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Deinococcus radiodurans R1 is extremely resistant to ionizing radiation and

oxidative stress. In this study, we characterized DR0846, a candidate perox-

iredoxin in D. radiodurans. DR0846 is a peroxiredoxin Q containing two

conserved cysteine residues. DR0846 exists mainly in monomeric form with

an intramolecular disulfide bond between the two cysteine residues. We found

that DR0846 functions as a molecular chaperone as well as a peroxidase. A

mutational analysis indicates that the two cysteine residues are essential for

enzymatic activity. A double-deletion mutant lacking DR0846 and catalase

DR1998 exhibits decreased oxidative and heat shock stress tolerance with

respect to the single mutants or the wild-type cells. These results suggest that

DR0846 contributes to resistance against oxidative and heat stresses in

D. radiodurans.

Keywords: Deinococcus radiodurans R1; DR0846; molecular chaperone;

peroxidase; peroxiredoxin Q

Deinococcus radiodurans R1 is well-known for its

extreme resistance to ionizing radiation (IR) [1–4]. IR
induces DNA double-strand breaks and reactive oxy-

gen species (ROS) in bacteria [3,5–7]. Although the IR

resistance of D. radiodurans is due to its highly con-

densed nucleoid structure and enhanced DNA repair

systems [3], some evidence suggests that it requires

ROS scavenging systems [8,9]. D. radiodurans can

remove ROS by nonenzymatic antioxidants, such as

manganese complexes or carotenoids, and enzymatic

antioxidants, such as catalases, superoxide dismutases

(SOD), and peroxidases [3,10]. Catalases and peroxi-

dases decompose hydrogen peroxide to water, whereas

SOD converts superoxide radicals to hydrogen

peroxide from the cells. D. radiodurans encodes two

catalases (DR1998 and DRA0259), three SODs

(DR1279, DR1546, and DRA0202), a cytochrome

c peroxidase (DRA0301), an iron-dependent peroxi-

dase (DRA0145), and four peroxiredoxins (Prxs)

(DR0846, DR1208, DR1209, and DR2242) [2,3,11].

Peroxiredoxins are a family of antioxidant enzymes

that detoxifying hydrogen peroxide, alkylhydroperox-

ide, and peroxynitrite using thiols as electron donors

[12–14]. Prxs have highly conserved peroxidatic (CP)

and resolving (CR) cysteine residues, which are essen-

tial for peroxidase activity [15,16]. Based on the

absence or presence of conserved catalytic cysteine

residues, Prxs are divided into three groups, typical
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2-Cys Prx, atypical 2-Cys Prx, which are subdivided

into type II Prx and PrxQ, and 1-Cys Prx [17,18]. Typ-

ical and atypical 2-Cys Prx have two Cys residues and

1-Cys Prx lacks the resolving cysteine residue [17].

PrxQ is a homolog of bacterioferritin co-migratory

protein (BCP) in Escherichia coli [19]. PrxQ possesses

two conserved cysteine residues (CXXXXC), with an

intramolecular disulfide bond between the two cysteine

residues, which is reduced by Trx [19]. PrxQ usually

functions as a monomeric peroxidase having high reac-

tivity to H2O2 and butyl hydroperoxide [13]. However,

PrxQ4 (SsBcp4) in Sulfolobus solfataricus forms a non-

covalent dimeric structure and adopts an atypical

2-Cys catalytic mechanism [20]. Some PrxQ proteins

function as peroxidases in a Grx-dependent manner

and only have a functional catalytic cysteine residue

[21,22]. PrxQ plays an important role in E. coli and

Helicobacter pylori under oxidative stress [21,23].

Despite many recent studies, the physiological func-

tions, electron donors, and substrate specificity of

PrxQs are largely unknown.

In this study, we characterized the expression and

functions of DR0846 of D. radiodurans. We found that

DR0846 is a PrxQ with two cysteine residues at posi-

tions 60 and 65. Additionally, we demonstrated that

DR0846 exhibits a dual function as a peroxidase and a

molecular chaperone in vivo and in vitro.

