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Recent fMRI studies have demonstrated that resting-state functional connectivity (FC) is of nonstationarity. Temporal variability of
FC reflects the dynamic nature of brain activity. Exploring temporal variability of FC offers a new approach to investigate
reorganization and integration of brain networks after stroke. Here, we examined longitudinal alterations of FC temporal
variability in brain networks after stroke. Nineteen stroke patients underwent resting fMRI scans across the acute stage (within-
one-week after stroke), subacute stage (within-two-weeks after stroke), and early chronic stage (3-4 months after stroke).
Nineteen age- and sex-matched healthy individuals were enrolled. Compared with the controls, stroke patients exhibited
reduced regional temporal variability during the acute stages, which was recovered at the following two stages. Compared with
the acute stage, the subacute stage exhibited increased temporal variability in the primary motor, auditory, and visual cortices.
Across the three stages, the temporal variability in the ipsilesional precentral gyrus (PreCG) was increased first and then
reduced. Increased temporal variability in the ipsilesional PreCG from the acute stage to the subacute stage was correlated with
motor recovery from the acute stage to the early chronic stage. Our results demonstrated that temporal variability of brain
network might be a potential tool for evaluating and predicting motor recovery after stroke.

1. Introduction

Functional connectivity (FC) and functional connectomics
based on resting-state functional magnetic resonance imag-
ing (rs-fMRI) have proven to be powerful tools for investigat-
ing the brain function in both physiological and disease states
[1–3]. Most of the studies on resting-state brain networks
were based upon the assumption that the strength of FC is
constant over scan session [4]. Recently, merging evidence
suggests that the FC of the resting-state brain network is
not static and presents temporal variability even within a
session [5–7]. Temporal variation in FC, the so-called

dynamic functional connectivity, can be attributed to neural
activity [7, 8]. Furthermore, disease-related alterations in
the dynamic properties of FC have also been reported, sug-
gesting that temporal features of FC could serve as a disease
biomarker [9, 10].

Recently, a novel approach introduced by Zhang et al.
could measure the temporal variability of functional archi-
tecture in a specific region, which is different from the con-
ventional dynamic FC method which only measures the
interregional property of FC variability [11]. The temporal
variability of the particular brain region might reflect its
dynamic reconfiguration into distinct functional regions
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within the brain network at different times and might be an
indicator of brain flexibility and adaptability [11]. Therefore,
the temporal variability may provide new insight into the
pathophysiological mechanisms of neural rehabilitation after
brain damage such as the neural process of recovery after
stroke.

Motor function impairment is one of the most common
complications of stroke. Following initial cerebral damage,
motor function in nearly all stroke patients can usually
recover to some extent within the first six months after stroke
[12]. However, the underlying mechanism of motor recovery
after stroke is not entirely understood. A large number of
fMRI studies have shown that motor recovery after stroke
is a complicated process related to the cerebral structural
and functional reorganization [13–17]. However, most of
these studies have been confined to the exploration of static
functional connectivity or networks, and few studies have
carried out the approach of temporal variability.

In the present study, a longitudinal data of stroke
patients with motor impairment across three consecutive
stages was used to investigate the dynamic topological prop-
erties of brain networks by measuring the temporal variabil-
ity of whole-brain functional networks. The first stage
referred to as the acute stage was within the first week after
symptom onset. The second stage referred to as the subacute
stage was between one week and two weeks after the stroke
onset. The third stage defined as the early chronic stage
was at 3-4 months after the stroke onset [15]. Besides, we
also introduced a group of age-matched healthy controls as
the baseline. We sought to determine (1) how the temporal
variability of brain functional network changes over the
course of motor recovery after stroke and (2) whether the
alterations of the regional temporal variability of brain func-
tional network are associated with motor recovery. Explor-
ing these issues could contribute to understanding the
neurophysiological mechanisms for motor rehabilitation
after stroke.

