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Abstract

In the course of everyday life, the brain must store and recall a huge variety of representa-

tions of stimuli which are presented in an ordered or sequential way. The processes by

which the ordering of these various things is stored and recalled are moderately well under-

stood. We use here a computational model of a cortex-like recurrent neural network adapted

by a multitude of plasticity mechanisms. We first demonstrate the learning of a sequence.

Then, we examine the influence of different types of distractors on the network dynamics

during the recall of the encoded ordered information being ordered in a sequence. We are

able to broadly arrive at two distinct effect-categories for distractors, arrive at a basic under-

standing of why this is so, and predict what distractors will fall into each category.

Introduction

In order to successfully plan actions, the brain must store the order in which various sub-

actions need to be executed. Simple memory tasks as well, such as counting in common base-

10, require memories of the ordering of concepts or learned stimuli. It is therefore clear that

the storage and recall of ordered sequences is a critical and fundamental function of the brain.

During rest and planning, sequences are observed to be rapidly recalled in the hippocampus

[1, 2], and the cortex is tightly attuned to learned sequences as well [3, 4]

The primary mechanism of learning in the brain is believed to be Hebbian synaptic plastic-

ity, that is, changes in the strength (and potentially structure) of connections in the synaptic

matrix as a function of the activity of the neurons on the pre- and post-synaptic side of connec-

tion. One of the most prominent models of this is spike timing-dependent plasticity (STDP), a

form of learning specifically correlated with the time difference between pre- and post-synap-

tic firing [5, 6]. The exploitation of this time difference provides a natural and unsupervised

candidate for a mechanism for storage of temporally ordered stimuli, symbols, or actions, as it

will pick up on groups of neurons that are activated one right after the other [7, 8].

Using this learning mechanism in a computational model, we are able to train the recurrent

excitatory weight matrix of a neural network modeled after a small slice of cortex to store a

sequence of symbols. The recall of this stored sequence, upon activation by a cue, is rapid and
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independent of the training speed, preserving only the order, as is observed in hippocampal

replay [1, 2]. This builds off the previous work done with a similar network [9], which simu-

lated a section of visual cortex to examine how exposure to stimulus motion in a particular

direction effects subsequent response to such stimuli. As this is a simulation-based study, we

have access to the entire synaptic matrix, and its examination suggests that, at least to the

zeroth order, the sequence is stored in a representation that demonstrates properties and struc-

tures similar to both synfire chains and cell assemblies. The rapid replay indicates that the

dynamics of the synfire element dominate the storage (as opposed to slow switching between

recurrent assemblies, for example).

We focus, in this study, on effects on what we refer to as the“primary representation.” By

example, we mean the activity of the neurons which are intrinsically tuned to whatever stimu-

lus we concern ourselves with (in this case, meaning they receive direct feedforward input

from the stimulation source), and not neurons that are activated via circuitous loops or sec-

ond-order effects.

Our primary interest is the effect of distraction on this replay, something that is heretofore

relatively unstudied in both simulation and experiment (though hints of some of the results we

observe can be extracted from early network simulation studies [10]). We will, following train-

ing of model networks, apply several types of distraction to the sequence recall process and sys-

tematically observe the results. That is to say, in simpler terms—what happens if, once a replay

or recall process has started, the brain area in question receives a strong new input or cue?

How does this affect the recall process, and can we predict, from some properties of the new

input (or distractor), what the effects will be?

Following observations of recall under an array of distractor locations and timings, we con-

clude that we can broadly classify two distinct classes of distractor as a function of their effect,

namely “relevant” (or highly disruptive) and “irrelevant” (minimally disruptive) distractors.

We are then able to elucidate which class the distractor will fall into based on its spatio-tempo-

ral location relative to an instance of cued rapid recall. An interesting observation is that the

distractors seem to fall strongly into one category or the other, rather than existing on a spec-

trum, and that the system is robust to a class of distractors even in the absense of any kind of

top-down attention or guidance mechanism.

Materials and methods

Model basics and neuronal dynamics

Our basic model architecture consists of a recurrent excitatory and inhibitory reservoir with a

separate input layer and specific plasticity mechanisms, and is shown in Fig 1.

We base our model on the SORN family of neural networks, first introduced as a binary

neuron model [11] and later elaborated upon as a spiking model [12]. We further update the

model, upgrading the code to the Brian 2 simulator platform [13]. The neuronal dynamics are

determined by a conductance-based leaky integrate-and-fire model, with an adaptive intrinsic

firing threshold, as follows:

dvj
dt
¼

gleakðvrest � vjÞ þ Iext þ Isyn
cmembrane

þ
snoisex
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmembrane
p ; ð1Þ

Isyn ¼ gampaðeampa � vjÞ þ ggabaðegaba � vjÞ; ð2Þ

PLOS ONE Distraction effects on rapid sequence recall

PLOS ONE | https://doi.org/10.1371/journal.pone.0223743 April 10, 2020 2 / 22

(https://ec.europa.eu) project Plan4Act (732266),

and was awarded to CT. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0223743
https://ec.europa.eu