Materials and methods

Cell strains, growth conditions, and medium

Deinococcus radiodurans R1 (ATCC13939) was cultured in

TGY broth (0.5% tryptone, 0.1% glucose, and 0.3% yeast

extract) or on TGY plates at 30 °C. A stationary-phase cul-

ture grown overnight with shaking was used as the seed

culture. The seed culture was inoculated in TGY broth at a

1 : 100 dilution. E. coli DH5a (Promega, Madison, WI,

USA) and BL21-DE3 (Invitrogen, Carlsbad, CA, USA)

strains were grown in Luria–Bertani (LB) broth (DB,

Franklin Lakes, NJ, USA) or on LB plate at 37 °C. Antibi-

otics were used when necessary at the following concentra-

tions: kanamycin (50 lg�mL�1) for E. coli and kanamycin

(8 lg�mL�1) or chloramphenicol (3 lg�mL�1) for D. radio-

durans.

Bioinformatics analysis of peroxiredoxins

Analyses of the amino acid sequences, the isoelectric point,

and molecular mass of proteins were performed using

National Center for Biotechnology Information (https://

www.ncbi.nlm.nih.gov/nucleotide/) and UCSC Archaea

Genome Browser (http://archaea.ucsc.edu/lists/deinRadi/ref

Seq-list.html) databases. MEGA 7.0 was used to determine

sequence identities and to build a phylogenetic tree using

the neighbor-joining method [24–26]. Evolutionary dis-

tances were computed using the number of differences

method [27] and are expressed as the number of amino acid

differences between sequences. The analysis involved 34

amino acid sequences. All ambiguous positions were

removed for each sequence pair.

qRT-PCR analysis of peroxiredoxin genes

For the qRT-PCR analysis, cells were grown on TGY med-

ium for 16 h at 30 °C. The seed culture was inoculated in

TGY broth at a 1 : 100 dilution and grown at 30 °C until

OD600 reached ~ 0.5 in TGY broth. For the oxidative

stress treatment, cells were incubated for 5, 10, 20, or

30 min after treatment with 20 mM H2O2 at 30 °C. For the
gamma ray treatment, cells were irradiated at 1, 3, or

5 kGy for 1 h. Total RNA was isolated from treated or

untreated cells using TRI Reagent� (Molecular Research

Center, Inc., Cincinnati, OH, USA) according to the manu-

facturer’s instructions.

Cloning of DR0846 and DR0846 cysteine mutants

DR0846 and its mutants were cloned in the pET-28a (+)
expression vector (Novagen, Madison, WI, USA). To con-

struct pET-28a:DR0846, the coding region was isolated

from the genomic DNA of D. radiodurans R1 by PCR with

primers harboring BamHI (N terminus) and HindIII (C ter-

minus) sites (Table S1) using Pfu DNA polymerase (Sol-

gent, Gyeonggi-do, Korea). The PCR products were

inserted into the pGEM-T Easy vector (Promega). The

DNA fragments were cut with their corresponding restric-

tion enzymes and cloned into the pET-28a vector. The

pET-28a:DR0846 plasmid was used as a template to gener-

ate the cysteine mutants C60S, C65S, and C60S/C65S by

substituting Cys for Ser60, Ser65, and Ser60, 65 by PCR-

mediated site-directed mutagenesis. All constructs were con-

firmed by DNA sequencing.

Expression and purification of recombinant

proteins

The pET-28a:DR0846, pET-28a:DR0846C60S, pET-28a:

DR0846C65S, and pET-28a:DR0846C60S/C65S vectors

were transformed into BL21-DE3 and plated on LB plates

containing 50 lg�mL�1 kanamycin. A single colony was

inoculated in 5 mL of LB medium and grown overnight at

37 °C to obtain the seed culture. Then, the seed culture

was inoculated in LB broth at a 1 : 100 dilution. The

expression of His-tagged DR0846 was induced with 0.1 mM

isopropyl-b-D-thiogalactopyranoside (IPTG) for 4 h at

30 °C. The recombinant proteins were purified using a
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nickel-nitrilotriacetate-agarose (Ni-NTA) column (Peptron,

Daejeon, Korea) following the manufacturer’s instructions.

The proteins were eluted by thrombin at 4 °C overnight.

Purified proteins were dialyzed using 50 mM Tris/HCl (pH

7.5) for biochemical analyses.

Size exclusion chromatography

Size exclusion chromatography (SEC) was performed at

25 °C to determine the size of DR0846 by fast protein

liquid chromatography (AKTA, Amersham Biosciences,

Uppsala, Sweden) using a Superdex 200 10/300 GL gel-

filtration column (Amersham Biosciences) following previ-

ously described methods, with minor modifications [28].

