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Abstract
Biliary bacteria have been implicated in gallstone pathogenesis, though a clear understand-

ing of their composition and source is lacking. Moreover, the effects of the biliary environ-

ment, which is known to be generally hostile to most bacteria, on biliary bacteria are

unclear. Here, we investigated the bacterial communities of the biliary tract, duodenum,

stomach, and oral cavity from six gallstone patients by using 16S rRNA amplicon sequenc-

ing. We found that all observed biliary bacteria were detectable in the upper digestive tract.

The biliary microbiota had a comparatively higher similarity with the duodenal microbiota,

versus those of the other regions, but with a reduced diversity. Although the majority of iden-

tified bacteria were greatly diminished in bile samples, three Enterobacteriaceae genera

(Escherichia, Klebsiella, and an unclassified genus) and Pyramidobacter were abundant in

bile. Predictive functional analysis indicated enhanced abilities of environmental information

processing and cell motility of biliary bacteria. Our study provides evidence for the potential

source of biliary bacteria, and illustrates the influence of the biliary system on biliary bacte-

rial communities.

Introduction
The biliary microbiota is considered to be a vital factor in gallstone pathogenesis [1–5]. Many
bacteria, such as Escherichia coli, Klebsiella pneumoniae and Enterococcus faecium, have been
identified through cultivation [6–8] or polymerase chain reaction in bile or gallstone samples
previously [9, 10]. Recently, the application of next-generation sequencing on biliary samples
provided a more comprehensive understanding of biliary bacterial community and expanded
the microbiota detected in the human biliary tract [11]. In our previous work, by using both
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whole-metagenome shotgun sequencing (WMS) and bacterial 16S rRNA amplicon sequencing
(referred to as ‘16S sequencing’) to study bile samples from gallstone patients, we observed
great bacterial community heterogeneity among patients, and identified 13 novel biliary bacte-
rial species such as Prevotella pallens, Streptococcus infantis, and Porphyromonas endodontalis
[12].

However, another important issue about where biliary bacteria come from still remains
unclear. Generally, retrograde infection of gut bacteria from the duodenum is considered to be
the likely primary source of biliary infection [13, 14]. Besides, bacterial invasion through the
portal venous system also contributes to biliary infection with relatively low morbidity [15, 16].
Duodenum anatomically connects with the biliary tract via the sphincter of Oddi, and the
sphincter of Oddi seems to be the only way which must be passed for possible ascending infec-
tion of gut bacteria. However, to our knowledge, there has not yet been a comparative study of
the biliary versus the duodenal microbiota. Previous study has shown that the microbiota of
three upper digestive tract sites (represented as saliva, stomach biopsy and duodenum biopsy
samples) have a commonality of detected bacterial taxa [17]. Human upper digestive tract sam-
ples, including saliva, gastric fluid, and duodenal mucus, were also found to differ greatly in
their bacterial composition from fecal samples [18, 19]. Thus, considering the smaller anatomi-
cal distance to the biliary tract, the upper digestive tract rather than the distal gut is more likely
to be the primary source of biliary bacteria.

With the protection of the sphincter of Oddi from enteric bacterial invasion, the antimicro-
bial activity of bile salts and the immunological defense system [8], the biliary microenviron-
ment is believed to be generally hostile to most bacteria. Thus, it is of great interest to use the
human digestive tract microbiota as a reference to investigate the likely effect of the biliary
microenvironment on biliary bacteria, and the extent to which bacterial composition is altered
in the microbe-inhospitable biliary tract. Moreover, due to the great microbial heterogeneity
among individuals, such comparative study should be performed within the same individuals.
Till now, there has been no such investigations.

In this study, we compared the bacterial communities of the biliary and upper digestive
tracts of six gallstone patients. We aim to obtain evidence for the source of biliary bacteria and
to observe how the biliary microbiota may be affected by its surrounding environment.