dgampa

dt
¼ �

gampa

tampa
þ d

i
spikewij; ð3Þ

dggaba
dt
¼ �

ggaba
tgaba
þ d

i
spikewij; ð4Þ

dvjthreshold
dt

¼ � Z
ip
decay; ð5Þ

vj > vjthreshold ! ½vj ¼ vrest; v
j
threshold ¼ vjthreshold þ Z

ip
spike�: ð6Þ

Here, vj is membrane voltage of the postsynaptic neuron j, gleak is the leak conductance, vrest

is the resting potential, cmembrane is membrane capacitance, τx is the time constant for feature

x, g[ampa,gaba] is the conductance for each neurotransmitter type, e[ampa,gaba] is the reversal

potential for each neurotransmitter type, Z
ip
½decay; spike� are the adaptation rate and increment,

respectively, for the intrinsic firing threshold plasticity, vjthreshold is the firing threshold of neuron

j, and wij is the strength of the synaptic connection from presynaptic neuron i to postsynaptic

neuron j. ξ is an Ornstein-Uhlenbeck noise generator, and σnoise is the noise variance. Iext is

any external current applied to the neuron. wij is the strength of any synaptic connection that

might exist from neuron i to neuron j, and d
i
spike is equal to 1 at the moment neuron i spikes,

and 0 otherwise. Of the given variables, those that function as fixed value parameters across all

neurons (or all neurons of a certain type) have their values listed in Table 1. Parameter values

were estimated from assorted surveys of local neocortical circuitry [14].

Fig 1. Network architecture. A symbolic diagram of the network architecture for the virtual experiment. The input

layer, which provides learning signals, recall cues, and distractors in the form of spikes, and its (feedforward)

connections to the main network are shown in blue. The excitatory portion of the network and its associated excitatory

connections (both recurrent and feedforward) are shown in green. The inhibitory portion of the network and its

associated inhibitory feedback connections are shown in red.

https://doi.org/10.1371/journal.pone.0223743.g001
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Plasticity mechanisms

It should be noted that already, the adaptive firing threshold in the neuron model (integrated

into Eqs 5 and 6) can be considered an intrinsic or neuronal homeostatic plasticity

mechanism.

The synaptic weights wij, when between two excitatory neurons, can be modified by two

plasticity mechanisms. The first is spike timing-dependent plastcity (STDP) [5, 6, 15], a pro-

cess which links weight changes to the temporal relationship between pre- and postsynaptic

spikes. We define our STDP model as follows [16]:

Dwij ¼
XNf

f¼1

XNn

n¼1

Xðtnj � tfi Þ; ð7Þ

XðDtÞ ¼ Aþexpð� Dt=tþÞ; Dt > 0; ð8Þ

XðDtÞ ¼ A� expðDt=t� Þ; Dt < 0; ð9Þ

XðDtÞ ¼ 0; Dt ¼ 0: ð10Þ

Here, i and j remain the pre- and postsynaptic indices, n and f are temporal indices of (tem-

porally) nearby spikes, A+/− is learning amplitude, τ+/− is decay time constant, and + and − sig-

nify potentiation and depression, respectively. Despite the arbitrarily large sums, the time

constants and average firing rates involved in our typical operating regime allow us to take a

nearest-neighbor approximation in software implementation, speeding up simulation time

[13].

At the same time, we implement a synaptic normalization mechanism, executed upon each

STDP-induced weight change, a mechanism inspired by biological observations of [11, 17, 18].

This is a form of homeostatic synaptic plasticity. Mathematically, it is modeled as follows:

Wi !
WiWtotal
PNi

j wij
ð11Þ

Here, Wi is the vector of incoming weights to neuron i, Ni is the length of that vector, and

Wtotal is the target value for the total incoming weight (which is the same for all neurons of a

given type).

Table 1. Shared simulation parameters.

parameter value parameter value

gleak 30 nS vrest -70 mV

cmembrane 300 pF τmembrane 20 ms

τampa 2 ms τgaba 5 ms

eampa 0 mV egaba -85 mV

Z
ip
decay 0.2 mV/second Z

ip
spike 0.066 mV

σnoise 1 mV Wtotal 20 nS

A+ 0.05 nS A− 0.05 nS

τ+ 20 ms τ− 20 ms

Simulation parameter values which are not listed in the text and which are shared across all trials.

https://doi.org/10.1371/journal.pone.0223743.t001
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Connectivity, setup, and shared model parameters

We initialize our model network with a population of nE = 200 excitatory neurons with abso-

lute refractory periods of trefracE ¼ 10 ms and nI = 40 inhibitory neurons with absolute refrac-

tory periods of trefracI ¼ 2 ms. We recurrently connect the excitatory pool (without self-

connections) and interconnect the inhibitory and excitatory pool (in both directions) with

random sparse connections with probability pconnect = 0.2. Recurrent inhibitory connections

are neglected. Recurrent excitatory connections are given an initial strength of w = 0.5 nS, and

all other connections are given an initial strength of w = 1.0 nS. Again, parameter estimates are

derived from various surveys of local cortical circuitry [14]. The rest of the shared simulation

parameters are given in Table 1.

