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Abstract

The fatigue of truck, bus, and taxi drivers has been a causal trigger for road accidents. How-

ever, the relationship between collision risk and the extent of objective fatigue has yet to be

confirmed. In this study, we aimed to identify the relationship between autonomic nerve

function as an objective parameter of fatigue and the extent of rear-end collision risk, which

includes not only objectively risky events but also situations in which truck drivers require

safety guidance from safety transport managers. Data of 33 truck driver participants (2

females, 31 males, 46.0 ± 9.1 years old, min–max: 24–65 years old) were analyzed. Drive

recorder and automotive sensor data were collected over an eight-month period, and the

autonomic nerve function during resting state in drivers was evaluated daily, pre- and post-

shift, using pulse waves and electrocardiographic waveform measurement. The rear-end

collision risk Index was developed using decision tree analysis of the audiovisual drive

recorder data and distance data from the front automotive sensors. The rear-end collision

risk index of shift-day was positively correlated with the sympathetic nerve activity index of

post-shift condition on the previous day. This suggests that fatigue-related sympathetic

nerve overactivity of post-shift condition increases the rear-end collision risk in the following

day. Measures, such as actively seeking rest and undertaking fatigue recovery according to

the degree of sympathetic nerve activity of post-shift condition, are necessary in order to

prevent truck drivers’ rear-end collisions.

Introduction

In recent years, Japan has witnessed the emergence of a labor environment characterized with

long shift hours and driver shortage caused by aging, negative health impacts of driver fatigue

[1, 2], and annual increases in accidents related to driver health [3]. Particularly in the case of

serious accidents, collisions caused by driver fatigue have become a social issue, with “falling
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asleep at the wheel” and “careless driving” reported as major causal factors [3]. A previous

study indicated that fatigue is a significant influencing factor of driver injury severity [4]. To

prevent the occurrence of traffic accidents, the Japan Trucking Association (JTA) is actively

promoting health management initiatives for driver fatigue [5]. A JTA guideline, for example,

recommends confirmation by the management of each driver’s health at the pre-shift roll call,

and the measurement of their temperature and blood pressure [6].

However, methods to directly measure driver fatigue on a shift-day are still based on confir-

mation of the drivers’ subjective fatigue. Consequently, an accurate evaluation of fatigue levels

is difficult due to the presentation of fatigue without noticeable subjective symptoms and dis-

honesty regarding the degree of fatigue. Therefore, a method to quantitatively and objectively

measure fatigue prior to driving is necessary to allow drivers and managers to implement the

appropriate measures in response to collision risk. Autonomic nerve function evaluation is one

method of objective fatigue evaluation [7]. Autonomic nerve function is composed of the sym-

pathetic and parasympathetic nerve functions. Previous studies have reported that sympathetic

nerve activity increases due to driving fatigue and parasympathetic nerve activity decreases [8].

Considering these points, measuring the autonomic nerve functions of truck drivers in both

pre- and post-shift conditions is necessary to objectively grasp the degree of driver fatigue.

According to domestic commercial vehicle accident statistics, rear-end collisions account for

53% of truck accidents [9]. Many automotive sensors aim to prevent rear-end collision by evalu-

ating collision risk based on calculating the TTC (Time to Collision) from the distance and rela-

tive speed between vehicles [10]. However, many truck drivers highlight issues such as the

warning sounding even in situations not considered to be dangerous. In response to these chal-

lenges, several studies have proposed new indicators {e.g., avoid collisions by rear vehicle deceler-

ation: DCA (deceleration for collision avoidance)} [11]. Rear-end collision risk indicators have

not been established yet. Therefore, there is a need to develop collision risk indicators to detect

situations that may lead to rear-end collisions, by using the automotive sensor data of trucks.

While developing collision-risk indicators, it is necessary to define the target situations.

