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Abstract
We have previously reported human fetal cartilage progenitor cells (hFCPCs) as a novel source of therapeutic cells showing
high proliferation and stem cell properties superior to those of adult mesenchymal stem cells (MSCs). In this study, we
investigated the immunophenotype and immune-modulatory activities of hFCPCs. With institutional review board approval,
hFCPCs were isolated from fetuses at 11–13 weeks of gestation. hFCPCs showed strong expression of HLA class I molecules
but low or no expression of HLA class II and co-stimulatory molecules, which was not changed significantly after 4 days of IFN-
g treatment. In a mixed lymphocyte reaction (MLR), hFCPCs showed no allogeneic immune response to peripheral blood
lymphocytes (PBLs) and suppressed concanavalin A (Con A)-mediated proliferation of PBLs in a dose-dependent manner. In
addition, hFCPCs inhibited Con A-induced secretion of pro-inflammatory cytokines TNF-a and IFN-g from PBLs but showed
no significant decrease of secretion of IL-10, anti-inflammatory cytokine. Co-culture of hFCPCs with stimulated PBLs for 4
days resulted in a significant increase in CD4þCD25þFoxP3þ T regulatory cells (Tregs). hFCPCs expressed LIF, TGF-b1, TSG-
6, and sHLA-G5 but did not express IDO and HGF. Stimulation of hFCPCs with TNF-a for 12 h showed slight induction in the
expression of LIF, TSG-6, IDO, and HGF, whereas stimulation with IFN-g did not affect expression of any of these factors.
These results suggest that hFCPCs have low allogeneic immunogenicity and immune-modulatory activity in vitro, comparable
to those of MSCs. However, compared with MSCs, hFCPCs were less responsive to TNF-a and IFN-g, and the mechanisms
underlying responses to these two cell types appeared distinct.
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Introduction

Mesenchymal stem cells (MSCs) are an attractive source of

cells for therapeutic use, because they are easy to obtain

from several tissues in adults, have low immunogenicity and

chemotactic activity, and can differentiate into a series of

mesengenic cell lineages. The ability of MSCs to modulate

immune responses and inflammation in vitro and in vivo

raised considerable interest because of their potential for use

in treating many immune-related diseases1. However, MSCs

have an insufficient differentiation ability, limiting their

potential to meet clinical needs for tissue regeneration, and

they show phenotypic drift during long-term expansion, hin-

dering their mass production. Studies are currently underway

to overcome these practical limitations of MSCs, but there is

also a keen demand to find a novel source of cells. Embryo-

nic stem cells (ESCs) and induced pluripotent stem cells

(iPSCs) are good sources of therapeutic cells, but there are
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high safety concerns and technical challenges associated

with their use, and these cells do not have immune-

privilege and immune-modulatory functions2,3.

In contrast, stem or progenitor cells from fetal tissues may

complement, or be a substitute for, MSCs. They can be iso-

lated from a variety of different fetal tissues, including bone

marrow, liver, blood4, lung5, brain6, cartilage7, heart8, umbi-

lical cord blood9, Wharton’s jelly10, and placenta11. Fetal

stem/progenitor cells have a greater proliferative capacity

and differentiation potential than MSCs12. In addition, they

have the advantages of low tumorigenicity and immunogeni-

city13,14,15. Several studies have shown that fetal stem/pro-

genitor cells have an immune-modulatory activity similar to

those of MSCs14,15. However, most of the studies have been

done using post-natal placenta or umbilical cord blood-

derived MSCs and immune-modulatory activity of MSCs

from pre-natal fetus is limited. In addition, it is not clear

what the differences are between the immune-modulatory

activity of selected subpopulation of MSCs and total fetal

progenitor cells. Therefore, it is imperative to understand the

immune characteristics and immune-modulatory functions

of cells from many different fetal tissues for their clinical

adoption.

Many previous studies have established the mechanism of

immune-privileged and immune-modulatory abilities of

MSCs. MSCs express MHC class I molecules but do not

express HLA class II molecules and co-stimulatory factors

such as CD80, CD86, and CD4016. Functional assays show

that MSCs inhibit proliferation of T and B lymphocytes17,

reduce cytotoxicity of T lymphocytes18,19 and natural killer

cells18, suppress differentiation and maturation of mono-

cytes into dendritic cells20, and stimulate production of T

regulatory cells (Tregs) from immature T cells21. Many cyto-

kines and ligands secreted by MSCs are known to modulate

these processes, including interleukin 10 (IL-10)22, leukemia

inhibitory factor (LIF)19, indoleamine 2,3-dioxygenase

(IDO)18,23, prostaglandin E2 (PGE2)18, hepatocyte growth

factor (HGF)24, transforming growth factor (TGF)-b124,

soluble human leukocyte antigen-G5 (sHLA-G5)25, and

TNF-a stimulated gene 6 (TSG-6)26.