The column was equilibrated and run with 50 mM Tris/HCl

(pH 7.5) buffer at a flow rate of 0.5 mL�min�1 at 4 °C.
Absorbance was monitored at 280 nm.

Peroxidase activity assay

The peroxidase activity of purified DR0846 was measured

by nicotinamide adenine dinucleotide phosphate (NADH)

oxidation at 340 nm as described previously, with minor

modifications [29]. For thioredoxin-dependent peroxidase

activity, various concentrations of DR0846 were incu-

bated with 0.3 mM NADH, 5 lM yeast thioredoxin reduc-

tase (TR), and 1 lM yeast thioredoxin (Trx) in 50 mM

HEPES buffer (pH 8.0). For glutaredoxin-dependent per-

oxidase activity, various concentrations of DR0846 were

incubated with 0.3 mM NADH, 5 lM glutathione reduc-

tase (GR), and 1 mM reduced glutathione (GSH) in

50 mM Tris/HCl (pH 8.0), followed by the addition of

1 mM H2O2. NADH oxidation was monitored by measur-

ing the change in absorbance at 340 nm for 10 min using

a UV-Visible spectrophotometer (Evolution 300 UV-Vis

Spectrophotometer; Thermo Scientific, Worcester, MA,

USA).

Molecular chaperone activity assay

Holdase chaperone activity was determined as described

previously [29] by assessing the ability of recombinant

DR0846 to inhibit the thermal aggregation of substrate

proteins [30–33]. Briefly, malate dehydrogenase (MDH)

was incubated in 50 mM HEPES buffer (pH 8.0) with

various concentrations of recombinant DR0846. The reac-

tion mixture was incubated at 42 °C for 15 min, and

thermal aggregation of the substrate was estimated by

monitoring the degree of turbidity at 340 nm using an

Evolution 300 Spectrophotometer (Thermo Scientific)

equipped with a thermostatic cell holder. The thermal

aggregation of MDH was used as the control. The hol-

dase chaperone activity of DR0846 was determined at

1 : 1, 1 : 2, and 1 : 3 molar ratios between substrate

(MDH) and DR0846.

AMS modification of DR0846 and DR0846 Cys

mutant proteins

4-Acetamido-40-maleimidylstilbene-2,20-disulfonic acid (AMS)

modification was performed as described previously [34]

with minor modifications. The proteins were precipitated

by the addition of one volume of trichloroacetic acid

(TCA), followed by incubation for 1 h at �20 °C. After

1 h, precipitates were collected by centrifugation at

18 400 g for 5 min and washed with ice-cold acetone three

times. Final pellets were dissolved in 20 lL of AMS work-

ing solution (50 mM Tris/HCl, pH 7.5, 0.1% SDS, 10 mM

EDTA, 20 mM AMS) and incubated for 1 h at 25 °C in

the dark. Samples were separated by reducing SDS/PAGE

and analyzed by western blotting. For western blot, we

generate antibody using purified DR0846 recombinant pro-

tein. DR0846 protein was immunize to mice and the anti-

serum was used for immunoblotting.

Construction of deletion mutants in

D. radiodurans

The Δdr0846 and Δdr1998 disruption mutants were con-

structed by targeted mutagenesis using the double cross-

over recombination method described previously [35,36].

Two amplified 1 kb fragments from upstream and down-

stream of the targeted genes were digested with appropriate

restriction enzymes (Table S1), and ligated into the corre-

sponding sites of kanamycin resistance cassette in pKa-

tAPH3. The recombinant plasmids were transformed into

D. radiodurans cells. The mutant strains were selected on

TGY agar plates supplemented with 8 lg�mL�1 kanamycin.

To construct the Δdr0846/Δdr1998 double-deletion mutant,

digested upstream and downstream fragments of dr1998

gene were ligated into the corresponding sites of chloram-

phenicol resistance cassette in pKatCAT5. The recombinant

plasmids were transformed into Δdr0846 mutant strain, and

the transformant was screened on TGY agar plate contain-

ing kanamycin (8 lg�mL�1) and chloramphenicol

(4 lg�mL�1). The deletions of genes were verified by diag-

nostic PCR and nucleotide sequencing.

Hydrogen peroxide (H2O2) and heat stress

tolerance assay

The sensitivity of D. radiodurans cells to hydrogen peroxide

was assayed as described previously [37] with minor modifi-

cations. Cells were harvested in early stationary phase,

washed twice and resuspended in phosphate buffer (20 mM,

pH 7.4). The cells were serially diluted from 10�1 to 10�4.

