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Abstract: In this work, a novel three-dimensional (3D) hollow nickel-cobalt layered double hydroxide
(NiCo-LDH) was synthesized using zeolitic imidazole framework-67 (ZIF-67) as a template, and then
utilized to functionalize molybdenum disulfide (NiCo-LDH/MoS2) via electrostatic force. Flame
retardant thermoplastic polyurethane (TPU) composites were prepared by the melt blending method.
Compared to pure TPU, NiCo-LDH/MoS2 filled TPU composite was endowed with a decrease of
30.9% and 55.7% of the peak heat release rate (PHRR) and the peak smoke production rate (PSPR),
respectively. Furthermore, the addition of NiCo-LDH/MoS2 can significantly improve the thermal
stability and char yield of the TPU composite. The catalytic carbonization effect and dilution effect of
NiCo-LDH, and the barrier effect of MoS2 nanosheets enable TPU composites with excellent flame
retardancy and toxic gas suppression ability.

Keywords: layered double hydroxide; molybdenum disulfide; thermoplastic polyurethane;
flame retardancy

1. Introduction

As an important engineering thermoplastic, thermoplastic polyurethane (TPU) has
been widely used in the fields of cable, automotive, building and medical devices because
of its good tensile strength, superior mechanical properties, excellent chemical stability
and adjustable flexibility [1–4]. Nevertheless, TPU itself is flammable and releases a large
amount of black smoke and toxic gases during the combustion process, posing a great
threat to human life and property safety [5]. Therefore, it is highly desirable to find
efficient and halogen-free flame retardants to improve the flame retardant and smoke
suppression properties of TPU. In recent years, nanoscale fillers such as molybdenum
disulfide (MoS2) [6], layered double hydroxide (LDH) [7] and graphene (GO) [8] have been
used as flame retardant additives for TPU and other polymers.

Layered double hydroxide (LDH) is a layered material similar to brucite, also known
as hydrotalcite or anionic clay, mainly composed of a positively charged layer and interlayer
anion [9]. The two-dimensional (2D) layered structure of LDH can not only hinder the heat
and mass transfer between the combustion zone and the polymer matrix, but also dilute
the flammable gases by releasing water vapor and carbon dioxide during the polymer
decomposition process [10]. Nevertheless, LDH with higher surface energy tends to
aggregate together, which is not conducive to improving the flame retardancy of the
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polymer [11]. Taking advantage of the difference in internal and external stability of metal-
organic frameworks (MOFs) as in situ sacrificial templates to prepare three-dimensional
(3D) hollow LDH materials is a dramatic research orientation [12,13]. The construction of
hierarchical 3D architectures based on 2D LDH can effectively inhibit the aggregation of
LDH nanosheets, thereby improving the compatibility of LDH and polymer matrix [14].
Zeolitic imidazole framework-67 (ZIF-67) has been shown to be ideal sacrificial template for
the construction of hollow LDH [15]. Zhang [16] et al. prepared 3D HGM@LDH@DOPO
hybrid material using ZIF-67 as in situ sacrificial templates, hollow glass microspheres
(HGM) and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) as synergistic
flame retardants. The obtained HGM@LDH@DOPO was added to the epoxy (EP) to prepare
PPcomposites. The cone calorimeter test (CCT) results showed that the peak heat release
rate (PHRR) and total heat release (THR) of EP composites were reduced by 56.4% and
14.7% with 5 wt% HGM@LDH@DOPO loadings, respectively. Typically, the loading level
of LDH in polymer composites is relatively low (less than 5%). In order to achieve flame
retardant requirements, LDH can be combined with other flame retardants to obtain the
synergistic flame retardant effect [17].