Learning and input protocol

The experimental protocol consists of of several steps, as follows, and is illustrated in Fig 2:

1. Warm-up The network is activated for a period to allow all dynamical variables to converge

to an equilibrium distribution.

2. Training The network is trained on a repeating sequence.

3. Relaxation Plasticity is turned off and the homeostatic mechanisms are allowed to

restabilize.

4. Testing The network is presented with recall cues.

a. Experimental The network is presented with distractor signals as well and observed. b.

b. Control The network is observed with only the recall cues.

Warm-up. The warm-up phase is necessary because network initialization does not nec-

essarily occur with all dynamical variables already in an equilibrium distribution. The mem-

brane potentials, synaptic weights, and firing thresholds are initialized to random values

within their standard operating range, and the network is then left to run for 50 seconds while

convergence to equilibrium statistical distributions occurs. The basic model architecture for

which the simulation is initialized is shown in Fig 1 and described in the “Connectivity, setup,

and shared model parameters” subsection.

Training. Starting with the training process, the excitatory neurons in the network are

randomly divided into 10 non-overlapping groups of 20 neurons each. The first 5 of these

groups (which we label A, B, C, D, and E) recieve sequentially activated inputs. Each group is

strongly connected (20 nS) to a 50 Hz Poisson spike source. For each training block (a one sec-

ond, single-sequence training instance), each Poisson source is sequentially activated in order

for a period of 100 ms, and then deactivated as the next one is activated. After all 5 sources

Fig 2. Experimental protocol. A symbolic diagram and description of the experimental protocol.

https://doi.org/10.1371/journal.pone.0223743.g002
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have been activated in sequence, a 500 ms rest period occurs before the next training block

(see Fig 3 for an example). This process is continued for 50 seconds (or blocks).

Relaxation. The relaxation period serves a similar purpose to the warm-up phase. Due to

the elevated average input activity during the training phase, the adaptive firing thesholds

reach a new equilibrium distribution. When this activity ceases, they need time to return to

their resting equilibrium distribition. At the start of this phase, all Poisson sources and synaptic

plasticity mechanisms are deactivated, and the trained network is then allowed to re-equili-

brate for 50 seconds.

Testing. In the testing phase, a precisely timed instantaneous spike source (i.e. a source

providing a synchronous burst, as opposed to the Poisson rate-based sources used in training)

is connected to the neurons of the first element in the trained sequence. It is activated for a sin-

gle burst and acts as a recall cue for the first element, triggering rapid replay of the learned

sequence. With a variable time delay, an additional instantaneous spike source is activated as

well, serving as a distractor signal. It may be connected to either the first sequence element

group, the third (middle) sequence element group, the fifth (last) sequence element group, or

the sixth group, which is not part of the trained sequence. It may be presented simultaneously

with the recall cue, or with a delay of 1, 2, or 3 ms (the rapid replay of the entire trained 5 ele-

ment sequence typically takes between 5 and 7 ms, so this is approximately 1/5, 2/5, and 3/5 of

the replay time). This procedure is repeated twice per second for 100 seconds. Each trial yields

slightly different results due to the membrane noise and the general nature of recurrent neural

networks. Representative examples of this distracted replay can be seen in the Results section.

Only one spatio-temporal distractor location is tested per simulation run. This is the experi-

mental subphase. Following this, for an additional hundred seconds, presentation of the recall

Fig 3. Training activity. A spike raster plot of a section of training activity for one of the trials. Different clusters are

highlighted by different colors, and training stimulation is represented by the wavy line overlay.

https://doi.org/10.1371/journal.pone.0223743.g003
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cue continues identically, but the distractor signal is deactivated. This is the control subphase.

An example of this recall can be seen in Fig 4.

This full process is repeated a total of 80 times, consisting 5 trials for each of the 16 distrac-

tor conditions (4 possible locations and 4 possible times).

Evaluation measures

In order to analyze the effects of the distractors, we first need to understand our control condi-

tions and develop measures of effect. Firstly, we approach the control condition. We concern

ourselves primarily with the temporal accuracy and binary presence of the sequence elements

during replay. In order to do this, we first, for each trial, pool the spike traces for the neurons

in each of the 5 trained neuron groups. We then convolve this with a 2 ms Gaussian kernel,

producing a population rate trace for each group. For each cue, we take a -10 to +25 ms win-

dow around the cue, threshold above 10 Hz, and run a peak detector (using the PeakUtils

Python module) to obtain the position of the maximum rate for each neuron group. We then

histogram the times across all cues and trials in which all elements had a peak above the thresh-

old (96% passing rate for the control condition), producing a mean time (relative to the cue)

and timing variance for each sequence element in the undistracted recall condition.

