM1 activity with respect to CycA levels.

(TIFF)

S9 Fig. Phase locking between the circadian clock and the cell cycle. Time traces showing

the absence or presence of p:q phase locking (with p and q in {1,2,3,4,5}) between the cell cycle

and the circadian clock for several parameter combinations. Related to the Arnold tongues

shown in Fig 8.

(TIFF)

S1 Video. The cell cycle can be represented as a chain of interlinked bistable switches.

Video showing how the cell cycle progresses through the different bistable switches as shown

in Fig 7.

(MP4)
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