Fetal tissues are immune tolerant to limit their reactions

to the mother27. They show low level expression of HLA

class I and co-stimulatory molecules, and produce

immune modulatory molecules such as TGF-b13. The

mechanisms of immune tolerance involve stimulation of

CD4þCD25þFoxP3þ Tregs and auto-reactive T cell clones

from the thymus28. MSCs are also found in some fetal tis-

sues, such as those of the liver14 and bone marrow29, and

they show low immunogenicity, immune-modulatory activ-

ity, and inflammatory cytokine secretion, similar to adult

MSCs. Fetal neural progenitor cells (NPCs)30 and fetal bone

cells13 are also reported to have similar immuno-phenotypes,

but not much information is available on other fetal tissues.

Interestingly, these two fetal tissue-derived cells exhibit dif-

ferential expression patterns of HLA class I and II molecules

in an unstimulated state and upon stimulation with TNF-a

and IFN-g. Fetal NPCs express higher levels of HLA class I

molecules than class II molecules, and neither of these was

induced by treatment with TNF-a or INF-g. In contrast, fetal

bone cells show very low expression of both HLA class I and

II molecules, but their expression increases significantly in

response to TNF-a or INF-g. These results suggest that

immune-related activities of fetal stem/progenitor cells

might vary with tissue type, and these differences need to

be clarified for therapeutic development of each cell type.

Previously, we isolated human fetal cartilage progenitor

cells (hFCPCs) from a fetus at 12 weeks of gestation and

identified their stem cell properties of high colony formation

and proliferation, and multi-potent differentiation ability

into chondrogenic, osteogenic, and adipogenic lineages7.

hFCPCs express most MSC markers and show a clearer stem

cell phenotype than that of MSCs. There are other reports

describing similar stem or progenitor cell properties of

hFCPCs at 6–20 weeks of gestation but their immune-

phenotypic characteristics are not provided in these

studeis31,32. Human chondrocytes from neocartilage were

previously shown to have immune-privileged and immune-

modulatory activities. However, chondrocytes are different

from our fetal progenitor cells with stem cell properties, and

information on Tregs and cytokine profiles was not pro-

vided33. We have previously shown that hFCPCs do not

induce severe immune rejection when injected into the syno-

vial cavity of rats34. In the present study, we characterized

the immunological properties of hFCPCs from fetuses at 11–

13 weeks of gestation and investigated their immune-

modulatory activity on allogeneic lymphocyte proliferation.

We found that hFCPCs share many characteristics with other

fetal progenitor cells, as well as MSCs, but that they also

display features unique to this cell type.

Materials and Methods

Culture of hFCPCs and MSCs

The use of human fetal tissues and bone marrow aspirate was

approved by the institutional review board (IRB) of Ajou

University Medical Center (AJIRB-MED-SMP-11-205).

Cartilages from three fetuses between 11 and 13 weeks of

gestation were obtained from donors undergoing elective

termination with written and informed consent. Human fetal

cartilage tissue has a large number of progenitor cells evenly

distributed throughout the tissue7. The fetal cartilage tissue

was carefully separated from femoral head with a scalpel

blade, chopped into small pieces, and treated with 0.2%
collagenase type II (Worthington Biochemical, Lakewood,

NJ, USA) in serum-free Dulbecco’s modified Eagle medium

(DMEM-LG; Hyclone, Logan, UT, USA) for 3 h at 37�C.

Dissociated cells were collected by centrifugation at 1700

rpm for 10 min. After several washes with DMEM, cells

were plated in a 150-mm culture plate at 8000 cells/cm2 and

cultivated in DMEM-LG supplemented with 10% fetal

bovine serum (FBS), 10,000 U/ml penicillin, and 0.1 mg/
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ml streptomycin (all from Hyclone). The medium was chan-

ged twice a week. Cells were passaged at 80% confluence

using trypsin/EDTA (Invitrogen, Carlsbad, CA, USA).

MSCs were isolated from the bone marrow of fractured

femurs from patients 11–25 years old undergoing orthopedic

surgery. Briefly, mononuclear cells were collected by Ficoll-

Paque PLUS (GE Healthcare Bio-Sciences AB, Sweden)

density gradient centrifugation, suspended in a-modified

Eagle’s medium (a-MEM) supplemented with 10% FBS,

10,000 U/ml penicillin, and 0.1 mg/ml streptomycin (all

from Hyclone), and plated at a density of 80,000 cells/cm2.