Similar pooling (and thresholding) of peak timing into histograms is done for each of the

16 trial conditions, with all conditions having readout success rates of 0.95 or higher. We can

qualitatively compare the peak time histograms from this with the one for the control condi-

tion (which will be discussed in the results section). We wish as well to develop quantitative

distraction measures. For this, we propose two novel measures: the “disruption index” and the

“deviance index.”

The deviance index Iideviance is based on the simple difference between mean peak times for

the control condition, and peak times for the experimental condition. As such, it is designed to

emphasize the bulk deviation from the control condition, and is defined as follows for a single

trial i:

Iideviance ¼
1

Nelements

XNelements

n¼1

tin � m
control
nffiffiffiffiffiffiffiffiffiffiffiffi

scontrol
mn

q : ð12Þ

Fig 4. Control activity. Spike raster plots of a section of control activity, demonstrating rapid replay. Time given

relative to cue onset. Presented as both unsorted and sorted to demonstrate subtlety of structre. In the sorted case,

different population groups, or clusters, are highlighted by different colors.

https://doi.org/10.1371/journal.pone.0223743.g004
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Here, Nelements = 5 is the number of sequence elements, tin is the peak time of element n for

trial i, mcontrol
n is the mean peak time of element n for the control condition, and scontrol

mn
is the var-

iance of the distribution of peak times for element n in the control condition.

The disruption index Iidisruption is based on the differences in times between subsequent

sequence elements, comparing this set of differences for each experimental trial i and for the

control condition. As such, is it designed to emphasize relative rather than absolute disruption

of sequence recall. The variable definitions are the same as for Iideviance, and it is defined as fol-

lows:

Iidisruption ¼
1

Nelements � 1

XNelements � 1

n¼1

ðtinþ1
� tinÞ � ðm

control
nþ1
� mcontrol

n Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
scontrol
mnþ1 � mn

q : ð13Þ

Using these two measures, as well as the previously mentioned qualitative analysis, we eval-

uate the effects of the distractors on rapid sequence replay.

Results

We ask three primary questions here regarding distracted recall. Firstly, we ask what are the

effects of the distractor, i.e. what happens to the recall process in the presence of such a signal.

The second question we ask is, can we categorize or classify these effects in a meaningful way?

The third question is, assuming we have successfully categorized distractor effects, can we pre-

dict which effect category a particular distractor will tend to fall into, and if so, how?

We find that we can broadly classify distractors into two different classes, which we refer to

“irrelevant” and “relevant” distractors. What we mean by irrelevant is, distractors that tend to

have the effect of adding noise to the replay timing or amplitude but do not tend to disrupt the

ordering of the replay. Relevant distractors, on the other hand, actively disrupt the replay, dis-

ordering it or leading to a high number of failed recalls. We find that the relevant distractors

tend to be trained stimuli that are presented prior to their “natural” recall time in the replay

process, and irrelevant distractors may be untrained stimuli, or trained stimuli presented at or

after their “natural” recall time in the replay process.

Connections and representations

Before examining distractor behavior, we wish to examine how the sequences are stored in the

network after the learning process (Fig 5). In order to do this, we look closely at the recurrent

excitatory connection matrix. We histogram all the connection weights, the trained recurrent

weights, and six categories of connection (all thresholded for above-zero values) (Figs 6, 7 and

8) from five pooled control-only runs. The categories are “one forward” (i.e. the next trained

sequence element), “n forward” (i.e. to any trained sequence element subsequent to the next

one), “to external” (i.e. outgoing from a trained sequence element to the untrained portion of

the network), “one backward” (i.e. to the last trained sequence element), “n backward” (i.e. to

any trained sequence element previous to the last one), and “from external” (i.e. incoming

from the untrained portion of the network to a trained sequence element).

Several major features stand out. First of all, in Fig 7, we note that the overall distribution of

weights in the matrix appears to be unimodal and heavy-tailed, as has been observed in biology

[19]. We note as well the properties of the “trained recurrent” weights (i.e. in-group or in-clus-

ter, or connections between all the neurons in a single input group). They appear to take on a

bimodal distribution, with the medians of each peak being just above zero, and around 1.75

nS. This is not very surprising, as classical STDP weakens connections in one direction while

strengthening them in the other (when connections in both directions exist) under most
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Fig 5. Sorted weight matrix throughout training. Demonstrative examples of the sorted weight matrix throughout

sequence training. Arbitrary color scale.

https://doi.org/10.1371/journal.pone.0223743.g005

Fig 6. Weight categories. Demonstrative llustration of different weight categories for a simple 3-element sequence.