As a rising two-dimensional material, molybdenum disulfide (MoS2) has excellent
mechanical properties, low thermal conductivity and non-combustibility, this facilitates its
application as a heat stabilizer and flame retardant in polymer composites [18]. However,
the inert surface and interlayer van der Waals forces of MoS2 nanosheets easily lead to weak
interfacial interaction between MoS2 and the polymer matrix, resulting in poor mechanical
and flame retardant properties of polymer composites [19]. Therefore, it is necessary to
exfoliate MoS2 into a single layer or few layers for the purpose of uniform dispersion in the
polymer. Peng [20] et al. utilized carboxyl-rich poly(ionic liquid)-PCMVIm to exfoliate and
non-covalently functionalize MoS2, and employed as nanofillers for polyacrylonitrile (PAN)
fiber. The results showed that the tensile strength and elongation at break of the PCMVIm-
MoS2/PAN composite fiber increased by 55% and 70.9%, respectively. In addition, the
peak heat release rate, peak smoke release rate and peak CO generation rate of PCMVIm-
MoS2/PAN composite fiber decreased by 48.7%, 51.4% and 63.5%, respectively. Hence, the
combination of 3D hollow LDH and exfoliated MoS2 nanosheets is expected to play a great
role in improving the flame retardancy and smoke suppression of TPU.

In this work, the novel 3D hollow NiCo-LDH was synthesized by hydrothermal
method using ZIF-67 as in situ sacrificial templates, and the 3D hollow NiCo-LDH and
MoS2 were hybridized to synthesize 3D hollow NiCo-LDH/MoS2 hybrid material. Simul-
taneously, the structure and morphology of the NiCo-LDH/MoS2 hybrid material were
investigated in detail. Then MoS2, NiCo-LDH and NiCo-LDH/MoS2 filled TPU composites
were prepared by melt blending, and their effects on the flame retardant, smoke suppression
properties, thermal stability and toxic gas emission of TPU were further studied.

2. Experimental
2.1. Materials

Nickel (II) nitrate hexahydrate (Ni(NO3)2·6H2O, AR) was supplied by Tianjin Ding-
shengxin Chemical Co. Ltd., Tianjin, China. Molybdenum disulfide (MoS2) and n-
butyllithium (C4H9Li, AR) were provided by Sinopharm Group Chemical Reagent Co. Ltd.,
Shanghai, China. Cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O, AR), 2-Methylimidazole
(2-MIM, AR), ethanol absolute, methanol were purchased from Aladdin Chemical Reagent
Co., Ltd., Shanghai, China. Thermoplastic polyurethane (TPU, 9380A) was bought from
Germany’s bayer, Shanghai, China.

2.2. Synthesis of 3D Hollow NiCo-LDH

ZIF-67 was synthesized according to previous reports in the literature [21,22]. 3D
hollow NiCo-LDH was fabricated using the hydrothermal method. Typically, 200 mg
of ZIF-67 was dissolved in 50 mL of anhydrous ethanol and ultrasonically dispersed for
30 min, which was recorded as liquid A. Then 600 mg of nickel nitrate hexahydrate was
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ultrasonically dispersed in 30 mL of anhydrous ethanol, which was recorded as liquid
B. Finally, mix liquid A and liquid B uniformly and then transfer them into a 100 mL
Teflon-lined autoclave, and reacted at 90 ◦C for 2 h. After cooling to room temperature, the
obtained product was washed three times with ethanol in a centrifuge, and dried in an
oven at 60 ◦C for 10 h to obtain hollow NiCo-LDH.

2.3. Synthesis of 3D Hollow NiCo-LDH/MoS2 hybrid material

Preparation of exfoliated MoS2 nanosheets by Li-ion intercalation [23]. The 3D hollow
NiCo-LDH/MoS2 hybrid material was also synthesized by the hydrothermal method. Figure 1
is the preparation process diagram of the 3D hollow NiCo-LDH/MoS2 hybrid material.
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Figure 1. The preparation process diagram of 3D hollow NiCo-LDH/MoS2.

2.4. Synthesis of TPU Composites

Under the mixing conditions of 180 ◦C and 30 rpm, 58 g of TPU was added to the
mixer, and then the flame retardants with a mass fraction of 2 wt% were blended into the
TPU matrix and stirred for 10 min. The specific formulations of TPU composites are shown
in Table 1. Afterwards, the prepared TPU composites were put into a tablet press (180 ◦C,
10 MPa), and the TPU composites were hot-pressed for 10 min and cold-pressed for 3 min
to obtain a size of 100 mm × 100 mm × 3 mm of TPU composites.

Table 1. TPU composites formula table.