Materials and Methods

Sample collection
All patients were diagnosed with choledocholithiasis (mean age: 69.3 ± 14.6 years; 4 men, 2
women) by using B-mode ultrasonography and computed tomography. Each individual had
gallstones detected in the common bile duct. No one had occurrences of gallbladder gallstones.
These patients did not receive antibiotics for at least three months before their endoscopic ret-
rograde cholangiopancreatography (ERCP) procedure. All patients provided written informed
consent upon enrollment. The study conformed to the ethical guidelines of the 1975 Declara-
tion of Helsinki and was approved by the Institutional Review Board of Hangzhou First Peo-
ple’s Hospital. All samples were collected at Hangzhou First People’s Hospital. Salivary
samples were collected after the patients gargled with 20 mL of sterile saline water. Patients
expectorated their mouthwash into sterile sputum cups. The gastric fluid, duodenal fluid, and
bile samples were collected by using strictly sterile side-viewing endoscopes (TJF240/JF-260V;
Olympus Optical, Tokyo, Japan). Measures were taken to avoid sampling artifacts or cross con-
tamination among samples in the same patient. During advancement of the endoscope from
the mouth into the stomach and into the duodenum, the work channel of the endoscope kept
itself clean and uncontaminated by avoiding any pumping action. Gastric fluid, duodenal fluid,
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and bile samples (2–5 mL of each sample type) were aspirated into sterile sputum cups through
sterile catheters which passed through the work channel. Each catheter was used only once and
was replaced with a new catheter prior to collecting the next sample. If gastric fluid was invisi-
ble in the stomach, sterile saline water would be injected through the catheter and gastric flush-
ing fluid was collected. When the endoscope reached the duodenum, a new sterile catheter was
used to inject sterile saline water and aspirate the duodenal flushing fluid. Sterile sphinctero-
tome catheters (V-SYSTEM; KD-V411M-0725; Olympus Optical) were used to suck out bile
samples (2–5 mL) from the common bile duct. All samples were stored at -80°C until further
processing.

DNA extraction
Total DNA was extracted from each noncentrifuged sample with the Invitrogen Purelink
Genomic DNAMini Kit (Life Technologies, Carlsbad, CA, USA) following manufacturer’s
instruction. A Qubit 2.0 Fluorometer (Life Technologies) was used to quantify all the DNA,
and the E-Gel electrophoresis system (Life Technologies) was used to examine the DNA
quality.

16S rRNA amplicon sequencing
The V3–V4 region of the bacterial 16S rRNA gene was amplified by using universal primer
pairs 356F (5’CCTACGGGNGGCWGCAG3’) and 803R (5’GACTACHVGGGTATCTAA
TCC3’). Detailed protocols for the two-step 16S rRNA gene amplification and library construc-
tion procedures are reported elsewhere [12, 20]. In the first-round PCR, 16S primers and over-
hang adapters compatible with the Illumina Nextera XT kit (Illumina, San Diego, CA, USA)
were employed to amplify the V3-V4 region of 16S rRNA. In the second-round PCR, Illumina
adapters and sample barcodes were added to the purified PCR products from the first step.
Three tubes of sterile water were used as negative controls during the whole amplification and
library preparation process. The negative control samples had no detectable DNA products
when evaluated by the E-gel electrophoresis system (Life Technologies). The DNA libraries
were sequenced on the Illumina MiSeq platform to generate 2 × 250-bp paired-end reads.

Taxonomic profiles and pathway profiles of 16S sequencing data
FLASH v1.2.11 [21] merged pair-end reads into ~460-bp sequences. QIIME v1.8.0 [22] were
employed to analyse the merged reads. Quality control was performed by using the script “spli-
t_libraries_fastq.py” in QIIME with following parameters “-n 0 -p 0.75 -q 19 -r 3”. Chimeras
were removed by aligning reads to sequences in the Greengenes Database (version Aug, 2013)
with USEARCH v6.1 [23]. Remaining reads were clustered into operational taxonomic units
(OTUs) at the 97% similarity level by UCLUST v1.2.22 [23]. Each representative OTU was
assigned a taxonomic rank with Ribosomal Database Project classifier v2.2 [24] at a confidence
level of 0.85. Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) [25] analysis was performed to generate Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway profiles as previously described [26]. In brief, the OTUs used for
PICRUSt analysis were picked by using the QIIME script “pick_closed_reference_otus.py” at
the 97% similarity level. Taking the generated OTU table as input, PICRUSt would output an
annotated table of predicted metabolic functions at KEGG pathway level by using the scripts
“normalize_by_copy_number.py” and “predict_metagenomes.py”. The pathway profiles were
employed for further comparison.
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Statistical analysis
To avoid bias introduced by varied sequencing depth of these samples, diversity indices
(observed OTU and Bray-Crutis dissimilarity) were calculated by randomly re-sampling the
reads of each sample to a uniform number for 1,000 times. Mean diversity indices were used
for downstream analysis. Analysis of similarity (ANOSIM) using Bray-Crutis dissimilarity was
performed by using the software Past (http://folk.uio.no/ohammer/past/). Pearson correlation
coefficients between the microbiota of the biliary tract and those of each upper digestive tract
site were calculated by using R (v3.1.2). In order to detect differentially abundant genera and
KEGG pathways in the biliary tract relative to other sampling sites, Wilcoxon rank-sum test (R
project, v3.1.2) was employed to compare bile samples and the upper digestive tract samples.
Differences with P< 0.05 were considered to be statistically significant.