After 6 days, non-adherent cells were removed, and the

adherent MSCs were supplied with fresh medium. MSCs

were passaged at 80% confluence using trypsin/EDTA, and

plated at a density of 8,000 cells/cm2.

Reverse Transcriptase-Polymerase Chain Reaction

Total RNA was isolated from hFCPCs using Tri-reagent

(Invitrogen) according to the manufacturer’s instructions.

cDNA synthesis was performed using a First Strand cDNA

Synthesis Kit (Roche Diagnostics, Rotkreuz, Switzerland),

and PCR was conducted using 1 mg cDNA, the primer pairs

listed in Table 1, and HiPi PCR Premix (ELPis Biotech,

Daejeon, Korea). Glyceraldehyde 3-phosphate dehydrogen-

ase (GAPDH) was used as an internal control.

Flow Cytometry for Surface Marker Analysis

For the surface marker analysis, hFCPCs at passage four

were untreated or stimulated with 200 U/ml of recombinant

human IFN-g (BD Biosciences, San Jose, CA, USA) for 4

days, and then incubated with fluorescence-conjugated pri-

mary antibodies against HLA-ABC, HLA-DR, CD80,

CD86, CD40, CD40L, and CD11c (all from BD Bios-

ciences) for 30 min at 4�C. After washing, the stained cells

were analyzed on a BD FACSCanto II flow cytometer using

Cell Quest software (BD Biosciences).

Mixed Lymphocyte Reaction

Peripheral blood was obtained from five healthy volunteers

(median age 39.3 years, range 31–46 years) with informed

Table 1. Primers Used in the Present Study.

Gene Primer Sequence (50 – 30) Annealing temperature Size Accession Number

HLA-ABC GTATTTCTTCACATCCTGGTCCCG
GTCCGCCGCGGTCCAAGAGCGCAG

70 394 NM_002164.5

HLA-DR CTGATGAGCGCTCAGGAATCATTG
TGCATTGGCCAACATAGCTG

60 220 NM_001242758.1

HLA-DM CCAGCCCAATGGAGACTG
CAGCCCAGGTGTCCAGTC

57 136 NM002118.4

HLA-G CTGACCCTGACCGAGACCTGG
GTCGCAGCCAATCATCCACTGGAG

65 331 NM_002127.5

Beta2M GTGGAGCATTCAGACTTGTC
AACAAGCTTTGAGTGCAAGAG

57 479 NM_004048.2

CD80 ACTCGCATCTACTGGCAAAAGGA
ATGGGAGCAGGTTATCAGGAAAA

59 553 NM_005191.3

CD86 GTATTTTGGCAGGACCAGGA
GCCGCTTCTTCTTCTTCCAT

57 664 NM_006889.4

CD40 AGAAGGCTGGCACTGTACGA
CAGTGTTGGAGCCAGGAAGA

59 363 NM_152854.2

TAP1 TCTCCTCTCTTGGGGAGATG
GAGACATGATGTTACCTGTCTG

58 273 NM000593.5

TAP2 GTCGTGTCATTGACATCCTG
TCAGCTCCCCTGTCTTAGTC

57 228 NM_000544.3

IDO CGCTGTTGGAAATAGCTTC
CAGGACGTCAAAGCACTGAA

53 234 NM_002164.5

LIF GGCCCGGACACCCATAGACG
CCACGCGCCATCCAGGTAAA

53 455 NM_002309.4

TGF-b ACCGGCCTTTCCTGCTTCTCA
CGCCCGGGTTATGCTGGTTGT

63 288 NM_000660.4

TSG-6 GGTGTGTACCACAGAGAAGCA
GGGTTGTAGCAATAGGCATCC

63 284 NM_007115.3

sHLA-G CCACCACCCTGTCTTTGACT
TGGCACGTGTATCTCTGCTC

63 210 NM_002127.5

HGF ATGCATCCAAGGTCAAGGAG
TTCCATGTTCTTTTGTCCCACA

55 249 NM_001010932

GAPDH GGTCATGAGTCCTTCCACGAT GGTGAAGGTCGGAGTCAACGG 58 520 NM_002046.3
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consent and IRB approval from Ajou University Medical

Center (AJIRB-MED-SMP-11-205). Lymphocytes were iso-

lated by Ficoll-Paque PLUS (1.077 g/ml; GE Healthcare

Bio-Sciences AB, Sweden) density gradient centrifugation

according to the manufacturer’s instructions. Peripheral

blood lymphocytes (PBLs) at a concentration of 105 cells

in 0.5 ml medium were untreated or stimulated with 10

mg/ml concanavalin A (Con A; Sigma-Aldrich, St. Louis,

MO, USA) for use in the MLR assay. hFCPCs or hMSCs

were irradiated with 3000 rads Cs137 as previously

described35 and plated at decreasing amounts of 105, 104,

103, and 102 cells in 96-well plates and mixed with 105 Con

A-stimulated or -unstimulated PBLs. After 4 days, 0.1 ml

from each sample was transferred to a new 96-well plate, and

20 ml of BrdU labeling solution (BrdU ELISA kit, Roche

Diagnostics, Mannheim, Germany) was added to each well.