Previous studies have retrospectively analyzed the relationships between actual crash events

and their factors using previously collected datasets [4, 12–15]. In this prospective study, it was

needed to accumulate enough data to analyze the relationship between collision risk and objec-

tive fatigue, not using previously collected datasets as retrospective study. However, truck

driver participants had the sufficient skills to avoid collisions, which caused the difficulty to

accumulate the data of actual crash events. Therefore, we defined the target situations of colli-

sion risk referring to the studies which involved human annotators manually assessing situa-

tions by watching videos [16, 17]. With this method, the target situations of collision risk in

our study included not only objectively risky events (e.g., behaviors to avoid a crash) but also

situations that require safety guidance provided for truck drivers by safety transport managers

(e.g., behaviors of driving close to a car in the front).

In this study, we attempted the indexing of collision risk using data from automotive sen-

sors on trucks to detect situations that could lead to rear-end collisions. Furthermore, we ana-

lyzed the relationship between collision risk and objective fatigue level, conducting a

correlation analysis of the developed collision risk index and autonomic nerve function of

truck drivers in the pre- and post-shift conditions.

Materials and methods

Participants

Forty-three truck drivers (4 females and 39 males, mean age ± standard deviation [SD]:

45.7 ± 9.0 years old, min–max: 24–65 years old) without heart disease, from a certain logistics
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company, participated in our study. This protocol was approved by the Institutional Review

Boards (RIKEN, Kobe2 2018–03; Kansai University of Welfare Sciences, 18–13) and the inter-

nal review board of the Research & Development group, Hitachi, Ltd, and was conducted in

accordance with the Declaration of Helsinki. All participants provided written informed con-

sent prior to enrollment in this study.

Study design and procedures

Over approximately eight months, both pre- and post-shift conditions, the autonomic nerve

function of participants was used as an objective measure of fatigue using the Fatigue Stress

Measurement System (VM500, Fatigue Science Laboratory, Osaka, Japan), while subjective

feelings of fatigue were measured using the Visual Analogue Scale (VAS). Four participants

were excluded from the analysis due to their inability to clearly and accurately record data

when undertaking the VAS measurements (i.e., at each measurement attempt the value

remained unchanged from the median value). Six participants, whose alarm never sounded

while driving, were excluded from the analysis for exhibiting no possibility of collision risk.

Accordingly, there were 33 eligible participants (2 females and 31 males, 46.0 ± 9.1 years old,

24–65 years old) in the final analysis.

The VM500 is an autonomic nerve function measurement device that simultaneously mea-

sures pulses waves and electrocardiographic waveform. In these tests, heart rate variability in

the resting state was recorded for 90-seconds in the pre- and post-shift conditions [18]. Heart

rate measurement data with a misdetection of R waves or abnormal RRI in excess of 10% of

the total beats was considered unreliable and disregarded from the analysis. Regarding auto-

nomic nerve function measurement, generally, the frequency component of the RRI is related

to the activity of the autonomic nerve function. Within the power spectral density (PSD)

gained via frequency analysis of a continuous beat interval, the integration of low-frequency

(LF) components of the 0.04 to 0.15 Hz frequency band generally represents the degree of

activity of the sympathetic nerve. The integration of high-frequency (HF) components of the

0.15 to 0.4 Hz band generally represents the degree of activity of the parasympathetic nerve.

The LF/HF ratio represents the balance between sympathetic and parasympathetic nerve activ-

ity. Meanwhile, LF and HF are known to be affected by heart rate and aging [19, 20]. There-

fore, when measuring circumstances in which heart rate and the participants’ age cannot be

controlled, it is preferable to normalize the frequency components by the effects of heart rate

and aging being used as an indicator of autonomic nerve activity [21]. However, as the validity

of the HF correction value cannot be verified, it was excluded from the analysis indicators

[22]. As such, LF/HF and the LF deviation score (LFscore), which is affected by heart rate and

aging, were utilized as objective fatigue indicators in this research. The LF deviation score was

defined by the following formula:

LFscore LF; ageð Þ ¼
lnð

ffiffiffiffiffiffi
LF
p

=RRIaverageÞ � mLFðageÞ
sLFðageÞ=10

þ 50

where, μLF(age) and σLF(age) are the mean and standard deviation of age, respectively, in the

LF standard distribution NLF;age that approximates a normal distribution. The RRIaverage is the

average interval between beats, and ln (z) is the natural logarithm of z.

