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Researchers have long recognized that the random intro-
duction of new DNA into the genome could result in unpre-
dictable genetic effects due to bilateral influences between 
transgenic and endogenous sequences. Hence, precise edit-
ing or replacement of mutant genes has been a major goal 
of gene therapy since its inception. That goal looked pos-
sible with the publication of studies demonstrating that tar-
geted cleavage of chromosomal sequences and enhanced 
homologous recombination (HR) could be achieved using 
chimeric molecules composed of a nuclease domain and 
separate, designer DNA-recognition domains.1,2 Zinc-finger 
nucleases (ZFNs) are artificial endonucleases that consist 
of a FokI cleavage domain tethered to engineered Cys2His2 
zinc-finger, DNA-binding polypeptides.3–5 ZFNs have gained 
considerable momentum and are widely considered the most 
mature nuclease technology in the gene therapy field.6 How-
ever, after 15 years in the spotlight, a new chimeric nucle-
ase has emerged, Transcription Activator-Like (TAL) Effector 
Nucleases (TALENs).7–10 Here, we describe functional and 
design characteristics of ZFNs and TALENs and discuss their 
expanding role as tools for research and gene therapy.

TARGETING WITH ZINC-FINGER NUCLEASES

Each zinc finger (ZF) is about 30 amino acids, which form a 
ββα-fold stabilized by hydrophobic interactions and the chela-
tion of a zinc ion, and generally binds to three base pairs.11 
Typically, arrays of 3–6 ZF modules are joined together to cre-
ate a DNA-binding domain with specificity to 9–18 base pairs 
per ZFN monomer. Double-strand DNA cleavage requires 
dimerization of two FokI nuclease domains. Thus, ZFNs are 
used in pairs with specificity to opposing DNA strands that 
assemble on both sides of the targeted cleavage site (panel 
a of Figure 1). This enhances the specificity of ZFN target-
ing not only by requiring two DNA-binding events, but also 
by requiring precise spacing (typically 5–6 base pairs with 
a 4-amino acid linker between the ZF and FokI) and correct 
orientation between ZFNs for activity.12,13

The resulting double-strand breaks in a DNA sequence 
can be repaired by either of two mechanisms, nonhomolo-
gous end joining (NHEJ) or HR.14,15 NHEJ often results in 

small deletions or insertions (indels) to cause missense and/
or nonsense mutations that truncate or mutate the encoded 
protein. Consequently, NHEJ-mediated mutagenesis is used 
for targeted disruptions of genetic loci (e.g., gene knockout). 
Alternatively, HR allows for either precise modification of a 
 target sequence or precise introduction of a specific sequence 
(e.g., a wild-type sequence that leads to gene repair) into 
the targeted site. In mammals, a double-strand DNA break 
can stimulate HR of an exogenous DNA sequence within 
about 100 base pairs of the double-stranded DNA break.16 
Consequently, both targeting DNA cleavage close to a del-
eterious mutation and supplying either a double-stranded or 
single-stranded template DNA sequence can repair a dam-
aged gene. Thus, genetic engineering has transitioned from 
nearly random addition of genes and expression cassettes to 
defined editing of a genetic material.17,18

ZFNs provided, for the first time, an efficient and relatively 
simple platform for inducing site-specific mutations or modi-
fications of genomes, particularly for organisms for which 
this technology was lacking. About 20 abstracts on ZFNs 
were presented at the 2011 Annual Meeting of the  American 
 Society for Gene and Cell Therapy,19 which indicates the 
considerable interest in using these targeting agents directly 
for gene therapy and indirectly for modifying human embry-
onic stem cells and induced pluripotent stem cells for cell 
therapy.20–23 In terms of vertebrate models for gene and 
cell therapy, ZFNs have been used successfully for germ 
line knockout of genes by induction of DNA double-strand 
breaks and NHEJ in zebrafish,24,25 mice,26 rats,27,28 rabbits,29 
and pigs30,31 and Caenorhabditis elegans.32 These achieve-
ments are particularly important, because they suggest the 
possibility of achieving or improving the frequencies of gene 
targeting and HR that are stimulated by chromosome breaks 
in animal models where gene targeting is difficult.