2. Materials and Methods

2.1. Participants. The local Ethical Committee approved the
experiment, and all subjects signed the informed consent
before the study. Nineteen patients (17 male, mean age
52.26± 11.73 years, 12 left-side deficits) with acute first-ever
ischemic stroke were enrolled from January 2015 to March
2016. The inclusion criteria were as follows: (1) first-ever
ischemic stroke, (2) unilateral hand motor deficit, (3)

symptom onset< 7 days, (4) age between 18 and 80 years,
and (5) single stroke lesion located within the middle cerebral
artery territory on MRI. The exclusion criteria consist of (1)
hemorrhagic stroke, (2) bilateral stroke lesions on MRI, (3)
language or cognitive deficits sufficient to affect informed
consent, (4) other orthopedic, neurological, or psychiatric
diseases substantially affecting the arm, (5) contraindications
to MRI examination, and (6) recurred stroke during the
follow-up. In addition, 19 healthy right-handed participants
(12 men; 7 women; mean age 51.1± 5.99 years) were enrolled
as the baseline.

Clinical measures and neuroimaging data were assessed
at three consecutive time points during the poststroke phase.
The mean time intervals between stroke onset and MRI scan
points were as follows: the acute stage (4.11± 1.76 days post-
stroke, ranging 1–7 days), the subacute stage (10.47± 2.12
days poststroke, ranging 8–14 days), and the early chronic
stage (99.32± 8.54 days poststroke, ranging 87–116 days).
The lesion volumes were calculated at the acute stage. The
mean lesion size was 3. 26± 1. 93ml (ranging 0.61–6.44ml).
The lesion map of each patient on the diffusion-weighted
image was shown in Supplementary Figure 1. The hand
motor function of each patient was assessed using an upper
limb Fugl-Meyer Motor Assessment (UL-FMA), which has
a range of 0 (complete hemiplegia) to 66 (normal perfor-
mance) for upper extremities. The mean UL-FMA scores at
three stages were as follows: 33.58± 14.55 (ranging 6–56) in
the acute stage, 42.63± 16.79 (ranging 7–61) in the subacute
stage, and 55.11± 12.27 (ranging 27–66) in the early chronic
stage. Demographic and clinical characteristics of stroke
patients were shown in Table 1. The specific information of
each patient was shown in Supplementary Table 1.

2.2. MRI Image Data Acquisition. All MR images were
acquired using a 3.0T whole-body scanner (Discovery
MR750, GE Healthcare, Milwaukee, WI, USA) with a 32-
channel phased-array head coil. The participants were placed
on the scanner gantry in a head-first supine position with a
plastic holder to minimize head motion and earplugs to
reduce scanner noise. High-resolution 3D T1-weighted
structural images were obtained in the transverse orientation
using a 3D-BRAVO sequence with the following parameters:
TR=8.2ms, TE=3.2ms, flip angle = 12°, FOV=220mm×
220mm, matrix = 256× 256, and slice thickness = 1.0mm.
Functional MR images were acquired with a gradient-
echo EPI sequence with the following scan parameters:
TR=2000ms, TE=30ms, flip angle = 80°, FOV=240mm×

Table 1: Demographic and clinical data of stroke patients.

Patients (n = 19) Acute stage Subacute stage Early chronic stage

Age (year) 52.26± 11.74 (30–71) — —

Sex (male) 17/19 — —

Lesion side (left) 12/19 — —

Lesion volume (ml) 3.26± 1.93 (0.61–6.44) — —

Days after stroke (day) 4.11± 1.76 (1–7) 10.47± 2.12 (8–14) 99.32± 8.54 (87–116)
UL-FMA 33.58± 14.55 (6–56) 42.63± 16.79 (7–61) 55.10± 12.27 (27–66)
UL-FMA: upper limb Fugl-Meyer assessment.
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240mm, matrix = 64× 64, slice thickness = 3.0mm, no gap,
and slice number = 43. The scan range covered the whole
brain tissue from the vertex to the lower parts of the cerebel-
lum. During the rs-fMRI scans, patients were instructed to
keep their eyes closed, think of nothing in particular, and
not fall asleep. Scan time lasted 6 minutes 50 second, and a
total of 205 volumes were acquired.