Estimation of rear-end collision risk

In order to quantitatively evaluate the rear-end collision risk, using automotive sensor data, we

developed an estimation algorithm regarding situations which could lead to collisions requir-

ing safety management verification (rear-end collision risk situations).
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Based on the data collected during participants’ working hours, we made outcomes and

input features that represented driver behaviors. Our target situations included not only objec-

tively risky events (e.g., behaviors to avoid a crash) but also situations that require safety guid-

ance for truck drivers to be provided by safety transport managers (e.g., behaviors of driving

close to a car in the front). To determine whether situations included a collision risk, we used

the video verification method, similar to previous studies [16, 17]. Using the front-facing video

footage from drive recorders (ND-DVR30, Pioneer, Tokyo, Japan), situations were visually

analyzed by three safety transport managers from a logistics company, who were assigned as

Operation Manager by the Minister of Land, Infrastructure, Transport, and Tourism in Japan

[23]. Each manager verified the videos recorded from automotive sensors and extracted candi-

dates of collision risk situations. After the extraction, the candidate situations were verified by

all managers, and finally, were determined to be either collision risk situations or not. In addi-

tion to automotive sensor warning information from the digital tachograph (ITP-WebService,

Transtron, Yokohama, Japan) and the anti-collision system (Mobileye570, Mobileye, Israel),

data features concerning vehicle behavior during the warning were also utilized as input fea-

tures in the analysis.

To determine the collision risk index from both automotive sensors and ground data

obtained from safety transport managers to assess the necessity of safety confirmation, we gen-

erated the collision risk estimation model. Previous studies often used analysis based on Bayes-

ian statistical modeling [4, 12–15]. However, to make a data-driven estimate of the risk in each

situation in which actual rear-end crash events did not occur, we adopted non-parametric

analysis for collision risk. This is because we mainly intended to conduct exploratory analysis

of the relationship between the input features and outcomes without specific model assump-

tions which requires parametric analysis methods. Previous non-parametric analysis studies

used the random forest and other classification methods for analyzing driving behavior [24,

25]. Here, to balance the specific model assumptions with the interpretation of the risk esti-

mated based on vehicle behavior, we specifically selected the decision tree analysis method,

which is a simplification of the random forest method. Thus, the collision risk algorithm was

generated using decision trees analysis through a data set of the results from visually deter-

mined rear-end collision risk situations (response variables) and variables (explanatory vari-

ables) produced from the automotive sensor data of the said situations. Details are shown

below.

Response variable. The collision risk of 285 cases from all the automotive sensor warn-

ings was randomly selected for assessment. Safety transport managers viewed the video, and

designated cases with one of two values; 1 for cases with a rear-end collision risk, and 0 for no

collision risk. There were 40 cases designated as actual rear-end collision risks.

Explanatory variable. Explanatory variables were those indicating vehicle behavior when

the warning was sounding, such as the Duration of the warning sound, Maximum/Minimum/

Average speed over the duration of the warning, Deviation of speed over the duration, Maxi-

mum deceleration per second over the duration (Table 1).

Table 1. Example of the automotive sensor index for estimating accident risk.

Explanatory Variable Example

Duration 13 [sec]

Maximum speed over the duration 87 [km/h]

Minimum speed over the duration 34 [km/h]

Average speed over the duration 56 [km/h]

Deviation of speed over the duration 6 [km/h]

Maximum deceleration per second for the duration 3 [km/h]

https://doi.org/10.1371/journal.pone.0238738.t001
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Using these response and explanatory variables, we conducted a decision tree analysis using

Classification and Regression Trees (CART) in 5-fold cross-validation [26]. In addition, the

hyperparameters of the decision tree (e.g. depth of the tree) were selected by the grid search

employed.