Deposition of sequence data
All sequence data were deposited in the National Center for Biotechnology Information
(NCBI) under BioProject PRJNA290974. All samples were registered in NCBI under BioSam-
ple numbers SAMN03938337–SAMN03938359.

Results

All biliary bacteria were detectable in the upper digestive tract
By using 16S sequencing, we obtained an average of 12,299 high-quality reads per sample
(range: 3,088–83,985, the gastric fluid sample from P6 was excluded for further analysis due to
its ultra-low sequencing depth), and detected a total of 1,398 operational taxonomic units
(OTUs) (S1 Table). Among the bile samples, Proteobacteria, Firmicutes, Bacteroidetes, Actino-
bacteria, Fusobacteria, Synergistetes and TM7 were identified at the phylum level, the first five
of which are common inhabitants of the human digestive tract [17, 27]. Six of these seven bac-
terial phyla have been found in biliary samples in previous studies, with the exception being
Synergistetes [7, 11, 28–31].

We found that all biliary bacteria were detectable in the upper digestive tract. These seven
aforementioned biliary phyla were all identified at one or more digestive tract sites from the
same patients (S2 Table). At the genus level, 53 bacterial genera were found in bile samples
with�0.1% abundance, all of which were included within the 102 genera (�0.1% abundance)
identified in at least one site of the upper digestive tract (S3 Table). Among them, Streptococcus,
Veillonella, Prevotella and Rothia were most prevalent in these patients with�2% average rela-
tive abundances at each body site (Fig 1, S3 Table).

Next, we investigated the correlation between the microbiota of each upper digestive tract
site and the biliary microbiota. Generally, the biliary microbiota were more similar to those of
the duodenal fluid samples than to those of the gastric fluid or saliva samples (Fig 2A). In five
patients (P1–P4, and P6), the bacterial composition of the bile samples correlated increasingly
well with, in order, the bacterial composition of the same patient’s saliva, gastric fluid, and duo-
denal fluid. In one exceptional patient, P5, all upper digestive tract sites had a high similarity of
bacterial composition with the bile sample (Pearson correlation coefficient> 0.73,
P< 2.6 × 10−7). The dominant biliary genera in P5 (e.g. Prevotella, Rothia, and Haemophilus)
were distinct from those of other patients, and were relatively more aligned with the patient’s
salivary microbiota (S3 Table). The observation in P5 revealed variability of bacterial composi-
tion among these patients.

Pyramidobacter and three Enterobacteriaceae genera (Escherichia, Klebsiella, and an unclas-
sified genus) were highly abundant in the majority of bile samples. To further trace the
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potential source of the rare biliary microbes, we re-calculated the correlation coefficients
between bile and other sites after excluding these four genera (Fig 2B). Interestingly, reminis-
cent of our observations with P5, P1’s bile also had a bacterial distribution that was highly
similar to that observed in his saliva, gastric fluid, and duodenal fluid (Pearson correlation
coefficients> 0.72, P< 3.4 × 10−6). This result suggests that the salivary microbiota may also
contribute to the biliary microbiota, though the overlap may be overshadowed in most cases by
the relative dominance of duodenal genera. Following the aforementioned exclusion, the signif-
icant correlation between the duodenal and the biliary microbiota was maintained in P6 but
not in P2 or P4.