After 6 hours at 37�C, absorbance were measured at 492 nm

using a microplate reader (Infinite m200; TECAN, Männe-

dorf, Switzerland).

Enzyme-Linked Immunosorbent Assays for
Cytokines Analysis

PBLs (106 cells) were stimulated with 10 mg/ml Con A and

incubated with 105 or 106 Cs137-inactivated hFCPCs in 12-

well plates. After 4 days, the culture medium was collected

and the amount of IFN-g, TNF-a, and IL-10 in samples was

measured using enzyme-linked immunosorbent assay

(ELISA) kits for each cytokine (eBioscience, San Diego,

CA, USA) according to the manufacturer’s instructions.

Absorbance at 450 nm was measured using a microplate

reader (Infinite m200; TECAN).

Analysis of Tregs

PBLs (106 cells) were stimulated with 10 mg/ml Con A and

incubated with Cs137-inactivated hFCPCs at a 1:1 ratio, as

above, in a 60-mm dish for 4 days. PBLs were harvested

after 4 days and immuno-stained simultaneously with

fluorescence-conjugated anti-CD4-FITC, anti-CD25-APC,

and anti-FoxP3-PE antibodies using a FoxP3 staining Kit

(BD Biosciences) according to the manufacturer’s protocol.

Cells were analyzed on a BD FACSCanto II flow cytometer

using Cell Quest software (BD Biosciences).

Statistical Analysis

Data were expressed as the mean + standard deviation (SD)

from multiple independent experiments, as indicated for

each assay. Statistical significance was determined by one-

way analysis of variance (ANOVA) with Tukey’s post hoc

test using GraphPad Prism version 6.0 software (GraphPad

Software, Inc., La Jolla, CA, USA). Values of P < 0.05 were

regarded as statistically significant. Statistical significance

was assigned as *P < 0.05, **P < 0.01, or ***P < 0.001.

Results

Immuno-Phenotypic Characterization of hFCPCs

Expression of HLA class I and II and complement molecules

in hFCPCs was examined by reverse transcriptase-

polymerase chain reaction (RT-PCR) and flow cytometry.

In the RT-PCR analysis, selected genes exhibited three dif-

ferent expression patterns at passages 2 and 10 of hFCPCs

(Fig. 1A). HLA-ABC was expressed at high levels at passage

2, and expression decreased at passage 10. Beta-2 micro-

globulin (b2 M) and transporter associated with antigen

processing molecules 1 (TAP1) and 2 (TAP2) were

expressed at a consistent level at passages 2 and 10.

HLA-DM, HLA-DR, CD80, CD86, and CD40 were not

expressed at either passage. Flow cytometry was performed

to examine the levels of selected immune-related antigens

at passage 4 in the absence or presence of IFN-g (Fig. 1B).

HLA-ABC was present in 99.2 + 0.6% of FCPCs, and

CD86 was present only in 11.2 + 0.4% of cells, while other

cell surface markers, i.e. HLA-DR, CD80, CD40, CD11c,

and CD40L were detected in less than 1% of cells. IFN-g
treatment is known to increase expression of HLA and

complement molecules in MSCs36, but treatment with this

cytokine but did not affect their expression in FCPCs. In the

case of CD86, expression was decreased slightly to 7.0 +
3.9% following IFN-g treatment.