Cells were spotted on TGY plates containing 0 or 0.2 mM

H2O2 and incubated at 30 °C for 16 h.

To study the heat resistance of Δdr0846, early station-

ary-phase cells were used for the seed culture. The seed

culture was inoculated in TGY broth at a 1 : 100 dilution.
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Cells were grown at 30 °C until OD600 of ~ 0.5 in TGY

broth with or without 8 lg�mL�1 kanamycin. For thermal

stress, cells were incubated at 30 °C or 42 °C for 30 min.

The cells were serially diluted from 10�1 to 10�4. Diluted

cells were spotted on TGY plates and incubated at 30 °C
for 16 h.

Results

Phylogenetic analysis of peroxiredoxins from

D. radiodurans R1

The peroxiredoxin (Prx) family is classified into four

groups based on sequence properties: 1-Cys Prx, 2-Cys

Prx, type II Prx, and PrxQ [38,39]. 1-Cys Prxs contain

only one conserved cysteine residue. 2-Cys Prxs con-

tain two conserved cysteine residues and both residues

are essential for enzyme activity. Type II Prxs, also

named atypical 2-Cys Prxs, have two cysteine residues

but the position of one of these cysteines is not con-

served [38,39]. In addition, PrxQs contain two cysteine

residues [38,39].

The D. radiodurans R1 genome encodes four puta-

tive peroxiredoxins (DR0846, DR1208, DR1209, and

DR2242) [3]. To investigate the relationship between

D. radiodurans Prxs and those of diverse organisms, a

phylogenetic analysis was conducted using Prx family

members from Arabidopsis, humans, yeast, Synechocys-

tis sp., and Chlamydomonas (Fig. S1). The evolution-

ary history was inferred using the neighbor-joining

method [24,26]. All peroxiredoxins in D. radiodurans

were assigned to the PrxQ, suggesting that PrxQs may

have a vital role for the viability of D. radiodurans

under oxidative stress.

Expression analysis of peroxiredoxins in

response to oxidative stress or gamma rays

Peroxiredoxins are a family of antioxidant enzymes

involved in sensing and detoxifying hydrogen perox-

ide (H2O2) and other ROS [40]. To investigate the

expression of Deinococcus peroxiredoxins in response

to oxidative stress, we evaluated cells by qRT-PCR

after oxidative stress treatment. After 20 mM H2O2

treatment, DR0846 and DR1209 expression was

induced, whereas DR1208 and DR2242 expression

levels were not different from those in the control

group (Fig. 1A). To test the expression of peroxire-

doxin genes in response to gamma rays, we irradi-

ated cells with 1, 3, and 5 kGy. The transcript

expression levels of DR0846 and DR1208 increased

gradually with increasing gamma irradiation, whereas

DR1209 and DR2242 expression levels were

unchanged until 3 kGy and decreased at higher

doses (Fig. 1B). Based on these results, we selected

PrxQ (DR0846), which is simultaneously induced by

both H2O2 and gamma rays and showed a higher

expression level than that of DR1208, for further

analyses (Fig. 1B).

Protein sequence and oligomeric state of DR0846

The sequence of DR0846 was compared with those of

homologous PrxQ proteins from diverse organisms by

a multiple sequence alignment. The conserved peroxi-

datic cysteine (Cp) of DR0846 was located around

position 60 in a PxxxTxxC-motif (Fig. S2) [41]. The

sequence alignment also showed that there is an addi-

tional cysteine at position 65 in DR0846.

Fig. 1. Expression analysis of Prx genes in response to oxidative stress or gamma rays. Cells were grown on TGY medium for 16 h at

30 °C. mRNA levels of peroxiredoxin genes were determined by qRT-PCR after treatment with 20 mM H2O2 for 5–30 min (A) or treatment

with gamma rays at 1–5 kGy (B). Data are means � SE from three replications for each treatment. Different letters indicate significant

differences at P < 0.05 between the groups by one-way ANOVA with Tukey’s test. DR1343 (gap) was used as a loading control. DR1998

(KatE1) and DR2340 (recA) were used as positive controls for oxidative stress and gamma rays, respectively.
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For biochemical studies of DR0846 encoding a pro-

tein of 175 amino acids with a theoretical molecular

mass of 19.1 kDa, the recombinant protein was over-

expressed in E. coli BL21 (DE3) and purified. The

purified proteins were analyzed by SDS/PAGE

(Fig. 2A) or native-PAGE (Fig. 2B). As shown in

Fig. 2A, the purified recombinant DR0846 protein

showed a single band with a molecular mass of

approximately 19 kDa by 12% SDS/PAGE in the

presence (reducing) or absence (nonreducing) of DTT.