2.3. fMRI Data Preprocessing. fMRI data preprocessing was
conducted by SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and
Data Processing Assistant for Resting-State fMRI (DPARSF)
[18]. Before data preprocessing, the imaging data of patients
with right hemisphere lesions were flipped from the right to
the left along the midsagittal plane. Thus, after flipping, the
left hemisphere corresponded to the ipsilesional side and
the right hemisphere corresponded to the contralesional side
in all patients. The lesion over map across all patients in the
acute stage was shown in Figure 1.

2.4. Process of Structural MRI Data. To avoid tissue mis-
classification led by infarcted tissue during segmentation
and normalization, we used a cost function method to
remove the influence of lesions [19, 20]. The specific pro-
cedures were followed: firstly, the lesion mask was created
on the individual 3D T1-weighted structural images by two
radiologists (Hu JP and Zeng FY), with the guide of a DWI
image. Secondly, a group-sample-specific brain template
was generated. For each subject, the lesion-removed whole-
brain mask was used as the cost function to normalize the
3D T1-weighted structural image into the standard brain
template in MNI (Montreal Neurological Institute) space
by using a 12-parameter affine transformation with nonlin-
ear adjustments with 7× 8× 7 basis functions. All individu-
ally normalized 3D T1-weighted structural images and all
lesion-removed masks were averaged to yield a sample-
specific brain template. Thirdly, the averaged 3D T1-
weighted structural template was segmented using the
unified segment function of SPM8, with the averaged
lesion-removed mask as the cost-function. Fourth, the indi-
vidual space 3D T1-weighted structural images were seg-
mented using unified segment function. The segment issues
in the third step process were used as the templates for the
current segment process, and the individual lesion-removed
brain mask was used as the cost function. Finally, the

segment parameters containing the affine transition matrix
were generated, which would be used in the functional MRI
image normalization.

2.5. Analysis of Resting-State Functional Image Data. Firstly,
the first five volumes of each run were discarded to allow for
the signal to reach equilibrium and for the patients to adapt
to the scanning noise. The remaining 200 volumes were cor-
rected for slice timing effects for each volume, and then all
volumes were realigned to the first volume to adjust for the
residual head movement. The estimated translation or
rotation parameters did not exceed 1.5mm or 1.5 degrees.
Secondly, the realigned images were coregistered to the
individual 3D T1-weighted images. Thirdly, the segment
parameters gained in structural MRI data process were
applied to the coregistered images for the normalization
of functional images, and then the functional images were
resampled to 3× 3× 3mm3 voxel size. After normalization,
the BOLD signal of each voxel in resting-state functional
MR images was first detrended to abandon linear trend
and then temporal band pass filter (0.01–0.08Hz) was per-
formed to reduce low-frequency drift and high-frequency
physiological noise. Finally, sources of spurious variance,
including head motion parameters and white matter,
cerebrospinal, and global signals, were removed through
linear regression.

2.6. Brain Regional Temporal Variability Analysis. The AAL
(Automated Anatomical Labeling) template was used to par-
allel the brain into 116 ROIs (regions of interest). The time
series of ROIs were gained by averaging the time series of
all voxels in the corresponding ROIs [21, 22], and 116
regional time series were obtained for the later analysis.
According to the steps described by Zhang et al. [11],
the temporal variability of each brain region was calcu-
lated. The specific steps were as follows (Figure 2): firstly,
all BOLD time series were segmented into n nonoverlapping
windows each with a window length l. Within the ith time
window, the whole brain functional connectivity network
Fi (a 116× 116 matrix, with 116 brain regions) was obtained
using Pearson correlation analysis. Secondly, the functional
architecture of a region k at the ith time window was defined
as the overall functional connectivity profile of region k,
which was a 116-dimensional vector and was shortened as

z = 7 z = 12 z = 17 z = 22 z = 27 z = 32 z = 37 20% 40% 60%

Figure 1: The overlap map of the lesions across all the stroke patients during the acute stage. Color bar indicates the percentage of the lesion
overlap. z-axis from 7 to 37 in MNI coordinates. MNI: Montreal Neurological Institute.
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Fi,k. Thirdly, the temporal variability of a region of interest k
was computed by comparing the functional connectivity pro-
file of region k at different windows. The concrete formula-
tion was listed as follows:

Vk = 1 − corrcoef Fi,k, Fj,k , 1

where i, j = 1, 2, 3,… , n, i ≠ j.
Here, i, j meant different time windows and n meant

the number of total windows determined by window
length l. Finally, to avoid the arbitrary choice of window
length in the study, we calculated Vk at different window
lengths l (l = 10, 11, 12,… , 20 volumes). The average value
of all Vk values over different window lengths was defined
as the final temporal variability of the ROI.