hFCPCs Show Immune-Modulatory Activity in an MLR

MLR was performed using allogenic PLBs to understand the

immune-stimulatory or -modulatory function of FCPCs. T

cell proliferation by mitogens such as Con A has been

regarded as mimicking T cell activation, and, therefore, has

been used to establish positive controls. When hFCPCs were

growth arrested and mixed with 105 PBLs for 4 days at

decreasing amounts of 105, 104, 103, and 102 cells, they

did not stimulate T cell proliferation at all concentrations

(Fig. 2A). Treatment of PBLs with 10 mg/ml Con A showed

T cell proliferation of approximately 2.3 + 0.5-fold (***P <

0.001). MSCs are known to suppress the immune response of

PBLs stimulated with Con A17. We investigated whether

hFCPCs show similar effects. When growth-arrested

hFCPCs were mixed with Con A-stimulated PBLs under the

same conditions, the hFCPCs inhibited T cell proliferation

by Con A in a dose-dependent manner (Fig. 2B). When

compared with Con A-stimulated PBLs alone, the effects

of 105 and 104 hFCPCs were statistically significant (**P

< 001 and *P < 0.05, respectively). In particular, 105

hFCPCs mixed with PBLs at a 1:1 ratio almost completely

blocked T cell proliferation in response to Con A. In this set

of experiments, Con A induced relatively high levels of T

cell proliferation with large variation (9.6 + 7.9 fold) and

showed a statistically significant difference from levels of

proliferation of untreated PBLs (***P < 0.001). For

comparison, hMSCs from bone marrow also inhibited Con

A-induced T cell proliferation, but this effect was not greater
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than that of hFCPCs. The effect was statistically significant

only at 105 hFCPCs (***P < 0.001), with high variation

observed with less hFCPCs. In a separate experiment, we

investigated the immune-modulatory activity of human

young (1 year old) and adult chondrocytes (56 years old)

and found they did not efficiently suppress PBL activa-

tion by Con A (Supplementary Fig 1). Interestingly, we

found that adult chondrocytes further increased prolifera-

tion of PBLs.

hFCPCs Modulate Cytokine Production from PBLs

To determine whether hFCPCs affect the cytokine profiles of

activated PBLs, 105 or 106 hFCPCs were co-cultured with

106 Con A-treated PBLs for 4 days, and expression of TNF-

1a, IFN-g, and IL-10 was examined (Fig. 3). TNF-1a and

IFN-g are known to be pro-inflammatory cytokines, whereas

IL-10 is an anti-inflammatory cytokine37. The Con A-treated

samples showed substantial variation, and the data from all

three samples were presented together with mean values

+SD. In spite of individual differences, Con A significantly

increased secretion of TNF-a from 85.4 + 71.4 to 7242.8 +
3838.8 pg/ml, IFN-g from 5.4 + 9.3 to 7087.0 + 3385.7 pg/

ml, and IL-10 from 4.4 + 2.4 to 1874.6 + 993.0 pg/ml. Co-

culture of 105 or 106 hFCPCs with 106 Con A-treated PBLs

almost completely abolished TNF-a secretion (36.6 + 9.1

and 3.4 + 1.4 pg/ml, respectively) and significantly reduced

IFN-g secretion to 4606 + 1448.5 and 1404.8 + 623.4 pg/

ml, respectively. In contrast, co-culture with these cells did

not hamper Con A-induced IL-10 secretion significantly,

with levels of IL-10 secretion of 1238.3 + 518.6 and

1584.5 + 831.7 pg/ml, respectively.

hFCPCs Increase the Number of Tregs in PBLs

CD4þCD25þ Treg cells are capable of modulating tolerance

to immune responses38, and Foxp3, another Treg cell mar-

ker, can control Treg development39. Growth-arrested

hFCPCs were co-cultured with unstimulated PBLs at a 1:1

ratio for 4 days, and the number of CD4þCD25þFoxp3þ T

cells was determined by flow cytometry (Fig. 4). Combining

two markers, co-culture with hFCPCs increased the amount

of CD4þFoxp3þ cells from 1.6 + 0.3% to 4.2 + 0.2%, that

of CD4þCD25þ cells from 0.6 + 0.4% to 2.0 + 1.3%, and

that of FoxP3þCD25þ cells was from 0.5 + 0.4% to 2.0 +
1.1%). In addition, the percentage of CD4þCD25þ Foxp3þ

T cells of total PBLs was 0.5 + 0.4%, but this percentage

was increased after co-culture with hFCPCs (2.0 + 1.1%).

hFCPCs Express Many Immune-Modulatory Factors

The effect of MSCs on T cells is modulated mainly through

cell contact-independent processes, indicating the impor-

tance of soluble factors such as IDO, LIF, TGF-b1, sHLA-

G5, and HGF15. Expression of these factors in MSCs is

induced by IFN-g and TNF-a40. hFCPCs were untreated or

treated with IFN-g and/or TNF-a for 12 h, and the expression

levels of these factors were measured by RT-PCR (Fig. 5A).