Fig 1. Distribution of genera that were highly prevalent across the four body sites.Only genera with
�0.01% abundance in at least 12 samples are presented. OTUs that could not be assigned at the genus level
were labelled as “unclassified” (uncl.). Genera that were poorly defined in Greengenes database were
labelled as “other”. [Prevotella] and [Mogibacteriaceae] are provisional taxonomical assignments of
operational taxonomic units by Greengenes. The upward and downward arrows indicated genera whose
abundance was increased and decreased in bile samples, relative to the other regions, respectively.

doi:10.1371/journal.pone.0150519.g001
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Diverse changes of the biliary microbiota relative to the upper digestive
tract microbiota
Diversity differences in the biliary microbiota relative to the upper digestive tract microbiota
were observed. Alpha diversity indices indicated that bile samples had a reduced bacterial
diversity than the upper digestive tract samples. To avoid potential bias of varied sequencing
depths, we randomly re-sampled the reads of these samples to a uniform number 3,088 which
was the smallest read number among these samples, and calculated microbial diversity indices.
The alpha diversity of bile samples, measured by observed OTUs, was significantly smaller in
bile samples than in samples from the other three upper digestive tract sites (Wilcoxon rank-
sum test, bile vs. saliva, P = 0.015; bile vs. gastric fluid, P = 0.03; bile vs. duodenal fluid,
P = 0.041). Analysis of similarity (ANOSIM) using Bray-Crutis dissimilarity demonstrated sig-
nificant differences between bile and saliva samples (P = 0.003), but not between bile and gas-
tric or duodenal fluid samples (bile vs. gastric fluid, P = 0.125; bile vs. duodenal fluid,
P = 0.3772).

Although genera that occurred in bile were also detected in the upper digestive tract, the rel-
ative abundance and prevalence of these bacteria differed greatly. Of the 36 prevalent genera
identified in at least 12/23 samples, 30 (83.3%) had a lower average abundance in bile than in
one or more other sites, and 6 (16.7%) had a higher average abundance in bile (Fig 1). With
respect to bacterial prevalence among these patients, 17 biliary genera were present in only 1–2
patients’ bile samples, though these same 17 genera were observed in the duodenal fluid in 3–5
patients (S3 Table).

Moreover, it is notable that the relative abundances of some taxa exhibited an increasing or
decreasing tendency from saliva through gastric fluid and duodenal fluid to bile. Bacterial gen-
era whose relative abundances were significantly different between bile and one or more upper
digestive tract sites are illustrated in Fig 3A and 3B. For Veillonella and Prevotella, we observed
a gradually decreasing tendency from saliva to bile (Fig 3A). Prevotella was undetectable in bile
for most patients. Meanwhile, the overall abundances of Porphyromonas, Rothia, and an

Fig 2. Correlation coefficients between the microbiota of each upper digestive tract site and the biliary microbiota. For each patient, correlation
coefficients between the microbiota of the biliary tract and other sampling sites were calculated when Pyramidobacter and three Enterobacteriaceae genera
(Escherichia, Klebsiella, and an unclassified genus) in bile samples were included (a) and excluded (b). Saliva, gastric fluid, duodenal fluid, and bile are
denoted as “S”, “G”, “D”, and “B”, respectively, on the x-axis. Correlations that were statistically significant are indicated with red circles.

doi:10.1371/journal.pone.0150519.g002

Influence of the Biliary System on Biliary Bacteria

PLOS ONE | DOI:10.1371/journal.pone.0150519 March 1, 2016 6 / 12



unclassified Carnobacteriaceae genus were maintained at somewhat comparable levels in the
upper digestive tract sites, with a sudden and drastic decrease in bile. These five genera that
were found to be decreased in bile are often identified in the human oral cavity, stomach, and
duodenum [17, 27], implying that the biliary environment might impose higher survival and
selective pressures upon these bacteria.

Four genera had significantly increased abundance in bile (Fig 3B). Among them, three gen-
era, namely Escherichia, Klebsiella, and an unclassified genus, belong to the Enterobacteriaceae
family, and have been isolated from bile cultures previously [6–8, 11]. Their increased abun-
dance in bile might be associated with a bile-resistant ability [3]. The fourth genus, Pyramido-
bacter, which belongs to the phylum Synergistetes, was highly enriched in P2 and P4.
Pyramidobacter has been isolated mainly from the human oral cavity [32, 33] and also, albeit
less often, from the human small intestine [34]. It was also identified from human bile samples
in our previous study [12]. The archetype species of this genus, P. piscolens, encodes a multi-
drug transporter protein AcrB that is related to bacterial bile resistance [3]; if this gene is shared
with other Pyramidobacter species, it may explain, at least in part, the enrichment of Pyramido-
bacter in bile.