2.7. Statistical Analysis. Statistical tests were performed
using the MATLAB 2016a statistical package and SPSS
version 22 (Statistical Package for the Social Sciences,
IBM). Results are expressed as mean± standard deviation
(SD). Two-sample t-test was used to investigate the signif-
icant difference in regional temporal variability of brain
networks between the stroke patients and healthy controls.
One-way repeated measures ANOVA and multiple com-
parisons (post hoc Tukey’s test) was used to assess the sig-
nificant differences in UL-FMA score and temporal
variability in brain regions between the three stages of
stroke progression.

To investigate the link between temporal variability
in brain regions and motor performance over the course

of motor recovery, Pearson correlation analysis was used
to analyze the correlation between the change in UL-
FMA scores and the changes in temporal variability in
brain regions with the significant difference between the
three stages.

3. Results

3.1. Behavioral Data. One-way repeated measures ANOVA
showed that the UL-FMA scores significantly increased
over the process of motor recovery (F = 81 86, P < 0 001),
and post hoc test further indicated that there was a signif-
icant increase in UL-FMA scores between the three stages
(P < 0 001) following motor recovery.

3.2. Differences in Temporal Variability of Brain Networks
between Healthy Controls and Stroke Patients. The difference
in temporal variability of brain networks was evaluated
between healthy controls and stroke patients during three
stages (P < 0 005 with uncorrected, two sample t-test).

Compared with the healthy controls, the stroke patients
exhibited reduced temporal variability in all brain regions
showing significant changes during the three stages which
were summarized in Table 2 and Figure 3. The reduced
temporal variability in brain regions covered the primary
sensorimotor, auditory and visual cortices, and default
mode network (DMN) which were found at the acute stage
of the stroke group relative to healthy controls. Compared
with the healthy controls, the stroke patients showed
reduced temporal variability in ipsilesional postcentral

Vk = 1 − E[corroef (Fi,k,Fj,k)], i,j = 1,2,3, …,n
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Figure 2: Definition of temporal variability for a given region k in the functional network. (a) The BOLD time series for 116 brain regions
were extracted from AAL template. (b) All BOLD time series were segmented into n nonoverlapping windows. Functional networks are
constructed in each time window. (c) The temporal variability of the region k is determined by comparing functional connectivity profile
of the region k at different windows. (d) The topographic pattern of temporal variability in the whole brain based on the AAL template
was demonstrated.
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gyrus (PoCG), ipsilesional anterior cingulate gyri (ACG),
ipsilesional cerebelum_4_5, contralesional superior parietal
gyrus (SFG), and contralesional thalamus at the subacute
stage. Reduced temporal variability in the ipsilesional pre-
central gyrus (PreCG), ipsilesional PoCG, and contrale-
sional hippocampus was found at the early chronic stage
of stroke patients relative to healthy controls.

3.3. Longitudinal Changes in Temporal Variability of Brain
Networks over the Stages of Stroke. One-way repeated mea-
sures ANOVA showed that thirteen regions demonstrated
significant differences in temporal variability among the
three stages (P < 0 01, Table 3, Figure 4). Multiple compari-
sons were further performed to estimate the differences in
these brain regions (Table 3, P < 0 05). Compared to the
acute stage, the subacute stage showed increased temporal
variability in several brain regions such as the primary
motor, auditory, and visual cortices and most of these
brain regions kept increasing temporal variability at the

early chronic stage. Compared to the subacute stage, the
early chronic stage showed reduced temporal variability
in the ipsilesional PreCG and the contralesional hippo-
campus while the other eleven brain regions demonstrated
increased temporal variability.