Sample Code TPU (wt%) MoS2 (wt%) NiCo-LDH (wt%) NiCo-LDH/MoS2 (wt%)

TPU0 100 0 0 0
TPU1 98 2 0 0
TPU2 98 0 2 0
TPU3 98 0 0 2

2.5. Characterization

X-ray diffraction (XRD) was recorded on an X-ray diffractometer equipped with
Cu-Kα tube and Ni filter (λ = 0.1542 nm), and the diffraction angle (2θ) ranged from
5◦ to 80◦. Fourier transform infrared (FTIR) spectra of the prepared samples were per-
formed by a Nicolet 6700 FTIR spectrophotometer in the range of 4000 cm−1 to 400 cm−1.
The morphology of the prepared samples was observed using a scanning electron mi-
croscope (SEM), accompanied by an accelerating voltage of 9 kV. Transmission electron
microscopy-energy dispersive spectrometer (TEM-EDS) images were performed with a
JEM-2100Plus instrument at 200 KV. X-ray photoelectron spectroscopy (XPS) characterizes
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the elemental chemical states of the prepared samples. The thermal stability of the samples
was tested using a thermogravimetric analyzer (TGA). About 10.0 mg of the sample was
placed in an alumina crucible and heated from 40 ◦C to 800 ◦C at a linear heating rate of
20 ◦C/min, setting the N2 flow rate to 20 mL/min. The combustion tests were carried
out on a cone calorimeter according to the ISO 5660 test standard. All TPU composites
(100 mm × 100 mm × 3 mm) were wrapped with aluminum foil and measured under an
external heat flux of 50 kW/m2. Analysis of pyrolysis products by Thermogravimetric-
Fourier transform infrared spectrometer (TG-FTIR).

3. Results and Discussions
3.1. Characterization of Hollow NiCo-LDH and Its hybrid material

The structural information of the prepared samples was analyzed by XRD, as shown
in Figure 2. As demonstrated in Figure 2a, the XRD pattern of MoS2 exhibits an obvious
peak at 2θ = 14.2◦, corresponding to the (002) plane. In addition, the characteristic peaks of
ZIF-67 are in agreement with the previously reported work [21]. For NiCo-LDH, reflections
at 2θ = 11.3◦, 22.9◦, 34.1◦ and 60.7◦ can be indexed as (003), (006), (009), and (110) diffraction
peaks of NiCo-LDH, respectively, while the diffraction peaks are sharper, indicating that
NiCo-LDH has a good crystalline form [24]. It can be seen from the figure that the NiCo-
LDH/MoS2 hybrid material has similar characteristic peaks to NiCo-LDH, and there is
no diffraction peak corresponding to MoS2, indicating a high dispersion state of MoS2 in
the hybrid material. This is mainly attributed to the loss of face-to-face stacking structure
of MoS2 nanosheets for the growth of NiCo-LDH on MoS2 surfaces [25]. Compared with
NiCo-LDH, the diffraction peaks of NiCo-LDH/MoS2 are blunt, which is caused by the
disorder of the stacked structure between NiCo-LDH and MoS2 nanosheets.
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Figure 2. XRD patterns of MoS2, ZIF-67 (a) and NiCo-LDH, NiCo-LDH/MoS2 (b).

Figure 3a shows the FTIR spectra of MoS2, NiCo-LDH and NiCo-LDH/MoS2. It can be
seen from Figure 3a that the broad absorption peak at 3443 cm−1 of the three materials orig-
inates from the stretching vibration of the -OH group. The characteristic peak at 1627 cm−1

is ascribed to the bending vibration of water molecules. For NiCo-LDH, the stretching
vibration of NO3