To further determine the oligomeric status of the

native DR0846 protein, we performed native-PAGE

and SEC (Fig. 2B,C). As shown in Fig. 2B,C, DR0846

existed primarily in monomeric form, with a small

quantity of oligomeric structures without the forma-

tion of intermolecular disulfide bonds.

Effect of cysteine residues on enzymatic activity

of DR0846

PrxQ proteins are thiol-based peroxidase that catalyzes

the reduction of hydrogen peroxide [19,22]. To investi-

gate whether DR0846 possesses peroxidase activity, we

conducted peroxidase activity assays (Fig. 3A). We

measured the peroxidase enzymatic activity of DR0846

by monitoring the reduction of H2O2 by coupled

NADH oxidation at 340 nm using the Trx (Trx, TR,

and NADH) system. As shown in Fig. 3A, DR0846

showed peroxidase activity in a concentration-depen-

dent manner in the presence of the Trx system (Trx,

TR, and NADH). Typical 2-Cys Prx and some atypi-

cal 2-Cys Prx-type peroxidases use thioredoxin as a

reductant. However, the donor substrate specificity of

PrxQ remains unclear. It has been reported that

Burkholderia cenocepacia BCP (BcBCP) uses thiore-

doxin as a reductant for the sulfenic acid intermediate

[22]. However, greater peroxidase activity is observed

when using glutathione as an electron donor [22].

Therefore, we assayed the efficiency of the GSH

(GSH, GR, and NADH) systems in providing reduc-

ing power for DR0846 in the reduction of H2O2

(Fig. S3). No peroxidase activity was detected for

DR0846 in the presence of the GSH system (Fig. S3).

In contrast, erythrocyte GPx showed significant cat-

alytic activity in the same system. These results indi-

cated that DR0846 is a thioredoxin-dependent PrxQ

that uses thioredoxin as an electron donor and consis-

tent with the fact that D. radiodurans has no GSH.

Recent studies have revealed that some peroxiredox-

ins have dual functions as a peroxidase and a chaper-

one [31,42,43]. To investigate whether DR0846 act as

a molecular chaperone, we performed a holdase chap-

erone activity assay using MDH as a heat-sensitive

substrate. The incubation MDH with increasing

amounts of DR0846 prevented thermal aggregation of

MDH at 42 °C, and aggregation was completely inhib-

ited at a 1 : 2 molar ratio of MDH to DR0846

(Fig. 3B). These results indicate that DR0846 act as a

peroxidase and a molecular chaperone.

Thiol peroxidase of E. coli has a functional cys-

teine residue that is a crucial for enzymatic activity

[44]. To investigate the physiological function of the

cysteine residue on DR0846 enzymatic activity, we

generated various substitution mutants of DR0846

by replacing cysteine residues with serine at the C60

and C65 positions. All of the mutants, i.e., C60S,

C65S, and C60S/C65S, exhibited complete loss of

peroxidase activity (Fig. 3C). The holdase chaperone

activity of C60S and C65S single mutants was not

altered, whereas the holdase chaperone activity of

C60S/C65S was almost blocked (Fig. 3D). These

results suggest that each Cys residues are important

Fig. 2. Purity and oligomeric state of DR0846 based on SDS/PAGE (A), native-PAGE (B), and SEC (C). The proteins were denatured by

heating in the presence (R) or absence (N) of 5 mM DTT. DR0846 was separated by 12% SDS/PAGE (A) or 10% native-PAGE (B) and the

gel was stained with Coomassie Blue. M, Marker; R, Reducing; N, Nonreducing. SEC was performed using a Superdex 200 10/300 column.

The numbers in the chromatogram represent the molecular weights of the standard proteins; blue dextran (> 2000 kDa), thyroglobulin

(669 kDa), ferritin (440 kDa), aldolase (158 kDa), ovalbumin (44 kDa), and carbonic anhydrase (29 kDa).
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for peroxidase activity, whereas both Cys residues

are required for molecular chaperone activity.