Fig 1. Immuno-phenotypic profiles of hFCPCs. (A) The expression of human immune-related genes was examined by RT-PCR analysis in
hFCPCs at passages 2 (P2) and 10 (P10). The level of GAPDH mRNA were used as an internal control. (B) The expression of immune-
related surface markers was examined in hFCPCs at passage 4 by flow cytometry. Cells were treated or untreated with IFN-g for 4 days
before analysis. In each panel, percentages of immune-positive cells are indicated by mean values with standard deviations (SD) from three
independent experiments.
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Untreated hFCPCs showed high levels of LIF, TGF-b, and

TSG-6 expression, low levels of sHLA-G5 expression, and

no evident IDO and HGF expression. Treatment with INF-g
did not increase expression of these factors and only slightly

decreased expression of LIF and HLA-G. Treatment with

TNF-a clearly increased IDO, TSG-6, and HGF expression.

Co-treatment with INF-g and TNF-a showed mixed results,

with only IDO and sHLA-G5 expression increased when

compared with that of the untreated control. Quantitative

data of the RT-PCR results showed similar patterns to the

representative image but the statistical significance was not

observed due to the large variation among three different

donors (Fig. 5B). The graph on HGF is not included because

its band intensity was too weak to obtain meaningful

quantification.

Discussion

This study is the first to define the immune-privileged and

immune-modulatory characteristics of hFCPCs in vitro. We

found that hFCPCs express HLA class I and associated

molecules but do not express HLA class II molecules or

co-stimulatory factors such as CD80 (B7 -1), CD86 (B7-

2), and CD40. HLA class I molecules are expressed in

almost all mammalian cells, whereas class II molecules are

mainly found in antigen presenting cells (APCs) such as

dendritic cells (DCs). HLA molecules and co-stimulatory

factors are mainly responsible for antigen presentation and

immune responses36. Cells that express HLA molecules sti-

mulate T cells directly if co-stimulatory factors such as

CD80 or CD86 are also present; otherwise, they activate T

cells indirectly by cross presentation of their peptides on

APCs such as DCs36. Therefore, cells without HLA mole-

cules might have a low risk of alloimmunity. hFCPCs are

expected not to express co-stimulatory molecules, and,

therefore, may not directly activate T cells. Because direct

activation of T cells is known to be about 10-fold stronger

than activation through the indirect APC-dependent mechan-

ism41, the allogenic immune response of hFCPCs themselves

might not be a significant problem, as confirmed by our

MLR assay. Although there should be a mechanistic differ-

ence between the allogeneic and xenogeneic immune rejec-

tion, these findings might be in connection with our previous

report that hFCPCs did not cause immune rejection in rat

synovial cavity34. Previously, adult or fetal MSCs were

shown to express HLA class I molecules without expressing

HLA class II or co-stimulatory molecules14,16. However, the

expression of both HLA class I and II molecules on cell

surfaces increased when cells were exposed to INF-g for 7

days. Similarly, expression of HLA molecules increased on

the surfaces of fetal and adult MSCs in response to IFN-g14.

In contrast to fetal or adult MSCs, treatment with IFN-g for 4

days did not increase HLA molecules of either type on the

surfaces of hFCPCs, as demonstrated by flow cytometry. A

previous report has shown that chondrocytes isolated from

human iPSC-derived cartilages express low levels of both

HLA types I and II, and treatment of IFN- g induces expres-

sion of HLA type I only42. Taken together with our findings

using hFCPCS, it could be speculated that chondrocytes

have an innate property of low expression of HLA type II

and no significant induction of its expression upon IFN-g
stimulation.

MSCs from the bone marrow can suppress alloreactive T

cells43. They also significantly inhibit proliferation of T

cells stimulated by potent mitogens such as Con A and

phytohemagglutinin (PHA). This effect of mitogens is

regarded as similar to that of T cell activation by APCs44.

We found in this study that the immunosuppressive effect

of hFCPCs is stronger than that of adult MSCs. hFCPCs

almost completely blocked Con A-induced proliferation of

allogeneic PBLs when they were mixed at a 1:1 ratio. Our

preliminary in vitro data also shows that TNF-a but not

Fig 2. Effects of hFCPCs on the proliferation of allogeneic PBLs. (A)
hFCPCs were irradiated with 3000 rads of Cs137 to abolish cell
proliferation. Human PBLs (105 cells) were cultured in 96-well
plates in the absence or presence of inactivated hFCPCs at ratios
of 1:1 and 1:1000 (105 to 102 cells) for 4 days. Human PBLs treated
with 10 mg/ml Con A was used as a positive control. (B) Human
PBLs (105 cells) stimulated with Con A were co-cultured with
inactivated hFCPCs or BM-MSCs at ratios of 1:1 and 1:1000 (105

to 102 cells) for 4 days. The proliferation of PBLs was measured by
BrdU labeling and subsequent ELISA at 492 nm using a BrdU ELISA
kit (Roche Diagnostics). Fold inductions from the values of
untreated PBLs are shown in the histograms by mean values with
SD from independent experiments (A, n ¼ 3; B, n ¼ 8 for hFCPCs,
and n ¼ 3 for MSCs). *P < 0.05, **P < 0.01, and ***P < 0.001.
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IFN-g induced the expression of anti-inflammatory factors,