− is also detected at around 1380 cm−1. Due to the lattice vibration of
metal-O, NiCo-LDH exhibits characteristic absorption peaks at 500–800 cm−1 [26]. The BET
surface area of hollow NiCo-LDH was detected by N2 adsorption/desorption isotherm,
as shown in Figure 3b. Qin et al. reported that the BET surface area of solid NiCo-LDH
is about 34 m2/g [27]. Interconnected NiCo-LDH nanosheets are loosely stacked on the
precursor surface to form a highly porous structure, therefore NiCo-LDH has a high BET
surface area of 80.3768 m2/g, which helps the NiCo-LDH to form more interfaces with the
polymer matrix, thus improving the interaction between the two. Figure 3c shows the TG
curves of MoS2, NiCo-LDH and NiCo-LDH/MoS2. It is noted that MoS2 nanosheets have
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high thermal stability, and the char yield of MoS2 is 90.29%. NiCo-LDH undergoes three
thermal degradation processes by which the loss of interlayer H2O, decomposition of metal
hydroxide, and collapse of metal organic framework. NiCo-LDH/MoS2 and NiCo-LDH
have similar thermal decomposition trends, which might be attributed to the lower content
of MoS2 in the hybrid material. In addition, the char yield of NiCo-LDH/MoS2 (58.28%)
is higher than that of NiCo-LDH (57.64%), indicating that NiCo-LDH/MoS2 has better
high temperature thermal stability. In Figure 3d, MoS2 nanosheets exhibit a sheet-like
structure. The dark parts in the sample can be attributed to the partial aggregation of
MoS2 nanosheets.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 16 
 

 

cm−1 is ascribed to the bending vibration of water molecules. For NiCo-LDH, the stretch-
ing vibration of NO3− is also detected at around 1380 cm−1. Due to the lattice vibration of 
metal-O, NiCo-LDH exhibits characteristic absorption peaks at 500–800 cm−1 [26]. The BET 
surface area of hollow NiCo-LDH was detected by N2 adsorption/desorption isotherm, as 
shown in Figure 3b. Qin et al. reported that the BET surface area of solid NiCo-LDH is 
about 34 m2/g [27]. Interconnected NiCo-LDH nanosheets are loosely stacked on the pre-
cursor surface to form a highly porous structure, therefore NiCo-LDH has a high BET 
surface area of 80.3768 m2/g, which helps the NiCo-LDH to form more interfaces with the 
polymer matrix, thus improving the interaction between the two. Figure 3c shows the TG 
curves of MoS2, NiCo-LDH and NiCo-LDH/MoS2. It is noted that MoS2 nanosheets have 
high thermal stability, and the char yield of MoS2 is 90.29%. NiCo-LDH undergoes three 
thermal degradation processes by which the loss of interlayer H2O, decomposition of 
metal hydroxide, and collapse of metal organic framework. NiCo-LDH/MoS2 and NiCo-
LDH have similar thermal decomposition trends, which might be attributed to the lower 
content of MoS2 in the hybrid material. In addition, the char yield of NiCo-LDH/MoS2 
(58.28%) is higher than that of NiCo-LDH (57.64%), indicating that NiCo-LDH/MoS2 has 
better high temperature thermal stability. In Figure 3d, MoS2 nanosheets exhibit a sheet-
like structure. The dark parts in the sample can be attributed to the partial aggregation of 
MoS2 nanosheets. 

 
Figure 3. FTIR spectra of MoS2, NiCo-LDH and NiCo-LDH/MoS2 (a); N2 adsorption−desorption iso-
therms of NiCo-LDH (b); TG curves of MoS2, NiCo-LDH and NiCo-LDH/MoS2 (c); TEM image of 
MoS2 (d). 

Morphologies of ZIF-67, NiCo-LDH and NiCo-LDH/MoS2 were observed by TEM 
and SEM, as shown in Figure 4. It can be seen from Figure 4a,d that the precursor ZIF-67 
exhibits a solid regular dodecahedron morphology with uniform size (about 100 nm), and 
its surface is considerably smooth. As shown in Figure 4b,e, NiCo-LDH still maintains the 
morphology of the precursor and has a hollow interior, and NiCo-LDH nanosheets grown 
on the surface of the ZIF-67 precursor. From Figure 4c, it can be seen that the NiCo-

Figure 3. FTIR spectra of MoS2, NiCo-LDH and NiCo-LDH/MoS2 (a); N2 adsorption−desorption
isotherms of NiCo-LDH (b); TG curves of MoS2, NiCo-LDH and NiCo-LDH/MoS2 (c); TEM image
of MoS2 (d).