Biliary bacteria had differentially abundant inferred pathways
We constructed the predictive functional profiles of the bacterial communities of the four sam-
pling sites by Phylogenetic Investigation of Communities by Reconstruction of Unobserved

Fig 3. Distribution of differentially abundant genera among all sampling sites.Genera were filtered by the criteria of with a�10% abundance in at least
one sampling site and with a�0.01% abundance in at least 12 samples. Then, filtered genera that were decreased (a) and increased (b) in relative
abundance in bile samples compared to at least one of the other body sites were illustrated. The y-axis represents relative abundance. Body sites that
showed statistically significant differences relative to bile samples are labelled with an “*”. Boxes represent the 25th- to 75th-percentile interquartile range.
The red lines inside the boxes indicate the median values, and the whiskers represent the most extreme values within 1.5 times of the interquartile range.
Red lines for genus Pyramidobacter have been especially thickened for a better visualization as the median values were close to zero. Outlier values are
represented as circles. **P < 0.01, *P < 0.05.

doi:10.1371/journal.pone.0150519.g003

Influence of the Biliary System on Biliary Bacteria

PLOS ONE | DOI:10.1371/journal.pone.0150519 March 1, 2016 7 / 12



States (PICRUSt) [25], and determined that biliary bacteria had differentially abundant
inferred Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways when compared to the
upper digestive tract microbiota (Fig 4A and 4B). We identified 24 significantly enriched path-
ways and 41 depleted pathways (all P< 0.05) in bile samples (S4 Table).

The enriched pathways in bile samples were related to environmental information process-
ing, cell motility, carbohydrate metabolism, lipid metabolism, and amino acid metabolism (Fig
4A). Environmental information processing pathways, such as ABC transporters, two-compo-
nent system, and secretion system, were dominant in these samples. We observed an increasing
tendency of their relative abundances from saliva to bile. Considering the high level of

Fig 4. Bacterial metabolic pathways of saliva, gastric fluid, duodenal fluid, and bile samples. KEGG
pathways with higher (a) and lower (b) abundance in bile samples, relative to the other sites, were illustrated.
Body sites with significant differences relative to bile samples are labelled with an “*” (P < 0.05) or “#”
(P < 0.01) above the bars.

doi:10.1371/journal.pone.0150519.g004
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antimicrobial bile salts and immunoglobulins in the biliary tract, this result suggests that bacte-
ria that can survive in bile may have a greater ability to respond to environmental information
than bacteria in other sampling sites. Bacterial chemotaxis and flagellar assembly pathways
were also enriched. These cell motility-related functions enable bacteria to move toward favor-
able living conditions [35], and thus might play important roles in their survival and coloniza-
tion within the biliary tract. With respect to energy source and nutrition utilization,
carbohydrate metabolic pathways (e.g. butanoate, propanoate, glyoxylate, and dicarboxylate
metabolism), lipid metabolic pathways (e.g. fatty acid metabolism and biosynthesis of unsatu-
rated fatty acids), and amino acid metabolic pathways (e.g. tryptophan metabolism and degra-
dation of valine, leucine, isoleucine, and lysine) were also well represented in biliary bacteria.

The pathways with relatively low representation in the biliary microbiota were involved in
genetic information processing, nucleotide metabolism, amino acid metabolism, and metabo-
lism of cofactors and vitamins (Fig 4B). Genetic information processing pathways included
DNA replication, transcription machinery, mismatch repair, RNA degradation, RNA polymer-
ase, homologous recombination, and protein export. Purine metabolism and pyrimidine
metabolism were related to nucleotide metabolism. Metabolism of cofactors and vitamins
involved folate biosynthesis, pantothenate/CoA biosynthesis, and thiamine metabolism.
Amino acid metabolism related pathways cysteine/methionine metabolism and lysine biosyn-
thesis had decreased abundances in bile samples. Moreover, the biliary microbiota had a rela-
tively higher abundance of degradation processes (e.g. lysine degradation) combined with a
relatively low representation of biosynthesis processes (e.g. lysine biosynthesis). Taken
together, the differences among pathways involved in carbohydrate, lipid, amino acid, nucleo-
tide, and cofactor/vitamin metabolism suggest that biliary bacteria may have different energy
and nutrient sources from the upper digestive tract microbiota.

Discussion
Our results support the hypothesis that biliary bacteria originate from retrograde infection of gut
bacteria. All observed biliary bacteria could be identified in the upper digestive tract with 16S
sequencing, with the biliary microbiota being relatively more similar to the duodenal microbiota.
Furthermore, we observed the influence of the biliary environment on biliary bacterial composi-
tion, as revealed by diverse alterations of the biliary microbiota relative to the upper digestive
tract microbiota. The changes might be attributed to the anatomical structure and liquid features
of the biliary tree. The sphincter of Oddi, through which bile from the biliary tract unidirection-
ally flows into the duodenum, acts as an anatomical barrier and protects the biliary system from
enteric bacterial invasion [8]. Moreover, the antimicrobial activity of bile salts and the immuno-
globulins in the biliary tract also exert selective pressures on biliary bacteria [16].