including IDO, LIF, TSG-6, and HGF, in hFCPCs. Inter-

estingly, we found that both young (1 year) and aged (56

years) chondrocytes showed no clear immunosuppressive

activity in MLR (supplementary Fig 1), while human

iPSCs-derived chondrocytes were reported to have an

immunosuppressive activity42. These findings suggest that

the immunosuppressive activity is specific to pre-natal

chondrocytes and the iPSCs-derived chondrocytes might

share their characteristics.

To better understand the immunosuppressive effects of

hFCPCs, we measured the secretion of INF-g, TNF-a, and

IL-10 in Con A-activated PBLs in the presence of hFCPCs.

IFN-g and TNF-a are key players in allogeneic immune

responses and T cell proliferation. IFN-g induces expression

of HLA class I and II molecules on cell surfaces and rein-

forces T cell activity45. TNF-a is produced by monocytes or

macrophages and enhances proliferation of mature T cells46.

Our results indicate that hFCPCs can suppress expression of

these two inflammatory cytokines in Con A-activated PBLs.

This result agrees with previous reports on different types of

MSCs from bone marrow, Wharton’s jelly, or umbilical cord

blood47,48. IL-10 is a potent immunosuppressive cytokine in

vitro and in vivo that downregulates production of pro-

inflammatory cytokines and chemokines by immune cells49.

Previously, bone marrow MSCs were shown to induce IL-10

expression in MLR assays, particularly when primed with

IFN-g or TNF-a before co-culture with PBLs47. Interest-

ingly, in our study, hFCPCs did not increase IL-10 expres-

sion in either resting or Con A-activated PBLs in the MLR

assay. Similar results have been reported for MSCs from

bone marrow, which did not increase IL-10 expression in

either suppressed and unsuppressed conditions in an MLR

assay36. Taken together, these results suggest that MSCs and

hFCPCs shows various effects on cytokine section from

PBLs, depending on their specific cell type and source,

which might affect their immune-modulatory activities.

Numerous reports have shown the importance of

CD4þCD25þFoxp3þ Tregs in immune regulation. Tregs

have pleiotropic suppressive effects on immune responses

to allo-antigens and infectious agents50 and play a key role

in immune tolerance of a fetus to its mother28. MSCs mod-

ulate immune responses by de novo induction and expansion

of CD4þCD25þFoxp3þ and CD8þ Tregs, which can pro-

mote immune tolerance in certain circumstances51. Our

results showed a 2.63-fold increase in the number of

CD4þFoxp3þ Tregs in PBLs co-cultured with hFCPCs,

which is significant when compared with previous data for

Fig 3. Effect of hFCPCs on the expression of inflammation-related cytokines in PBLs stimulated with Con A. PBLs (106 cells) were stimulated
with 10 mg/ml Con A in the absence or presence of inactivated hFCPCs (105 or 106 cells) for 4 days. Untreated PBLs and inactivated hFCPCs
were used as controls. The culture media were collected, and TNF-a, IFN-g, and IL-10 levels were determined by ELISA (eBioscience). The
graphs shows individual values and means with SD from three independent experiments. The statistical significance of differences between
the PBLþCon A and PBLþ Con A groups and the hFCPCs groups was assessed using a paired t test. *P < 0.05, **P < 0.01, and ***P < 0.001.

938 Cell Transplantation 28(7)



MSCs. Induction of Tregs by MSCs is mediated by direct

contact and indirectly through CD4þ T cells via TGF-b,

IDO, HLA-G5, LIF, and PGE2 secreted by MSCs25,52. We

found that hFCPCs also express TGF-b, LIF, and HLA-G5,

which suggests that expression of these cytokines from

hFCPCs may play a role in expanding the Treg population.