Morphologies of ZIF-67, NiCo-LDH and NiCo-LDH/MoS2 were observed by TEM
and SEM, as shown in Figure 4. It can be seen from Figure 4a,d that the precursor ZIF-67
exhibits a solid regular dodecahedron morphology with uniform size (about 100 nm), and
its surface is considerably smooth. As shown in Figure 4b,e, NiCo-LDH still maintains
the morphology of the precursor and has a hollow interior, and NiCo-LDH nanosheets
grown on the surface of the ZIF-67 precursor. From Figure 4c, it can be seen that the NiCo-
LDH/MoS2 hybrid material fails to detect MoS2, which may be caused by the complete
coverage of MoS2 nanosheets by NiCo-LDH.

Figure S1 gives the EDS spectrum and plan scan image of NiCo-LDH/MoS2. It can be
seen from Figure S1 that Co, Ni and O elements are uniformly distributed on the ZIF-67-
derived hollow dodecahedral framework. At the same time, the detected Mo element also
confirms the existence of MoS2, indicating the successful preparation of NiCo-LDH/MoS2
hybrid material.
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XPS was used to test the chemical composition of NiCo-LDH/MoS2 and the valence
states of the elements, and the results are presented in Figure 5. Figure 5a is the XPS survey
spectrum of NiCo-LDH/MoS2, indicating the presence of C, O, Ni, Co and Mo elements of
hybrid material. This further proves the successful hybridization of NiCo-LDH and MoS2.
In the high-resolution Ni 2p spectrum, the peaks at 853.2 ev and 870.8 ev can be attributed
to Ni 2p3/2 and Ni 2p1/2. Another two peaks of 858.8 ev and 877.2 ev correspond to the
satellite shake-up peaks of Ni 2p3/2 and Ni 2p1/2, respectively [27]. These peaks prove
that the valence state of the Ni element is divalent. As shown in Figure 4c, the binding
energies of Co2+ 2p3/2 and Co2+ 2p1/2 at fitting peaks 779.3 ev and 795.2 ev, while the
binding energy peaks at 778.2 ev and 793.7 ev refer to Co3+ 2p3/2 and Co3+ 2p1/2 [28].
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3.2. CCT Analysis

It has been demonstrated that the results of the CCT correlate well with the results
obtained in the large-scale fire tests and can be used to predict the burning behavior of
polymers in real fires [29]. Therefore, the effects of MoS2, NiCo-LDH and NiCo-LDH/MoS2
on the flame retardant and smoke suppression properties of TPU composites were further
investigated by the cone calorimeter.