“Recurrent” refers to the recurrent weights within each input cluster. “One forward (backward)” refers to feedforward

(feedbackward) weights from one input cluster to the next (to the previous). “N forward (backward)” refers to

feedforward (feedbackward) weights between not-immediately-sequential input clusters. “From external” refers to

weights going from the background portion of the network to the input clusters, and “To external” refers to weights

going from the input clusters to the background portion of the network.

https://doi.org/10.1371/journal.pone.0223743.g006
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spiking conditions [20], and the entire cluster being stimulated at once will clearly lead to a

high level of internal STDP-induced synaptic changes. Strong recurrency also suggests a high

capacity for pattern completion [21] or, under the proper inhibitory and refractory conditions

(which do not exist in this model), sustained self-activation of an individual sequence element.

Looking at the overall weight distribution in Fig 7, we note that it appears unimodal and

heavy-tailed, as has been noted in numerous experimental and theoretical studies examining

the distribution of synaptic weights in cortical slices, suggesting the capacity for storage of

complex representations [12, 19].

The “one-forward” category, which appears to be unimodal and to possess a median similar

to that of the higher component of the “trained recurrent” category, is by far the strongest con-

nection category (meaning it has an exceptionally high peak value, like the “trained recurrent”

category, and minimal excusrion into lower values, unlike the “trained recurrent” category).

This is to be expected, as the population spiking order between one cluster and the next is

always the same during training, leading to extremely strong potentiation in the sequential

direction. Similarly, the “one-backward” category is exceedingly weak (with many connection

matrix entries even being driven to zero, hence the low count in this category—an artifact of

sparse matrix storage), as it is subject to the same effect in the opposite direction. This indicates

that the network rather strongly stores the direction of the sequence, an indication vindicated

by the observed strong rapid replay. It also predicts that the strongest effect of any trained dis-

tractor will be on itself and the subsequenct sequence element, as these two categories are the

strongest. This begins to suggest that the sequence is stored in the form of a cell assembly for

each element, which is in turn connected in a vaguely synfire chain-like fashion to the subse-

quent element. We can call this structure an assembly sequence.

Fig 7. Connection strength histograms. Strength histograms of all connections (i.e. for the whole excitatory matrix)

(A), and trained recurrent connections (within clusters) (B), along with means and standard deviations for each

distribution.

https://doi.org/10.1371/journal.pone.0223743.g007
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The “n-forward,” “n-backward,” and “from external” categories show relatively average

connection strengths, indicating little in the way of second-order links and external influence

on the sequence, allowing us to predict that the external distractor class will not have a strongly

disruptive effect. The “to external” connection category of weights, on the other hand, is

strongly bimodal, with medians slightly above zero and around 2 nS, which indicates that

while each trained cluster does not project outward (aside from to the next cluster) very often,

when it does, it does so rather strongly, suggesting the possibility to form directional associa-

tions with untrained elements in a patchy fashion. While this possible expansion of the repre-

sentation into the background portion of the network is a potentially an intriguing future line

of inquiry, it falls outside the scope of this paper.

The control condition

Recall that following initialization, training (after which synaptic plasticity is frozen), and

relaxation, we present the network with a series of recall cues both with and without distractor

signals, in order to obtain both experimental and control trials. In order to qualitatively under-

stand distraction effects, we must first understand the undistracted (i.e. control) condition.

The distribution of peak times is shown below (Fig 9), and the fraction of trials passing the

threshold veto is 96% (as described in the “Evaluation measures” subsection). We can see

immediately that replay is fairly reliable, with timing variance increasing slightly with each

Fig 8. Connection strength histograms for important categories of connections. Strength histograms of the

important categories of connections, along with means and standard deviations for each distribution. (A) “one

forward,” or connections from one input cluster to the subsequent input cluster. (B) “n forward,” or connections from

an input cluster to other input clusters occuring more than one step after them in the trained sequence. (C) “to

external,” or connections going from input clusters to untrained (or at least indirectly trained) portions of the netork.

(D) “one backward,” or connections from one input cluster to the immediately previous one in the trained sequence

(the low count is due to rounding, thresholding, and sparse matrix storage artifacts). (E) “n-backward,” or connections

from an input cluster to earlier (but not immediately previous) input clusters in the trained sequence. (F) “from

external,” or connections from the untrained (or indirectly trained) portion of the network to the input clusters.

https://doi.org/10.1371/journal.pone.0223743.g008
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subsequent sequence element. The slight offset, which is present in all similar figures, is the

result of neuronal conductance integration times.

External distractors

We define external distractors as those that are not spatially correspondent with any trained

stimuli. We investigate how recall changes in the presence of these external distractors. We

present the same sort of peak time distributions for the external experimental conditions (1

position and 4 delays), including the percentages of each condition passing the threshold veto

(Figs 10 and 11). Also included is an example raster of distracted replay for each of the 4 timing

conditions (which we have selected to examine how otherwise identical distractors at different

temporal points in the recall process affect it).

The external distractor does not have a highly disruptive effect on the replay timing, as pre-

dicted. Examining the density violins, it adds some additional variance to the timing of the

recall process, but does not fundamentally alter it. This suggests that input outside of or not

directly linked to the trained sequence elements have only a mild noising effect, and that the

internal representation of the trained sequence is kept, for the most part, local to the input

cluster—i.e. it only weakly or rather sparsely extends to untrained neurons (at least in the

“input” direction), as expected from the representation examination. We classify this type of

distraction as “irrelevant” distraction.