3.4. The Relationships between Temporal Variability in Brain
Regions and Motor Function. Motor recovery over the early
chronic stage (increased UL-FMA from the acute stage to
early chronic stage) significantly and positively correlated
to change in temporal variability over the subacute stage
(increased regional temporal variability from acute stage to
subacute stage) in the ipsilesional PreCG (r = 0 67, P =
0 002, Figure 5). Moreover, there was also no significant cor-
relation between motor recovery and change in temporal
variability in other brain regions over any other session
interval. This finding indicates that long-term motor recov-
ery is related to change in temporal variability in the ipsile-
sional PreCG over the subacute stage.

Table 2: Differences in regional temporal variability between controls and stroke patients at three stages.

Acute stage versus control Subacute stage versus control Early chronic stage versus control
Brain region T value P value Brain region T value P value Brain region T value P value

The ipsilesional side

PreCG −3.556 <0.001 PoCG −3.025 0.005 PreCG −3.499 0.001

PoCG −4.168 <0.001 ACG −3.058 0.004 PoCG −3.423 0.002

PCL −3.915 <0.001 CRBL45 −3.158 0.003

SMA −4.056 <0.001
SPG −3.457 <0.001
IPL −3.572 <0.001
ACG −3.360 0.002

MCG −3.367 0.002

Calcarine −3.329 0.002

Cuneus −3.067 0.004

ITG −3.187 0.003

Insula −3.262 0.002

FFG −3.701 <0.001
CRBL45 −3.852 <0.001
The contralesional side

PreCG −3.309 0.002 SFGdor −3.079 0.004 Hippocampus −3.142 0.003

PoCG −3.847 <0.001 Thalamus −3.019 0.004

SFGdor −3.651 <0.001
MFG −3.211 0.003

ACG −3.276 0.002

MCG −3.201 0.003

MOG −3.442 <0.001
MTG −3.769 <0.001
FFG −3.369 0.002

Thalamus −3.347 0.002

CRBL45 −3.775 <0.001
ACG: anterior cingulate and paracingulate gyri; MCG: median cingulate and paracingulate gyri; ITG: inferior temporal gyrus; FFG: fusiform gyrus; MFG:
middle frontal gyrus; SFGdor: superior frontal gyrus, dorsolateral; MOG: middle occipital gyrus; MTG: middle temporal gyrus; PreCG: precental gyrus;
PoCG: postcentral gyrus; PCL: paracentral lobule; SPG: superior parietal gyrus; IPL: inferior parietal lobule; SMA: supplementary motor area; CRBL45:
cerebelum_4_5.
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4. Discussion

In the present study, we investigated the longitudinal alter-
ation in temporal variability of resting-state functional net-
works in stroke patients with motor function impairment.
Our findings showed that (1) compared with healthy con-
trols, stroke patients at the acute stage demonstrated exten-
sively reduced temporal variability in several brain regions
such as primary sensorimotor, auditory, visual cortices, and
DMN. The temporal variability in these brain regions was
restored to normal level from acute the stage to the early
chronic stage except the ipsilesional sensorimotor cortex
and contralesional hippocampus. (2) We observed a time-
dependent alteration in temporal variability of brain net-
works in the longitudinal study. Specifically, from the acute
stage to the early chronic stage, the temporal variability in
the ipsilesional PreCG and the contralesional hippocampus
was increased first and then decreased, while the temporal

variability of the other regions showed a trend of gradual
increase. These findings suggest that the changes in the tem-
poral variability may reflect dynamic reconfiguration of brain
networks after stroke and may provide useful and comple-
mentary information for motor rehabilitation after stroke.

The temporal variability of a given brain region is consid-
ered to be negatively correlated to the variance of regional
BOLD signal and energy of low-frequency component and
to be positively correlated to the alpha-band oscillation-
recorded electroencephalography [8]. Many studies have
demonstrated that the slow-5 oscillations are particularly
susceptible to disruption induced by the stroke. These studies
showed that the stroke group exhibited an increasing trend in
the low-frequency fluctuations at the acute stage (<7 days
after stroke onset) and a decreasing trend from the acute
stage to the early chronic stage, which may have been due
to an inhibitory deficit from impaired the “task-positive”
regions [23–25]. Besides, a decrease trend in alpha rhythm

Ipsi Contra

−3.0 T value −4.5 −3.0 T value −4.5 −3.0 T value −4.5

Acute versus control Subacute versus control Early chronic versus control

Figure 3: Brain regions showing significant differences in temporal variability between controls and patients during three stages (two-sample
t-test, P < 0 005). All brain regions were summarized in Table 2. Ipsi: the ipsilesional side; Contra: the contralesional side.