The immunosuppressive effect of MSCs can be mediated

in a cell-cell contact-independent manner. Soluble factors

such as TGF-b1, HO-1, PGE2, IDO, HLA-G5, LIF, TSG-

6, and HGF are known to participate in this process15.

hFCPCs in this study expressed LIF, TGF-b1, and TSG-6

at high levels and HLA-G at moderate levels, whereas they

did not express IDO and HGF. Treatment of hFCPCs with

TNF-a induced expression of IDO, LIF, TSG-6, and HGF

slightly, but treatment with IFN-g showed almost no effect

on expression of these genes. IDO is an enzyme that catabo-

lizes tryptophan into kynurenine, which regulates T cell pro-

liferation53. IDO is expressed in MSCs, and its expression

has been shown to increase significantly in response to IFN-

g23, which is different from what was observed with

hFCPCs. Expression of LIF increases in response to various

inflammatory insults, such as exposure to lipopolysacchar-

ide, IL-6, IL-1b, or G-CSF54. MSCs also express LIF, and

expression of this factor is further induced by interactions

between MSCs and PBLs, which play a role in the prolifera-

tion of Foxp3þ Tregs19. HLA-G is an important factor that

mediates the immunosuppressive function of MSCs; in par-

ticular, it inhibits the innate immune responses of natural

killer (NK) cells and secreted IFN-g25. TGF-b1 also contri-

butes to the immunosuppressive function of MSCs and is

probably induced by direct contact between MSCs and

monocytes55. Specifically, TGF-b1 secreted by MSCs

induces Tregs and suppresses T cell responses. Overall, the

secretion of these immune- and inflammation-modulating

factors by hFCPCs is similar to that of MSCs, but there are

clear differences as well particularly in that hFCPCs did not

respond to IFN-g. Further studies are needed to clarify the

secretome profile and mechanisms underlying the immune-

modulatory functions of hFCPCs.

The results of this study strongly suggest the therapeutic

potential of hFCPCs to treat immune problems or inflamma-

tory diseases. We have previously tried to inject hFCPCs

into the synovial cavity of rats with Complete Freund’s

Adjuvant-induced knee arthritis and compare its therapeutic

effect with that of triamcinolone (TRA), a representative

anti-arthritis drug34. We found in the study that hFCPCs was

not highly efficient but reduced the knee circumference at a

delayed time point 7 days after injection with no immune

rejection or serological toxicity. It is not clear if this result

has implications for the therapeutically effective dose of

hFCPCs needed in physiological or other disease environ-

ments in vivo. However, hFCPCs appear not to be inferior to

MSCs in their immunosuppressive activity, detailed in many

previous reports47,48,52. Therefore, we speculate that the pre-

vious result suggests both clinical possibility of hFCPCs and

needs for further optimization in the target indications and

therapeutic protocol. The behavior and mechanism of

hFCPCs in an inflammatory environment in vivo, including

whether these cells would have a significant therapeutic

benefit, should be explored in a future study.

Stem or progenitor cells of fetal origin have been

regarded as a good source of therapeutic transplantation56.

Fetal cells are know to have high proliferation ability and

high differentiation ability to the committed lineages. We

have also revealed that hFCPCs have proliferation ability

and produce high quality cartilage tissue both in vitro and

in vivo7. Although the availability of donor tissue is limited,

a fetal cartilage yields more than 20-fold the number of cells

than the same amount of adult cartilage. In addition, we have

also shown that hFCPCs can be expanded for more than 30

Fig 4. Effects of hFCPCs on the activation of CD4þCD25þFoxP3þ

cells in PBLs. Human PBLs were cultured with inactivated hFCPCs
for 4 days and subjected to triple staining with anti-human CD4-
FITC, CD25-APC, and FoxP3-PE using a FoxP3 staining kit (BD
Bioscience). The graphs show representative flow cytometry data
that indicate the subpopulations of CD4þCD25þ, CD4þFoxP3þ,
and CD4þ/CD25þ/FoxP3þ cells. Percentages of double- or triple-
positive cells were calculated from four independent experiments
and are presented in the upper right quadrant (Q2) as the means
with SD (n ¼ 4).
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passages without losing their proliferation ability in a xeno-

free medium, which resulted in approximately 1030 cells

from 5 � 105 cells of initial culture57. Therefore, we believe

hFCPCs have a competitive commercial value, but under-

stand that actual commercialization requires further investi-

gation on their characteristics and behavior during long-term

expansion and development of means for mass production

and quality control as well. Lastly, there are ethical concerns

with using cells of fetal origin, although it is not absolutely

illegal and there are many clinical trials underway using fetal

stem/progenitors57. We think the balance between the ethical

concerns and patient benefits should be considered as well.

In conclusion, the results of this study revealed that

hFCPCs have immune-privileged and immune-modulatory

characteristics similar to those of MSCs. The mechanisms

underlying these hFCPCs functions also appear to be similar

to those of MSCs, but the secretion of immune-modulatory

factors and the response to inflammatory cytokines of TNF-

a and IFN-g are distinct between these two cell types.

Together with the advantages of their high proliferation abil-

ity, stem cell properties, and low safety concerns, the

immune-privileged and immune-modulatory functions of

hFCPCs suggest their utility in diverse applications and high

therapeutic value in regenerative medicine.
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