Clearly ZFNs are a very powerful resource for gene edit-
ing; however, there are some complicating issues with the 
design and application of ZFNs. First, some ZFNs have 
been associated with cytotoxicity, presumably due to cleav-
age at nontargeted sites.33–35 Because cleavage at off-target 
sites can occur when ZFN monomers form homodimers, 
off-target activity has been ameliorated with structure-
based design of the FokI dimerization interface that blocks 
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homodimerization.36–38 Second, it was quickly appreciated 
that it was difficult in some cases to engineer ZFNs to 
have the desired binding specificities.39 ZFNs assembled 
using ZFs that recognize known triplets do not always have 
the desired sequence specificity when assembled into 
arrays.40 This problem necessitated assembly of multiple 
ZFs that target the same base pairs followed by testing 
and selection of combinations for greatest ZFN specific-
ity and efficiency. One solution is Oligomerized Pool Engi-
neering (OPEN) in which reagents currently available can 
be used to create ZFNs that recognize sites about every 
200 base pairs of random genomic sequence.41,42 Hence, 
there should be multiple target sites in an average gene. 
An alternative approach for efficient production of ZFNs 
is Context- Dependent Assembly (CoDA),43 which uses an 
archive of validated two-finger units derived from selection 
and are known to work well when positioned adjacent to 
each other. With available CoDA two-finger units, ZFNs can 
be constructed that recognize approximately one site in 
every 500 base pairs of  random genomic sequence. Others 

have identified successful combinations of naturally derived 
and engineered ZF modules which is used to guide mod-
ular assembly predicted to have a targeting range of 1 in 
125 base pairs of random genomic sequence,44 although 
subsequent studies have indicated unexpected failure rates 
based on simple modular assembly of ZFNs.39

The fundamental issue boils down to targeting range; that 
is, the precision at which efficient cleavages can be intro-
duced in a DNA target. For inactivation of a gene via the 
NHEJ pathway, the site of ZFN cleavage is not as impor-
tant as specification of the cleavage site for HR-directed 
gene correction. Hence, for applications to humans, OPEN 
is more versatile and looks preferable to CoDA. However, 
OPEN is far more arduous and time-consuming. In addi-
tion, mammalian gene conversion frequency is reduced as 
a function of increasing distance from a DNA double-strand 
break (>80% reduction 100 base pairs from the double-
strand break).16 Thus, some loci of interest to gene ther-
apists may not be modified efficiently using open source 
ZFN technology.

Figure 1 Comparison of zinc-finger nuclease (ZFN) and Transcription Activator-Like Effector Nuclease (TALEN) architecture.  
(a) ZFNs. Each ZFN polypeptide consists of two functional domains, a DNA-binding domain comprising a chain of finger modules (ZFs) 
that each typically recognize a unique 3-base pair sequence of DNA and a DNA-cleaving domain composed of the nuclease domain of 
the FokI nuclease. FokI functions as a dimer, hence when two FokI nucleases bind to DNA proximal to one another they can dimerize and 
introduce a double-strand break. Targeted double-strand DNA cutting can be obtained by designing zinc fingers for specific sequences that 
flank the desired cleavage site; in the example 12 base pairs per ZFN are targeted with polypeptides containing four zinc-finger modules 
each (ZF-1 through ZF-4 and ZF-5 through ZF-8). (b) Model of a TALEN. A TAL Effector (TALE) polypeptide contains a series of typically 
34-amino acid repeats, of which residues 12 and 13 [repeat variable diresidues (RVDs) shown in orange] are responsible for recognition 
of a specific base as shown in the box (note that there is some discussion about the precision of the RVD NK recognition of G and other 
RVDs can specify base contacts61). FokI nuclease is fused to the C-terminal end of the protein using wild-type TALE sequence as a spacer. 
Several spacer lengths between the TALE binding core and FokI have demonstrated activity. The number of tandem 34-amino acid repeats 
in the binding core defines the length of the recognition sequence, and the end of the functional DNA-binding motif. Each target sequence 
must be preceded by a T nucleotide. Two TALENs are shown to assemble on a genomic sequence in the  opposite polarity to ZFNs to form 
a heterodimeric cleavage complex.
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GENOME MODIFICATION WITH TAL EFFECTOR 
NUCLEASES