Heat release rate (HRR) is an important indicator to describe the fire hazard of poly-
mers and can predict the behavior of polymers under real combustion conditions [30].
The HRR results for pure TPU and TPU composites are given in Figure 6 and Table 2. In
Figure 6, pure TPU burns fiercely after being ignited and has the highest peak heat release
rate (PHRR) of 1135 kW/m2. The addition of 2 wt% NiCo-LDH and MoS2 nanosheets
slightly decreases the PHRR of TPU composites to 804 kW/m2 and 734 kW/m2, respec-
tively, indicating that MoS2 and NiCo-LDH nanosheets can inhibit the heat release of TPU
composites and improve the flame retardancy of TPU composites to a certain extent. It is
worth noting that the PHRR value of NiCo-LDH/MoS2 filled TPU composite is lower than
that of single MoS2 or NiCo-LDH filled TPU composites, indicating that NiCo-LDH and
MoS2 have synergistic flame retardant effect. On the one hand, the transition metals nickel
and cobalt in NiCo-LDH have catalytic carbonization effects. Coke can form a barrier effect
on the polymer surface, slow down heat and mass transfer between the gas phase and
the condensed phase, and protect the underlying material from further combustion [31].
On the other hand, two-dimensional MoS2 nanosheets have nano-barrier effect, which
can hinder the release of volatile products including hydrocarbons, so that less volatile
products form fuel into the combustion zone, thereby reducing the heat release rate [32]. It
is not difficult to see from Figure 6 that the ignition time of TPU composites is longer than
that of pure TPU, which is related to the decomposition of MoS2 and NiCo-LDH at low
temperatures. Of note, The addition of MoS2 nanosheets or NiCo-LDH/MoS2 shortens the
ignition time of TPU composites, which is attributed to the early decomposition of MoS2
nanosheets or NiCo-LDH/MoS2.
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Figure 7 exhibits the total heat release (THR) curves of pure TPU and TPU composites.
Pure TPU has the highest THR value of 118.8 MJ/m2. After the incorporation of 2 wt%
NiCo-LDH and MoS2 separately, the THR values of TPU composites are decreased to
104.6 MJ/m2 and 100.7 MJ/m2, respectively, this is mainly because the uniformly dispersed
NiCo-LDH and MoS2 nanosheets in the TPU matrix can inhibit the release of combustible
gases during the combustion process, thereby promoting carbonization. Meanwhile, NiCo-
LDH will release water vapor and reduce the surface temperature of TPU substrate during
the combustion process, so as to achieve better flame retardant effect [33]. However, when
incorporating 2 wt% NiCo-LDH/MoS2 hybrid material into TPU, the THR value of TPU3
increased to 106.1 MJ/m2, which may be due to the combination of MoS2 and NiCo-LDH
further reducing the exfiltration rate of combustible gas, leading to more complete oxidative
combustion of combustible volatiles such as hydrocarbons and thus generating more heat.
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The amount of heavy smoke released during the combustion process is an important
parameter to evaluate the fire hazard of TPU. The SPR (smoke production rate) curves of
pure TPU and its composites are shown in Figure 8. The PSPR (peak smoke production rate)
value of pure TPU reaches 0.113 m2/s, indicating the highest smoke emission. Nevertheless,
the addition of MoS2 has little effect on the PSPR value of the TPU composite, indicating that
MoS2 alone could not achieve satisfactory smoke suppression effect. In contrast, the PSPR
value of NiCo-LDH filled TPU2 is further reduced to 0.056 m2/s, which is reduced by 50.4%
as compared to that of pure TPU. It is ascribed that the transition metals Ni and Co have the
effect of catalytic carbonization, and the formed carbon layer can reduce the combustible
gas and smoke-forming materials in the gas phase. In addition, the porous structure of 3D
hollow NiCo-LDH can absorb organic volatiles generated by the thermal decomposition of
TPU, which are the main source of smoke particles [34]. When TPU composite is reinforced
with NiCo-LDH/MoS2 hybrid material, its PSPR value is further reduced to 0.05 m2/s,
clearly revealing the significant enhancement of smoke suppression performance of TPU
composites. This is mainly attributed to NiCo-LDH and MoS2 decomposed nickel, cobalt
and molybdenum compounds can catalyze the formation of carbon, which can suppress
the smoke production rate of TPU composites [32].
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The TSP (total smoke production) curves for pure TPU as well as TPU composites are
given in Figure 9. Obviously, pure TPU releases the most smoke during combustion, with
a TSP value as high as 12.3 m2. It is worth noting that the TSP value of TPU1 is 11.9 m2,
which is basically the same as that of pure TPU. Compared with pure TPU, the TSP value
of TPU2 is 8.8 m2, corresponding to a decrease of 28.5%. This can be explained that organic
volatile is the main source of smoke particles, and the presence of NiCo-LDH makes TPU
molecules more retained in the condensed phase without being converted into an organic
volatile [35]. The TSP value of the TPU composite with NiCo-LDH/MoS2 hybrid material
is further reduced to 8.2 m2, corresponding to a 33.3% reduction compared to pure TPU.
The above results indicate that the combination of two additives imparts better smoke
suppression to TPU.
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3.3. Thermal Stability Analysis

TGA is a widely used technique to rapidly evaluate the thermal stability of ma-
terials, and can also reveal the thermal degradation behavior of polymers at different
temperatures [36]. To profoundly understand the influence of MoS2, NiCo-LDH and
NiCo-LDH/MoS2 hybrid material on the thermal stability of TPU composites, the thermal
oxidative degradation behavior and carbon residues of different TPU composites were
compared using TGA.