3.0 F value 10 0.03 Mean diff. 0.08 0.03 Mean diff. 0.08 −0.03 Mean diff. −0.08

Ipsi Contra
ANOVA Subacute versus acute Early chronic versus acute Early chronic versus subacute

Figure 4: Brain regions showing significant differences in temporal variability across the three stages (one-way repeated measures ANOVA
and post hoc test, P < 0 01 and P < 0 05, resp.). All brain regions were summarized in Table 3. Ipsi: the ipsilesional side; Contra: the
contralesional side.
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both in acute and in subacute stroke patients has been
reported in EEG studies [26–28]. In our results, when com-
pared to healthy controls, stroke patients exhibited reduced
temporal variability in all brain regions showing significant
changes during the acute stage. On the basis of these previous
studies, we discreetly speculate that the disruption of func-
tion network integrity and the damage of regional neural
activity induced by stroke could be responsible for the
reduced temporal variability in brain regions after stroke,
especially at the acute stage. Moreover, previous studies have
indicated that the increase in BOLD signal variability is ben-
eficial to more efficiently process and respond to unexpected

external events [29, 30], and brain regions with more low-
frequency components tend to be more easy to synchronize
with other regions [11, 31]. At such condition, keeping low
temporal variability in functional networks is also beneficial
to maintain information transmission and functional inte-
gration with other brain regions.

In the longitudinal study, we found that temporal vari-
ability in brain regions of multiple functional networks,
including DMN, attention network, and visual network, sig-
nificantly increased and restored to normal level when com-
pared with the healthy controls during the subacute stages. In
line with these findings, several studies have pointed out that
stroke recovery might involve the alternations of resting-state
networks (RSNs), involving inter-RSNs and intra-RSNs [4,
32–34]. The temporal variability associated with a brain
region might reflect its dynamical reconfiguration into dis-
tinct brain regions within the brain network [8]. Such an
increase in temporal variability during the subacute stage
may well be validated and explicated by many studies on
stroke, in which excessive neuronal clustering and wiring
were observed in the peri-infarct regions at the initial recov-
ery phase. For example, previous studies have demonstrated
that new structural circuits in both the perilesional zone
and other distant regions would reestablish to compensate
for the loss of function in the damaged cortex during the pro-
cess of functional reorganization after stroke. What is more is
that branch-specific remodeling of the dendritic arbor in the
peri-infarct cortex dramatically increased within the first two
weeks after stroke and is still evident six weeks after stroke
[35, 36]. A brain network study based on animals also found
that at the initial phases of poststroke recovery, neural spine
elongation, neurite sprouting, might create a state of over

Table 3: Differences in regional temporal variability among three stages.

Brain region

ANOVA Multiple comparisons (post hoc Tukey’s test)