Internal distractors

Similarly, an assortment of equivalent violin plots for each internal, or trained, experimental

condition (3 positions and 4 delays), including the percentages of each condition passing the

Fig 9. Control peak distributions. Distribution of peak recall times for each element in the control condition (i.e.

undistracted recall). Plot (A) shows this as a violin plot (densities estimated with a 50 point Gaussian kernel) and plot

(B) as overlapping histograms. Times are given relative to cue onset. The reliable ordering indicates a clear recall of the

trained sequence.

https://doi.org/10.1371/journal.pone.0223743.g009
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threshold veto (Figs 12, 13, 14, 15, 16 and 17), is presented. Also included is an example raster

of distracted replay for each condition. For clarity of viewing, these are separated into tempo-

rally early and temporally late distractors. Temporally early is used to mean at the same time as

or immediately following the recall cue, and temporally late means later in the recall process.

Several important things in these plots can be quickly noted. First of all, it must be stated

that a “good” replay is considered to consist of local maxima in the subpopulation spike rate

for the stimulus groups occurring in their trained order. Such good (i.e. complete and correctly

ordered) replays only occur in cases where the spatio-temporal position of the distractor is at

or subsequent to the spatio-temporal position of the corresponding trained stimulus during

undistracted replay. This suggests, at least in the rapid replay regime, that once a stimulus has

been activated in replay, distractions at its spatial location act like external distractors.

Furthermore, as predicted in the representation analysis, the strongest effects appear to

apply to the group at the position of the distractor, and the subsequent one (in the form of acti-

vation and subsequent refractory / inhibitory shutdown, and premature replay, respectively).

We refer to these strong, disruptive effects as arising from “relevant” distractors.

Additionally, as predicted, there is no significant “backward” effect from any internal dis-

tractor. This lines up with the same sort of “irrelevant” distraction seen with external distrac-

tors. We can summarize the properties of “relevant” and “irrelevant” distractors as follows.

Trained distractors presented early tend to disrupt replay (i.e. “relevant”), and untrained dis-

tractors and trained distractors presented late tend to only add noise to it (i.e. “irrelevant”).

We will continue to discuss in detail the reasons we believe this occurs (beyond the representa-

tion / storage analysis presented earlier) in the discussion section, but, though it was not

Fig 10. Experimental peak distributions for early external distractors. Violin plots (densities estimated with a 50

point Gaussian kernel) of the peak times for the first two temporal variants of external distraction, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for external distractor with 0 ms delay. (B) Example replay for external

distractor with 0 ms delay. (C) Violin plot for external distractor with 1 ms delay. (D) Example replay for external

distractor with 1 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g010
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subsequently given much thought or studied systematically, certain elements of the suspected

causes were observed as early as 1993 [10].

Evaluation measure results

The quantitative measures we had previously developed are now deployed. We hope to deter-

mine if either of these measures, or some combination of the two, can be used in our distractor

classification scheme. Arrays of disruption and deviance index values for the various experi-

mental conditions are displayed in Fig 18. Effectively, negative values indicate events occuring

“early,” while positive values indicate events occuring “late” (in the case of the disruption

index, events are ordered pairs of stimuli, while in the case of the deviance index, events are

individual stimuli).

Examining this leads to the observation that the external distractor leads to a minimal dis-

ruption and deviance compared to the other distractors. We note as well that any distractor

(with the exception of the distractor at position A, i.e. the starting distractor) presented near

the end of the replay also has a relatively low disruption and deviance. Conversely, we see that

the strongest effects come from the distractors at the middle (C) or end (E) positions, and that

said effects are strongest when the distractors are presented at the same time as the recall cue.

This further confirms our initial evaluations and subsequent predictions regarding what kind

of distractors are “relevant” and “irrelevant.”

It is difficult to arrive at a direct determination of relevancy or irrelevancy using these quan-

titative measures, though, certainly, there are strong tendencies. For our value sets, threshold-

ing the disruption index at -0.05 results in all lesser measures being relevant and all greater

Fig 11. Experimental peak distributions for late external distractors. Violin plots (densities estimated with a 50

point Gaussian kernel) of the peak times for the second two temporal variants of external distraction, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for external distractor with 2 ms delay. (B) Example replay for external

distractor with 2 ms delay. (C) Violin plot for external distractor with 3 ms delay. (D) Example replay for external

distractor with 3 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g011
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measures being irrelevant, with the exception of distractor E with a 3 ms delay, which is, under

this scheme, classified as irrelevant despite being mildly relevant. Similar mostly-reliable rules

can probably be made for other conditions and parameter sets, but are not expected to be

universal.

An important property to note here is that the system (i.e. the recall of the learned represen-

tation) is, for a large class of distractors, extremely stable and robust against distractions, even

in the absence of any top-down attention or feedback mechanism. This stability is intrinsic to

the learned connectivity and the neuronal dynamics.