Analysis of disulfide bond formation in DR0846

PrxQ possesses the PXXXXC motif, forms an

intramolecular disulfide bond between two cysteine

residues, of the catalytic site and adopts an atypical

2-Cys catalytic mechanism [19]. The amino acid

sequence of DR0846 has only two cysteine residues

(Fig. S2) and did not form an intermolecular disulfide

bond (Fig. 2A). To test whether the cysteine in

DR0846 forms an intramolecular disulfide bond,

trapping experiments of free thiol (-SH) groups were

performed using wild-type (WT) DR0846 and its Cys-

to-Ser mutants (C60S, C65S, and C60S/C65S). The

thiol alkylation agent AMS reacts with a free thiol

(-SH) group in the protein resulting from increasing

the molecular mass by approximately 540 Da per

AMS molecule. AMS-modified and unmodified

DR0846 were separated by reducing SDS/PAGE and

detected by immunoblotting using DR0846 antibody

(Fig. 4). In the presence of AMS, two bands were

detected for WT DR0846 corresponding to the fully

reduced form, showing a weight consistent with the

binding of two AMS molecules (upper band) and

oxidized form (lower band) with an intramolecular

disulfide bond. Two forms of the protein were puri-

fied in atmospheric conditions, i.e., oxidized and

reduced forms, but the oxidized form was slightly

more highly represented. The C60S and C65S pro-

teins exhibited only reduced forms showing a weight

consistent with the binding of single AMS molecules

(upper band). However, only one band, which was

not modified by AMS, was observed for the C60S/

Fig. 3. Peroxidase and chaperone activities of DR0846 and DR0846 Cys mutant proteins. (A) Peroxidase enzyme assay of DR0846.

Peroxidase enzyme activity was measured using the yeast Trx system at various concentrations. (B) Molecular chaperone assay of DR0846.

Chaperone activity was measured by the aggregation of MDH at 42 °C at different molar ratios of MDH/DR0846. Con., 1 : 0 (●); 1 : 0.5

DR0846 (○); 1 : 1 DR0846 (♦); 1 : 2 DR0846 (♢). Peroxidase enzyme assay (C) and chaperone enzyme assay (D) of DR0846 Cys mutant.

C60S, C65S, and C60S/C65S are cysteine substitution mutants. Data are means � SD of three independent experiments. Different letters

indicate significant differences at P < 0.05 between the WT and mutant proteins by one-way ANOVA with Tukey’s test.

Fig. 4. Redox properties of DR0846 and Cys mutant proteins.

AMS shift assays were performed using purified WT DR0846 and

cysteine mutant proteins. Purified proteins were precipitated with

TCA, and treated without (�) or with (+) AMS. The proteins were

resolved by reducing SDS/PAGE and subjected to a western blot

analysis. Asterisks indicate the oxidized forms of each protein.
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C65S double mutant (Fig. 4). These results indicate

that the two cysteines (C60 and C65) of DR0846

exhibit the free thiol groups or intramolecular disul-

fide bonds under redox status.

Phenotypic characterization of the dr0846

disruption mutant

DR0846 showed peroxidase and molecular chaperone

activities in vitro (Fig. 3A,B). To assess the role of

DR0846 in vivo, we generated a dr0846 disruption

mutant and evaluated it by oxidative and heat stress

tolerance assays (Fig. 5). However, as shown in Fig. 5,

the sensitivity to H2O2 or heat stress of the Δdr0846
mutant was similar to that of the WT. Catalases and

peroxidases remove H2O2 and catalase activity is cor-

related with the lethal effects of heat shock stress [45].

Catalase activities of exponential and stationary-phase

D. radiodurans were greater than those of E. coli [46].

D. radiodurans possesses two catalases [3]; among

them, the typical monofunctional heme-containing

DR1998 is a major catalase [11]. To rule out the possi-

bility of DR1998 catalase function, we constructed

catalase- and peroxidase-deficient double-mutant

strains and conducted H2O2 and heat stress tolerance

assays using log phase cells were subjected oxidative

and heat stress tolerance assay. The Δdr1998 catalase

single-deletion mutants showed reduced growth

compared with that of the WT after treatment with

0.2 mM H2O2 (Fig. 5A) or heat treatment (Fig. 5B).

Furthermore, the Δdr0846 Δdr1998 double mutants

showed severe growth retardation in response to H2O2

or heat stresses (Fig. 5). These results suggest that

DR0846 has dual functions as a peroxidase and a

molecular chaperone in vivo.