F value Subacute versus acute
Early chronic
versus acute

Early chronic
versus subacute

P value Mean diff. P value Mean diff. P value Mean diff. P value

The ipsilesional side

PreCG 5.288 0.009 0.067 0.0154 — — −0.060 0.031

SMA 7.003 0.003 0.083 0.011 0.0815 0.013 — —

SFGmed 6.377 0.004 0.064 0.013 0.063 0.015 — —

Insula 5.436 0.009 0.073 0.010 0.059 0.042 — —

FFG 6.458 0.004 0.074 0.005 0.059 0.026 — —

SFGdor 6.575 0.004 — — 0.081 0.003 — —

The contralesional side

MTG 10.829 <0.001 0.084 <0.001 0.046 0.041 — —

STG 6.179 0.005 0.064 0.02 0.073 0.007 — —

SMG 6.018 0.006 0.066 0.030 0.081 0.007 — —

MOG 6.795 0.003 0.083 0.002 0.060 0.037 — —

Cuneus 5.460 0.008 0.073 0.009 0.058 0.044 — —

IFGoperc 5.965 0.006 0.062 0.034 — — — —

Hippocampus 5.638 0.007 — — — — −0.053 0.007

Mean diff.: mean difference; PreCG: precental gyrus; SMA: supplementary motor area; SFGmed: superior frontal gyrus, medial; FFG: fusiform gyrus; SFGdor:
superior frontal gyrus, dorsolateral; STG: superior temporal gyrus; SMG: supramarginal gyrus; MOG: middle occipital gyrus; IFGoperc: inferior frontal gyrus,
opercular part.

The ipsilesional precentral gyrus

r = 0.67, P = 0.002
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Figure 5: Correlation result between altered temporal variability
and motor recovery (Pearson correlation analysis, P < 0 05). The
increased temporal variability of the ipsilesional precentral gyrus
over the subacute stage was positively correlated to the increased
UL-FMA over the early chronic stage.
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connectivity that leads to the loss of signal synchronization
and increase in random integration between neurons, result-
ing in reduced cortical signal coherence and FC [37]. Collec-
tively, our findings suggest that rapidly increasing temporal
variability in the related brain regions is an important feature
in the reorganization and integration of resting-state func-
tional network during the subacute stage.

Our results also demonstrated reduced temporal variabil-
ity in the ipsilesional PreCG and the contralesional hippo-
campus during the early chronic stage. Reduced temporal
variability within a given region means that communication
between this region and the other regions remains in a high
degree of synchronization across different time windows,
which is consistent with increased FC between this region
and other regions. These findings were in line with previous
studies, in which the FC strength restoration of the ipsile-
sional PreCG with other brain regions was an essential fea-
ture during motor recovery after stroke [38]. Remarkably,
the contralesional hippocampus, which usually exhibits high
temporal variability in healthy subjects [11], showed reduced
temporal variability during the early chronic stage. Although
the underlying mechanism remains unclear, functional and
structural alterations in the cognitive-related brain regions
such as the hippocampus have been extensively reported to
facilitate recovery of motor function in stroke patients [39–
41]. In particular, reduced temporal variability in the con-
tralesional hippocampus may be related to its increased gray
matter volume [39].

A number of fMRI studies have demonstrated that early
fMRI brain activation patterns were associated with subse-
quent motor recovery independent of initial motor impair-
ment [42–45]. In the present study, we observed that
increased temporal variability of the ipsilesional precentral
gyrus over the subacute stage was positively correlated with
the long-term motor recovery. Previous studies have pointed
out that the reinstatement of previously reduced neural activ-
ity in the ipsilesional primary motor areas was the important
feature of motor recovery after stroke [16, 42, 46–48]. Our
result further strengthened the understanding for the impor-
tant role played by the ipsilesional primary motor cortex in
motor recovery after stroke and also indicated that altered
temporal variability of the ipsilesional precentral gyrus might
serve as a prediction indicator in motor recovery after stroke.

There are some limitations in the present study.
Firstly, although we restricted the participants to stroke
patients with single stroke lesion located within the middle
cerebral artery territory, the location and size of stroke
lesion exhibited a relative heterogeneity across the patients,
which could create challenges in result interpretation. Sec-
ondly, although we adopted a longitudinal study design,
three months follow-up with three time points is relatively
short. A longer follow-up period with more time points is
helpful to fully understand the relationship between tem-
poral variability of functional network and stroke recovery
in the future study. Finally, the impact of flipping image
data on results is unclear.

In summary, using the dynamic network analysis, we
presented a time-dependent topological pattern in temporal
variability of brain network in stroke patients with motor

impairment. We also demonstrated the tight relationship
between altered temporal variability of the ipsilesional pre-
central gyrus and motor recovery after stroke. Although the
study was preliminary and in a modest sample size, our
results support that measuring the temporal variability of
brain network may be a potential tool for evaluating and pre-
dicting the motor recovery after stroke. These findings
expand our understanding of the dynamic properties of brain
networks and provide new insight into the underlying mech-
anisms of reorganization and integration of brain network
over the recovery process after stroke.
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