The difference in bacterial relative abundance in bile samples might imply the difference in
their bile-resistant ability. Escherichia and Klebsiella both had increased abundance in bile sam-
ples relative to the other sampling sites. Species from both genera have been cultured from
human bile samples, such as E. coli, K. pneumonia and K. oxytoca [6–8, 11]. Other bacterial
taxa, such as Veillonella and Prevotella, had reduced abundances in the biliary tract when com-
pared to the upper digestive tract, and they are less frequently cultured from biliary samples.
Several genes have been found to be potentially related to bile resistance, including bsh, acrA,
acrB, emrA, emrB, and tolC. By searching the KEGG GENOME database, we found that the
genomes of species belonging to those aforementioned abundant Escherichia and Klebsiella
genera harbored more bile-resistant genes than those of Veillonella, Prevotella, Rothia, and Por-
phyromonas. One bacterial genera of interest is Pyramidobacter, which belongs to the phylum
Synergistetes. It was highly abundant in some bile samples when compared to the
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corresponding upper digestive tract samples. Species from Pyramidobacter has been isolated
from the human oral cavity [32, 33] and small intestine [34], and we detected this genera in
human bile samples in our previous study for the first time [12]. AcrB, a multidrug efflux
pump protein related to bile resistance, was encoded by the archetype species of this genera, P.
piscolens, which may explain, to some extent, the high abundance of Pyramidobacter in the bili-
ary tree. Improvement of cultivation-based methods would assist to the identification of Pyra-
midobacter in biliary samples, and bile-resistance mechanism employed by this novel but
poorly defined bacterial genus also needs further investigation.

Predictive functional profiles of all sampling sites, assessed by PICRUSt, determined that bili-
ary bacteria might have increased abilities of environmental information processing and cell
motility, which are crucial functions for bacterial life. Differential representation of pathways
related to energy and nutrient sources also suggest that there may be an influence of the biliary
system on resident bacterial function. Propanoate metabolism and ABC transporters were also
found to be enriched in bile samples by using whole-metagenome shotgun sequencing in our
previous study [12]. It should be noted that most of the differentially abundant pathways were
detected between saliva and bile samples (Fig 4A and 4B), which was consistent with the compar-
isons based on microbial distributions (Figs 2 and 3). Bacterial microbial communities which
have similar microbial structures tend to have similar functions (including pathways). As the bili-
ary microbiota resembled increasingly well, in order, those of the saliva, the gastric fluid, and the
duodenal fluid samples, the biliary samples might have fewer statistically differential pathways
relative to the duodenal fluid and the gastric fluid samples than the saliva samples. In addition to
16S sequencing, more advanced technologies, such as whole-metagenome shotgun sequencing,
metatranscriptomic, metametabolomic and metaproteomic technologies, will contribute to a
more comprehensive picture of biliary bacterial function and the microbe-host interaction.

Taken together, our results provide evidence for the human duodenum as the primary
source of biliary bacteria, and characterizes the influence of the biliary system on the biliary
microbiota. The aim of our study is to investigate how bacterial microbiota vary in the human
biliary and upper digestive tracts. With the 23 samples from 6 patients, we performed compari-
sons among microbial communities from each sampling site and observed obvious variation
trends of the similarities between the biliary microbiota and those in other upper digestive tract
sites. However, it is likely that there are other microbial variation patterns we did not find due
to the limited sample size. With respect to the microbial community, the biliary tract is a poorly
explored microenvironment compared to other human body sites. More studies, especially
those about the role of microbes in gallstone pathogenesis, are needed to understand the biliary
microbial ecology in the future.
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S1 Table. Statistical analysis of 16S sequencing results.
(XLSX)

S2 Table. Relative abundances of bacterial phyla present in samples from each region.
(XLSX)

S3 Table. Relative abundances of bacterial genera present in samples from each region.
Only genera with�0.1% abundance from at least one sample are presented here.
(XLSX)

S4 Table. Differential KEGG pathways represented in the biliary tract microbiota versus
those represented in the upper digestive tract microbiota.
(XLSX)
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