Discussion

Peroxiredoxins catalyze the reduction of hydrogen per-

oxide and alkyl hydroperoxides [40]. Although Prxs of

various organisms have been studied, little is known

about PrxQ D. radiodurans R1. These studies on

D. radiodurans PrxQ, a member of peroxiredoxin, pro-

vide a new insight into the structure and function of

peroxiredoxin. Here, we reports the substrate and

donor specificity and in vivo function of DR0846 from

D. radiodurans. As expected, D. radiodurans PrxQ acts

as a thioredoxin-dependent monomeric peroxidase and

molecular chaperone, which has two cysteine residues

important for its activity.

The typical 2-Cys Prx have been reported to have

physiological functions as peroxidase and molecular

chaperone [28,29,33,42,47,48]. Ionic interactions play

an important role in the oligomerization and function

of Prx proteins [49,50]. The typical 2-Cys Prx dynami-

cally regulates the structure between low molecular

Fig. 5. Hydrogen peroxide (H2O2) and

heat stress tolerance assays of the

Δdr0846 mutant. Exponential-phase WT

Deinococcus radiodurans and the deletion

mutant (Ddr0846) were grown on TGY

plates containing different concentrations

of H2O2 for 16 h (A) or incubated at

30 °C or 42 °C for 30 min and grown on

TGY plates for 16 h, followed by serial

dilution (B).

225FEBS Letters 593 (2019) 219–229 ª 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

C. Cho et al. Chaterization of PrxQ as a peroxidase and a chaperone



weight and high molecular weight (HMW) in response

to cellular redox states and this structural change is

important for the switch between peroxidase and chap-

erone function [28,29,31,42,48]. 1-Cys Prx, PrxQ, and

Type II Prx act as monomers, whereas 2-Cys Prxs act

as dimers. However, the oligomeric complex has been

detected for 1-Cys Prx and 2-Cys Prx, whereas PrxQ

and Type II Prx have been observed as monomers or

dimers [47,50,51]. The Corynebacterium glutamicum

PrxQ (CgPrxQ) and E. coli BCP are predominantly

present as monomers in the native or functional states

[19,52]. PrxQ4 (ScBCP4) forms a dimer with a non-

covalent dimeric structure [20].

Molecular chaperones prevent the aggregation and

assist the covalent folding of proteins and oligomeric

architectures are important for chaperone functions

[53,54]. While most typical 2-Cys Prx, some 1-Cys Prx

and CgPrxQ have been reported to have peroxidase

activity and oligomeric or dimeric chaperone activity

[28,29,31,33,42,55,56], this is the first report for the

dual activity of a monomeric atypical 2-Cys Prx.

Although it is not known in Prx, this observation is

similar to the results of other proteins reported previ-

ously. The FanE is a monomeric chaperone that is

present in the periplasm of E. coli [57]. Trigger Factor

(TF) from Psychrobacter frigidicola (TFPf) displays no

dimerization and it can promote refold of RNase T1

[58]. The monomeric 14-3-3f protein has a chaperone-

like activity and the 14-3-3f more effectively prevents

aggregation of myosin subfragment 1 compared with

its dimeric form. In addition, HSP27, most abundant

small heat shock protein in humans, the reduced form

was more effective than its oxidized form in preventing

protein aggregation [59]. However, the molecular

mechanism underlying the chaperone activity of mono-

meric proteins needs to be further studied.

Recent studies revealed that the resistance of D. ra-

diodurans to variety of stresses conditions can be

explained by high antioxidant activity to protect cells

[1,3,5,10,11]. Heat stress causes the production of ROS

to induce oxidative stress and affects antioxidant

enzyme activities such as catalase, SOD, and peroxi-

dase in plant species [60,61]. In plants, catalase activi-

ties and intensities of catalase isozymes may be

important determinants of antioxidant resistance to

heat stress [62]. The peroxidase enzyme has been asso-

ciated with the emergence of physiological injuries and

its activity was enhanced by high-temperature stress in

mulberry and strawberry [63,64]. Despite previous

studies of antioxidant enzymes in relation to heat tol-

erance, specific antioxidant enzymes have not been

well-characterized. In this study, DR0846 showed

strong peroxidase and chaperone activity and exhibited

a sensitive phenotype for heat stress based on a muta-

tion analysis (Figs 2 and 4). These results suggest that

PrxQ (DR0846) may be an important antioxidant

enzyme involved in thermal stress resistance.
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