Using the developed algorithm, the number of risky situations during one day of driving

was aggregated and identified as the number of estimated risky situations, R. Moreover, since

the driving duration for individual truck drivers varied per day, the number of estimated risky

situations for one hour (daily collision risk index) R1hr was calculated by dividing number of

risky situations by the driving duration (hours) WT.

R1hr ¼
R
WT

Furthermore, since there were situations with short work shifts, data for drivers driving for

less than three hours in a day were excluded from the analysis.

Correlation analysis of the fatigue index and accident risk

We conducted a correlation analysis of the objective fatigue indicators, the LF deviation and

LF/HF ratio with R1hr. A correlation analysis was also conducted between the VAS score for

fatigue and R1hr. These were investigated using the distribution and quantitative correlation

coefficient (Pearson’s product-moment correlation coefficient). In addition, taking the R1hr

median value as a standard, groups were classified as a high or low collision risk, and were

investigated to determine whether a significant statistical difference in autonomic nerve func-

tion existed between the two groups. Since the normal distribution of data was unaffected by

the Shapiro-Wilk test, a test of significant difference (Welch’s t-test) with a 5% significance

level was performed. All data analyses were performed using Python (3.6) including SciPy

(1.0) and scikit-learn(0.18) [27].

Results

Accuracy evaluation of estimated collision risk

Examples of the rules from the developed collision risk estimation algorithm are as follows:

Duration greater than 79.0 and 5.8 Deviation of speed over the duration less than or equal to

6.5 and a Maximum speed over the duration of greater than 39 (e.g., situations on the highway

where inter-vehicle distance warnings and the acceleration and deceleration continued inter-

mittently for a certain period of time). Duration greater than 42.5 and Maximum speed over

the duration of less than 39 (e.g., situations where the inter-vehicle distance warning sounded

intermittently, such as when in congestion and traveling at slightly lower speeds on local

roads).

The accuracy of the algorithm we developed was investigated using 25 cases of separately

prepared test data (Table 2).

Four cases were estimated as being collision risk situations, and 14 cases were estimated as

being non-collision risk situations. Therefore, the developed algorithm estimated collision risk

Table 2. Evaluation of the collision risk estimation algorithm.

Actual
Predicted Collision Risk Non-collision Risk

Collision Risk 4 2

Non-collision Risk 2 17

https://doi.org/10.1371/journal.pone.0238738.t002
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situations with a high degree of accuracy at 84% (21/25 cases). Meanwhile, in the case of auto-

motive sensors, there were a total of 25 cases of warnings sounded and the rate of collision risk

estimation was 24% (6/25), indicating low accuracy. Therefore, our collision risk estimation

algorithm showed higher accuracy than that of automotive sensors.

Relationship between the subjective fatigue sensation and accident risk

A correlation analysis was conducted using 684 data points, consisting of VAS scores for

fatigue in the pre- and post-shift conditions, and the daily collision risk index (R1hr). A positive

correlation was found between the VAS score of fatigue in the pre-shift condition and normal-

ized collision risk judgment frequency (Fig 1A). Additionally, a positive correlation was also

found between the VAS score of fatigue in the post-shift condition and daily collision risk

index (Fig 1B).

Relationship between objective fatigue measurement and accident risk

A correlation analysis was conducted using 533 data points, consisting of autonomic nerve

function indicators in the pre- and post-shift conditions, and the daily collision risk index

(R1hr). While a positive correlation was found for the daily collision risk index in shift-day and

LF deviation score of the pre-shift condition in shift-day (Fig 2A), such a correlation was not

observed for LF/HF ratio (Fig 2B). Similarly, while a positive correlation was found for the

shift-day daily collision risk index and post-shift LF deviation score for the day prior to a shift-

day (Fig 2C), such a correlation was not observed for LF/HF ratio (Fig 2D). Fig 3 shows the

correlation results of a certain driver for the shift-day daily collision risk index and post-shift

LF deviation for a day prior to a shift-day.

Participants were divided into high-risk and low-risk groups from the median daily colli-

sion risk index (the threshold was set at 3.2 [times/hour]), and a t-test of LF deviation (Welch’s

t-test) was conducted. The high-risk group was found to have significantly higher LF deviation

score of the post-shift condition on previous day compared to the low-risk group (Fig 4).