Discussion

While certain preliminary analyses in the context of synfire chains (the most extreme of the

“rapid replay” spectrum) were made quite early on [10], on the whole, interference with the

recall process in trained recurrent network has not been well studied. We attempted, with this

paper, to provide a beginning basis and a set of simple measures and terms for studying these

things, as they will become more and more important as self-training recurrent neural net-

works are deployed into various real-world and real-time applications, many of which will

likely be in noisy environments where distracting input is a real possibility.

Distractors have many potential sources, both internal and external. External distractors

are primarily sensory stimuli—a heard noise or seen movement, for example. Distractors may

be internal as well—a sudden, unexpected memory or thought popping into one’s head. They

may even be hybrid in nature—a feeling of discomfort, pain, or unease, for example.

Fig 12. Experimental peak densities for early distractors at position A. Violin plots (densities estimated with a 50 point

Gaussian kernel) of the peak times for the first two temporal variants of distraction at position A, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for distractor A with 0 ms delay. (B) Example replay for distractor A with 0

ms delay. (C) Violin plot for distractor A with 1 ms delay. (D) Example replay for distractor A with 1 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g012
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Regardless of the source, the brain must deal with distractors on a regular basis, and it’s impor-

tant to understand how neural circuits deal with them on a basic level.

In examining this, we first will discuss the case of the so-called irrelevant distractor, as it is

relatively straightforward to consider its phenomenology—simply put, by introducing addi-

tional activity into the network that is not correlated in a meaningful way with the recall pro-

cess, the distractor and its reverberations add noise to the network activity, which can affect

timing and readout precision, but do not significantly perturb the dynamics or trajectory of

the system. This is nearly trivial to understand.

What requires somewhat more thought and consideration is the case of the so-called rele-

vant distractor—what network phenomena make it so disruptive to the replay process? When

a group of similarly-tuned trained neurons is simultaneously activated, several things happen.

First of all, a brief refractory period exists for the fired neurons, preventing immediate reactiva-

tion. On slightly longer timescales, several mechanisms conspire to continue to discourage

rapid reactivation of the neuron group in question, including inhibitory activation and the

raising of the neurons’ firing threshold via intrinsic plasticity. At the same time, after sufficient

conduction and integration time, if the activation has been strong enough, the next group of

neurons in the trained sequence activates as activity propagates through the network. When

untrained neurons are activated as a distractor, this does not tend to activate (via secondary

pathways) a trained group with sufficient coherency for these things to occur. Similarly, when

a trained group of neurons is stimulated when it is already in the described post-activation

state (i.e. late and out-of-sequence), its recurrent self-excitation and tendency to propagate

activity is highly suppressed. On the other hand, if a group is stimulated early and out-of-

Fig 13. Experimental peak densities for late distractors at position A. Violin plots (densities estimated with a 50 point

Gaussian kernel) of the peak times for the second two temporal variants of distraction at position A, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for distractor A with 2 ms delay. (B) Example replay for distractor A with 2

ms delay. (C) Violin plot for distractor A with 3 ms delay. (D) Example replay for distractor A with 3 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g013
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sequence, it tends to induce all the described effects, disrupting any sequence replay that was

already occurring or about to occur.

Sequences are undoubtedly ubiquitous and important. That being said, most executed

actions occur on a slower timescale than the replays produced by this model, a notable excep-

tion being saccades. Distraction studies have even been done on saccades, however, while com-

paring the results of such studies to the model in this paper is tempting, general belief in

saccades being executed by the combined action of two separate circuits (specifically, a “when”

network and a “where” network) make comparisons with our single network model difficult if

not impossible [22–24].

A partial in-silico replication of a biological experiment examining low-level sequence

replay [3, 9] using a very closely related model to the one used in this paper examined the con-

cept of distraction from a different perspective, i.e. by spatially moving the start cue within the

sequence, rather than keeping the start cue constant and introducing an additional spurious

signal as we have. Similar to our findings, a feedforward, rapid-replay dominant regime of pat-

tern storage and recall is reported, with a recall speed independent of training speed. Instead

of looking at qualitative evaluations of cue and distraction effects, these papers utilize a cumu-

lative distribution of Spearman correlation coefficients (a rank-ordered derivative of Pearson

correlation coefficients) between cluster rates. A rightward shift of this distribution indicates

improved recall performance with reagrd to cluster ordering. We may then speculate what the

result of such analyses on our current distractor paradigm would be. Overall, we expect that

our irrelevant distractors would result in a similar rightward shift to the undistracted position,

while relevant distractors, by strongly disrupting the ordering between cluster peaks, would

Fig 14. Experimental peak densities for early distractors at position C. Violin plots (densities estimated with a 50 point

Gaussian kernel) of the peak times for the first two temporal variants of distraction at position C, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for distractor C with 0 ms delay. (B) Example replay for distractor C with 0

ms delay. (C) Violin plot for distractor C with 1 ms delay. (D) Example replay for distractor C with 1 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g014
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result in an insignificant shift or possibly even a leftward shift. We would expect the results

regarding presentation of the start cue at alternative locations to produce the same results as

the previous in-silico experiment. However, we have not adopted this analysis method in this

paper, as it provides a less specific exploration of the phenomenology of what the distractor

actually does to the replay dynamics.