The TG and DTG profiles for pure TPU and TPU composites under N2 atmosphere are
displayed in Figure 10, and the related data are summarized in Table 3. From Figure 10b, it
can be seen that pure TPU mainly presents two decomposition stages. More precisely, the
first decomposition stage corresponds to the removal of CO2, and the second decomposition
stage is mainly attributed to the dehydration carbonization reaction [37]. In contrast, TPU
composites exhibit only one thermal decomposition stage, the rapid decomposition stage
of TPU composites occurs between 250 ◦C and 450 ◦C. From Figure 10a, it can be easily
observed that the initial decomposition temperature (T−5%, temperatures at 5% weight
loss) of the TPU composites is lower than that of pure TPU, which is mainly attributed to
the early degradation of MoS2 and NiCo-LDH. In addition, the T−5% of TPU3 is 6 ◦C higher
than that of TPU2, demonstrating that the NiCo-LDH/MoS2 hybrid material improved
the thermal stability of TPU composites. As can be seen, the char yields of TPU1 and
TPU2 at 800 ◦C are 7.93% and 8.02%, which are 1.36 and 1.37 times than that of pure TPU,
respectively. The enhanced char yields may be due to the addition of MoS2 or NiCo-LDH,
implying the formation of effective barrier layers in the TPU composites. Furthermore, the
char yield of TPU3 reaches 11.87% at 800 ◦C. demonstrating that NiCo-LDH and MoS2
nanosheets jointly promote the improvement of char yield of TPU composite from the
above analysis, the catalytic carbonization effect of NiCo-LDH/MoS2 hybrid material can
enhance the thermal stability of TPU composites, which is beneficial to improve the fire
safety of TPU composites [38].
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3.4. Char Residue Analysis

In order to study the flame retardant mechanism of NiCo-LDH/MoS2 in the condensed
phase, the digital photos of carbon residues of TPU composites were firstly investigated.
Figure S2 gives digital photos of carbon residues of pure TPU of TPU composites after
the cone calorimeter test. It can be clearly seen from Figure S2 that the pure TPU burns
very completely, and there is no remaining carbon residue. For TPU1 added with MoS2,
the carbon layer is not complete, which also leads to the inability of TPU1 to effectively
suppress mass and heat transfer during the combustion process. Although the carbon
residue of TPU2 covers the entire aluminum foil, the carbon residue is loose and fragile. On
the contrary, by incorporating NiCo-LDH/MoS2 hybrid material into TPU, the amount of
carbon residual increases significantly, and the carbon layer is thicker and harder, indicating
that NiCo-LDH/MoS2 hybrid material has excellent catalytic carbonization effect.

The SEM images of the carbon residues of the TPU composite are shown in Figure 11.
It is clear that there are obvious cracks and a large number of holes in the carbon residual of
TPU1. When NiCo-LDH is added to TPU, the carbon residue of TPU2 has a more continuous
structure, but there are still some cracks and holes. In comparison, the application of
NiCo-LDH/MoS2 hybrid material in TPU gives a denser and less porous carbon residue.
The dense carbon layer structure can not only effectively inhibit the transfer of heat and
volatiles, but also protect the underlying polymer, thereby significantly improving the
thermal stability and flame retardant properties of TPU composites [39].
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Figure 11. SEM images of the carbon residues of TPU composites.

The carbon residues of TPU1 and TPU3 were analyzed by XRD and Raman tests, and
the results are shown in Figure 12. It can be found in Figure 12a that diffraction peaks of
MoO3 and MoS2 appeared in the XRD pattern of the carbon residue of TPU1. As shown
in Figure 12b, the XRD pattern of the carbon residue of TPU3 not only has characteristic
peaks of metal oxides such as MoO3, NiO, Ni2O3 and Co2O3, but also has a diffraction peak
of graphite crystallite around 2θ = 25◦. The degree of graphitization of carbon residues
was determined by Raman spectra, as shown in Figure 12c,d. It is clear from both Raman
spectra that obvious peaks are observed at 1360 cm−1 and 1598 cm−1, representing the
D and G bands, respectively. The area ratio of the D band and G band (ID/IG) is widely
used to determine the degree of graphitization of carbon residues. The lower the value
of ID/IG, the higher the degree of graphitization of the carbon residues [40]. The ID/IG
value of TPU3 is 2.71, lower than that of TPU1 (3.19), which indicates that the addition of
NiCo-LDH/MoS2 is beneficial to improving the degree of graphitization of carbon residues.
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3.5. Thermal Decomposition Products Analysis

In order to obtain information about the variation of gaseous products with tempera-
ture during the thermal decomposition of TPU composites, 3D TG-FTIR spectra of TPU0
and TPU3 are given in Figure S3. As shown in Figure S3, the thermal decomposition process
of TPU0 and TPU3 is similar, which indicates that the addition of NiCo-LDH/MoS2 hybrid
material has little effect on the inherent properties of TPU. In addition, it can be obviously
seen that the temperature at which TPU3 releases thermal decomposition products is lower
than that of TPU0, which is primarily because the addition of NiCo-LDH/MoS2 hybrid
material makes the initial decomposition temperature of TPU composite earlier.