Fig 1. Relationship between the daily collision risk index and VAS for fatigue. (A) Correlation results for visual analogue scale (VAS) score of fatigue in

the pre-shift condition, (B) VAS score of fatigue in the post-shift condition, and collision risk judgment frequency (normalized) R1hr. Pearson’s correlation

coefficient and the p-value are as indicated.

https://doi.org/10.1371/journal.pone.0238738.g001
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Discussion

This study revealed that the sympathetic nerve activation, an objective fatigue indicator, of

truck drivers increased post-shift condition compared to the previous day, increasing their col-

lision risk during the following day’s shift condition. These results indicate that collision risk

can be predicted in advance by evaluating the truck driver’s fatigue in post-shift condition

from an autonomic nerve function perspective.

Previous studies that used driving simulators concur with the current results, confirming

that increased sympathetic nerve activation results from driving for extended periods of time

[8, 28]. Increased sympathetic nerve activation due to fatigue in the post-shift condition

involves brain area functions utilized as they drive during a shift condition. Driving is a com-

plex, multitasking activity that involves perception, attention, decision-making, sensory,

motor, and higher-level cognitive components [29, 30]. Maintaining a safe driving distance

Fig 2. Relationship between collision risk and LF deviation score or LF/HF ratio. Correlation between the shift-day collision risk judgment frequency

(daily collision risk index) R1hr and (A) shift-day pre-shift LF deviation score, (B) LF/HF ratio. Correlation between R1hr and (C) LF deviation score of post-

shift condition for the day prior to shift-day, (D) LF/HF ratio. Pearson’s correlation coefficient and the p-value are as indicated.

https://doi.org/10.1371/journal.pone.0238738.g002
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requires continuously evaluating the distance between the cars (i.e., error detection) and

choosing between conflict response options (i.e., acceleration and deceleration). Although the

dynamics of heart rate variability are used as an index of autonomic nerve activity, the signals

of functional magnetic resonance imaging are useful for evaluating neural activities in the

brain during a cognitive task (e.g., driving simulation task) [31]. A neuroimaging study of driv-

ing simulators revealed that the anterior cingulate cortex plays a crucial role in error monitor-

ing and response selection [32, 33].

As for the autonomic nerve function, a central autonomic net shift that controls the sym-

pathetico-vagal balance is comprised of the orbitofrontal cortex, medial prefrontal cortex,

anterior cingulate cortex, insula, amygdala, bed nucleus of the stria terminalis, hypothalamus,

periaqueductal gray matter, pons, and medulla oblongata [34, 35]. The anterior cingulate cor-

tex plays a particularly crucial role in the central control of the sympathetico-vagal balance

[36]. This indicates that these are the interactions between the activities of car driving

Fig 3. Representative correlation between collision risk and LF deviation score of post-shift condition for the day prior to a shift-day, for a certain

driver. Correlation results of a certain driver for the shift-day collision risk judgment frequency (daily collision risk index) R1hr and post-shift LF deviation

score for the day prior to a shift-day. Pearson’s correlation coefficient and the p-value are as indicated.

https://doi.org/10.1371/journal.pone.0238738.g003
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dependent regions and autonomic nerve function-associated regions. These results suggest

that fatigue, which induces greater activity in the anterior cingulate cortex, a section that corre-

sponds to error monitoring, and response selection during driving results in a sympatho-excit-

atory response.