Fifteen years after the introduction of ZFNs, an alternative 
approach for introducing chromosomal breaks at selected 
sites was developed. TALENs are novel fusion proteins that, 
like ZFNs, consist of assembled DNA-binding motifs coupled 
to FokI nuclease.7–10,45–47 The DNA-binding motifs come from 
proteins secreted by plant pathogens in the bacterial genus 
Xanthomonas. The proteins activate genes within infected 
plant cells to improve the environment for the invading patho-
gen.8 The proteins, TAL effectors, have nuclear localization 
signals and an acidic transcription-activation domain. The 
DNA-binding motifs of TAL effectors consist of a tandem repeat 
of typically 34 amino acids. Each repeat appears to bind to a 
single base pair based on a simple cipher7,9 shown in panel b 
of the Figure 1. The cipher can be used to predict the speci-
ficity of a TAL effector polypeptide. Residues 12 and 13 of the 
34-amino acid repeats, referred to as repeat variable diresi-
dues (RVDs), define binding to a specific base.7,9 This code 
was deciphered by Boch et al.7 where it was demonstrated 
that artificial TAL effectors targeted to novel sequences could 
activate transcription, thereby opening the door to a variety of 
TAL effector-based genome engineering applications. Since 
then, sequence-specific DNA-binding proteins with predicted 
binding specificities have been generated economically in a 
matter of days, using molecular biology methods practiced 
by most laboratories.48–55 The activities of custom-designed 
TALENs in human cells have efficiencies of NHEJ-induced 
mutagenesis ranging up to 45% of transfected cells.47,56 In 
addition, TALENs have been used to create NHEJ modifica-
tions in C. elegans,32 zebrafish,51,52 and rats.57 As with ZFNs, 
TALEN-mediated double-strand breaks also stimulated HR in 
human cells at levels that are similar to the levels achieved 
with ZFNs.22,46

TALEN-binding sites are expected to occur about once 
every 35 base pairs based on criteria identified by exami-
nation of naturally occurring TALEs.48 If this turns out to 
be the case experimentally, it will provide greater flexibility 
in the selection of target sites than open source ZFN plat-
forms and thereby make TALENs very attractive for research 
in gene and cell therapy. Furthermore, the apparent lack of 
context dependence and 1:1 correspondence of repeat vari-
able diresidues with defined single base pairs, in contrast 
to ZF modules for which there are a multiplicity of ZFs for 
a given triplet of base pairs, with complex contextual inter-
action, makes modular assembly of TAL effector proteins 
more straightforward. Remarkably, the success rate for gen-
erating active TALEN pairs using simple design parameters 
(i.e., spacer length and adhering to characteristics of natural 
TALEs) has been as high as with ZFNs using open source 
technology.22,51,56–58 Several groups have developed reagents 
and protocols for simple, rapid modular assembly that make 
TALENs broadly available to all investigators.48–51,53–55,58

FUTURE DIRECTIONS

Extraordinary progress in gene-editing targeting technologies 
and the recent emergence of TALENs as an alternative, open 

source gene-targeting platform, supports the prediction that 
gene-editing will continue to gain momentum for generation 
of models and therapeutics. The gene therapy community 
has now 10 years of accumulated experience using ZFNs 
for precise modification of human genomes and those of 
model organisms.13 At this time, three promising ZFN-based 
therapies have entered clinical trials for treatment of diabetic 
neuropathy, AIDS, and glioblastoma. Despite considerable 
excitement revolving around TALENs, it is too early to predict 
that they will replace or rival ZFNs for gene therapy. Addi-
tional studies are required to: (i) develop efficient means of 
delivery (TALENs are typically 1,200+ amino acids in length), 
(ii) define immunogenicity of TALENs, and perhaps most 
important, (iii) characterize the specificity of TALENs. Each 
TALEN monomer typically specifies 15+ base pairs for a com-
bined 30+-base pair-target sequence, which is predicted to 
be unique in the human genome. However, unbiased  studies 
of ZFN specificities have revealed shortcomings of off-
 target predictions using computer algorithms that search for 
 nearest matches.59,60 As with ZFNs, early studies reveal that 
TALENs can bind degenerate sequences and have demon-
strated activity at related off-target sites.56,57 Hence, unbiased 
experimental assessment of off-target sites will be necessary 
for all ZFNs and TALENs intended for gene therapy. Whether 
or not TALENs withstand the vigorous standards of clinical 
use remains to be seen. However, considering their ease in 
manufacture and reliability in function, we expect increasing 
adoption of TALENs by the research community. This bodes 
well for the development of new genetic models and effective 
therapies for our most prevalent congenital diseases.
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