Figure 13a presents the FTIR spectrum of the pyrolysis products of TPU0 and TPU3
at the maximum decomposition rate. The characteristic peak at 3548 cm−1 is ascribed to
the vibration of the O-H bond in H2O. The absorption peak appearing at 2980 cm−1 is
assigned to the symmetrical stretching vibration of the C-H bond in hydrocarbons. The
peaks at 2360 cm−1 and 1766 cm−1 are typical absorption peaks of CO2 and carbonyl
compounds, respectively. The absorption peaks of aromatic hydrocarbons and HCN are
located at 1510 cm−1 and 678 cm−1, respectively. As shown in Figure 13b,c, the presence of
NiCo-LDH/MoS2 hinders the release of HCN and CO2, which is mainly attributed to the
formation of high-quality carbon residues and the barrier effect of MoS2 nanosheets [41].
From Figure 13d, it is observed that the amount of H2O released in the pyrolysis product
of TPU3 is significantly higher than that of pure TPU, which is beneficial to diluting the
combustible gas.
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3.6. Flame Retardant Mechanism

Based on the flame retardant properties and condensed phase-gas phase analysis
of TPU/NiCo-LDH/MoS2 composite above, a possible flame retardant mechanism was
proposed. In the condensed phase: (1) The transition metals Ni, Co and Mo have the
effect of catalytic carbonization. The formed carbon layer can block the transfer of heat
and combustible gas between the combustion zone and the TPU matrix, and protect the
unburned TPU matrix. (2) During combustion, MoS2 and NiCo-LDH act as physical
barriers, slowing down the escape of combustible, hindering the permeation of oxygen
and inhibiting the exudation of toxic substances. (3) The metal oxides generated by the
decomposition of NiCo-LDH/MoS2 not only improve the degree of graphitization of the
carbon layer, but also can absorb the flue gas generated during the combustion process [34].
In the gas phase, NiCo-LDH releases non-combustible gases (H2O, CO2) that can dilute the
concentration of combustible gases to some extent.

4. Conclusions

In conclusion, 3D hollow NiCo-LDH was assembled on MoS2 nanosheets by the prin-
ciple of electrostatic self-assembly to form 3D hollow NiCo-LDH/MoS2 hybrid material.
Characterization of the structure and morphology of the NiCo-LDH/MoS2 by XRD, FTIR,
SEM, TEM, BET and XPS. Then the NiCo-LDH/MoS2 was mixed with TPU by melt blend-
ing. With the addition of NiCo-LDH/MoS2, PHRR, PSPR and TSP values of the obtained
TPU composite were remarkably decreased by 42.9%, 55.7% and 33.3%. Meanwhile, the
TPU composite filled with NiCo-LDH/MoS2 hybrid material had higher char yield and
thermal stability. In addition, SEM, XRD and Raman spectroscopy revealed that the NiCo-
LDH/MoS2 filled TPU composite has dense carbon residue with enhanced graphitization
degree, which is able to protect the underlying TPU matrix. TG-FTIR results showed
NiCo-LDH/MoS2 hybrid material also exhibits excellent toxic gas (HCN) suppression per-
formance. In summary, the catalytic carbonization effect and dilution effect of NiCo-LDH,
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and the barrier effect of MoS2 nanosheets enable TPU composites with excellent flame
retardancy, thermal stability and toxic gas suppression ability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14112204/s1, Figure S1: EDS spectrum (a) and plan scan image (b) of NiCo-LDH/MoS2;
Figure S2: Digital photographs of the char residues of TPU composites; Figure S3: TG-FTIR spectra of
thermal decomposition products of TPU0(a) and TPU3(b).
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