Our results illustrate the relationship between high LF deviation score of the pre-shift con-

dition on shift-day and increased collision risk on shift-day. Moreover, it was also shown that

high post-shift LF deviation score from the previous day increased collision risk for the follow-

ing day. Previous day post-shift LF deviation scores were significantly correlated with shift-day

pre-shift LF deviation values (r = 0.29, p< 0.001), indicating that the range of variation in LF

deviation scores from the previous day post-shift to shift-day pre-shift is minimal. These find-

ings reveal the benefits and significance of allowing drivers time to implement fatigue recovery

measures from the previous day post-shift to shift-day pre-shift. Previous research reports that

sleep conditions are a related factor for truck driver fatigue [3, 37], with the encouragement of

an early bedtime post-shift appearing effective. Furthermore, incorporating solutions proven

to improve autonomic nerve function (e.g., listening to healing music [38], performing yoga

Fig 4. LF deviation scores (post-shift on the previous day) for high- and low-risk groups. Participants divided into high-risk and low-risk groups from

the median daily collision risk index R1hr. Comparison of LF deviation scores for high-risk and low-risk groups. T-test (Welch’s t-test) p-value is as

indicated.

https://doi.org/10.1371/journal.pone.0238738.g004
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[39], and hydrogen-rich water intake [40], etc.) into their lifestyle can be useful in fatigue

recovery. In addition, having truck drivers learn fatigue management techniques is also con-

sidered to be a useful measure to reduce collision risk in the medium to long-term. It was

reported that truck drivers who had not completed fatigue management training were also six

times more likely to have been involved in a crash [41], suggesting that methods and knowl-

edge of fatigue management may be important in decreasing the fatigue of truck drivers.

In this study, judgment rules were generated by decision tree analysis using the warning

duration to develop rear-end collision risk indicators. Consideration of warning sound dura-

tion enables judgment of situations, for instance, where a relatively short inter-vehicle distance

which is not instantly judged as dangerous is maintained for a period of time (such situations

often occur on highways). Since risk estimation in conventional indicators such as the TTC

and DCA is based on instantaneous figures at a point in time (e.g., speed, inter-vehicle dis-

tance) estimation of the situation is difficult. However, the current algorithm is capable of esti-

mating collision risk situations that are unable of being identified by conventional indicators

[10, 11]. Given that the collision risk estimation algorithm was generated from objective data,

the automation of rear-end collision risk estimation is possible. It will become possible to easily

evaluate collision risk even with long-term vehicle data from large numbers of drivers in the

future. In the present study, the collision risk indicator was used in relationship analysis of

objective parameters of fatigue, however, the use of the algorithm is not limited to this exam-

ple. Collision risk is known to be related not only to fatigue, but also to driver skills and driving

conditions, such as the weather [37, 42]. The collision risk indicator can also be employed in

the analysis of other related factors. Moreover, it could also be employed for driver safety

instruction, when algorithm judgment is implemented in day-to-day operations.

Although our results showed that fatigue-related sympathetic nerve overactivity in the post-

shift condition increased the rear-end collision risk on the following day, there are some limi-

tations in our study. First, there were only two female participants among the final 33 partici-

pants. This gender imbalance may result in biased results, and these effects should be

evaluated in future research. In addition, the decision tree analysis, which is a non-parametric

method, was adopted to balance the no specific model assumptions and the interpretation of

the estimated risk based on automotive behaviors. In future studies, an analysis based on

Bayesian statistical modeling, which assumes several mechanisms of collision risk, will enable

precise analysis and enhancement of interpretability [4, 12–15].

Conclusion

In the present study, we aimed to identify the relationship between fatigue, which may cause

drivers’ road accidents, and a measure of rear-end collision risk. Our results showed that the

rear-end collision risk index on a shift-day was positively correlated with the sympathetic

nerve activity index in the post-shift condition on the previous day. This suggests that fatigue-

related sympathetic nerve overactivity in the post-shift condition increases the rear-end colli-

sion risk on the following day. According to our study, ensuring evaluative measurement of

the autonomic nerve function of each driver in the post-shift condition allows for objective

monitoring of driver fatigue levels. To improve driver health management by monitoring the

level of post-shift sympathetic nerve activation, it is necessary to respond by actively encourag-

ing drivers to rest, and by working toward fatigue recovery. The development of this system

will contribute to rear-end collision risk prevention during shifts on the following day. Our

findings may provide guidance for further research on the prevention of rear-end collisions

and driver health management through objective fatigue evaluation using measurements of

the autonomic nerve function.
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