We believe our observations and predictions hold in general for the rapid replay regime of

trained sequences, though it remains to be seen if it holds as well for a slower replay regime

involving extended switching between self-sustained activity in cell assemblies or moving

attractors. Though it falls outside the scope of this study, we can still speculate and provide

some background. The rapid replay (or synfire-dominated) regime, as we call it, is the most

natural and obvious way to recall sequences of neural activations. However, as stated, the recall

speed is invariant to the training speed, depending only on the size of the sequence and neuro-

nal conduction and integration delays—e.g. a three element sequence trained over a three sec-

ond activation would replay faster than an five element sequence trained over a half-second

activation. The fact that not only is timescale not captured during training, but is also rapid

and invariant during recall means that this regime cannot directly drive, for example, motor

activation, but exists most likely as a one in a hierarchy of components of memory and plan-

ning. Various mechanisms of slow replay have been proposed (e.g. [8, 25–27]), but they rely

on modulatory signals or differing neural architecture or dynamics. It is as such a much more

difficult question to ask how distraction affects slow replay, as there are numerous ways, both

hierarchical and non-hierarchical, in which it may be implemented, and not an exceedingly

obvious way as in the case of rapid replay. We can, however, recognize certain strong effects

Fig 15. Experimental peak densities for late distractors at position C. Violin plots (densities estimated with a 50 point

Gaussian kernel) of the peak times for the second two temporal variants of distraction at position C, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for distractor C with 2 ms delay. (B) Example replay for distractor C with 2

ms delay. (C) Violin plot for distractor C with 3 ms delay. (D) Example replay for distractor C with 3 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g015
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that are a part of distracted rapid replay that would, in all likelihood, not be a factor in slow

distracted replay. First of all, the refractory effect mentioned would not be a concern. The

inhibitory aftereffect mentioned might also be lessened, depending on the timescales and

architectures involved. This suggests that the primary point of distraction would be the prema-

ture activation of a sequence element linked to the distractor. Overall, in the slower regime, a

more robust and less disruptive response would be expected in most cases. Day-to-day obser-

vation of human and animal behavior confirms this suspicion; if recall across all timescales

were as sensitive to distraction as it is in the rapid replay regime, living in a busy, noisy world

would be much more difficult indeed.

Conclusion

We have studied the effects of distraction on cued recall in trained recurrent neural networks.

Specifically, we have first presented a recurrent neural network that learns simple sequences in

an unsupervised fashion, and, once trained, is capable of rapidly recalling them upon the

receipt of a recall cue. We have then examined this rapid recall process under both distracted

and undistracted conditions. We note two general families of effects from distractors—either

the addition of noise to the recall process, or the disruption or disordering of the recall process.

We refer to these two categories as irrelevant and relevant distractors, respectively. By examin-

ing the conditions in which each type of distraction occurs, we arrive at the conclusion that in

the rapid recall regime, relevant, or highly disruptive distractors, tend to be those which corre-

spond to trained stimuli, and are presented early relative to the “natural” replay time in the

recall process of the stimulus to which they correspond. Similarly, irrelevant (or minimally

Fig 16. Experimental peak densities for early distractors at position E. Violin plots (densities estimated with a 50 point

Gaussian kernel) of the peak times for the first two temporal variants of distraction at position E, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for distractor E with 0 ms delay. (B) Example replay for distractor E with 0 ms

delay. (C) Violin plot for distractor E with 1 ms delay. (D) Example replay for distractor E with 1 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g016
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disruptive) distractors, tend to be those which correspond to either untrained stimuli, or

trained stimuli presented later than their “natural” replay time. Due to the dynamics of recur-

rent neural networks in the cortex and hippocampus, we believe the principles of interference

or distraction outline here should apply, in general, to any neural phenomena which exist pri-

marily in a non-hierarchical rapid replay regime.

Fig 17. Experimental peak densities for late distractors at position E. Violin plots (densities estimated with a 50 point

Gaussian kernel) of the peak times for the second two temporal variants of distraction at position E, with listed

percentages of trials passing veto. A raster plot of an example distracted recall is also included. The spiral indicates the

location of the distractor. (A) Violin plot for distractor E with 2 ms delay. (B) Example replay for distractor E with 2 ms

delay. (C) Violin plot for distractor E with 3 ms delay. (D) Example replay for distractor E with 3 ms delay.

https://doi.org/10.1371/journal.pone.0223743.g017

Fig 18. Disruption and deviance index arrays. An array of disruption and deviance index values for each

experimental condition.

https://doi.org/10.1371/journal.pone.0223743.g018
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