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Abstract

The massive employment of computational models in network epidemiology calls for the

development of improved inference methods for epidemic forecast. For simple compartment

models, such as the Susceptible-Infected-Recovered model, Belief Propagation was proved

to be a reliable and efficient method to identify the origin of an observed epidemics. Here we

show that the same method can be applied to predict the future evolution of an epidemic out-

break from partial observations at the early stage of the dynamics. The results obtained

using Belief Propagation are compared with Monte Carlo direct sampling in the case of SIR

model on random (regular and power-law) graphs for different observation methods and on

an example of real-world contact network. Belief Propagation gives in general a better pre-

diction that direct sampling, although the quality of the prediction depends on the quantity

under study (e.g. marginals of individual states, epidemic size, extinction-time distribution)

and on the actual number of observed nodes that are infected before the observation time.

Introduction

Governments and health-care systems maintain costly surveillance programs to report and

monitor over time new infection cases for a variety of diseases, from seasonal influenza to the

most dreadful viruses such as Ebola. Although surveillance is at the core of modern epidemiol-

ogy, the early detection of a disease does not automatically guarantee that the fate of the epi-

demics will be easy to predict, because of the intrinsic stochasticity of the transmission process

and the incompleteness of the accessible information. The two issues are often intertwined

because a mathematical description that provides a sufficiently accurate prediction at some

spatial/temporal scale could become inadequate at another, due to the lack of sufficiently

detailed information. For instance, individual-based stochastic compartment models, such as

the Susceptible-Infected-Recovered model, are widely used to describe disease transmission in

contact networks, but human interactions have only recently become the object of accurate

data mining, and exclusively in small and controlled environments such as schools and hospi-

tals (e.g. by means of the RFID technology) [1–4]. For large-scale epidemic forecast a detailed

individual-based description is challenging, therefore researchers and practitioners have resort
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to coarse-grained metapopulation representations integrated with large-scale datasets on

human mobility and real-time estimated parameters [5–7].

Beside the difficulty of obtaining accurate data on human interactions, also the observation

of the epidemic progression is usually partial, in particular during the initial stages of an out-

break. For this reason, the ability to use all available information to produce a reliable forecast

from early and partial observations is crucial to minimize the impact of a disease, at the same

time saving financial resources. Using a simple SIR model, Holme [8, 9] recently showed that

even in the ideal situation in which all information about the structure of the interpersonal

network is available, the intrinsic stochasticity of the epidemic process makes prediction of rel-

evant quantities, such as the final outbreak size and the extinction time, very difficult. The

quality of the prediction depends on the epidemic parameters (transmission and recovery

rates) and on the structure of the underlying network. Predicting the evolution of the epidem-

ics becomes then even more difficult when only partial observation of the state of the individu-

als is provided.

In a recent series of works [10–12], the problem of inferring the origin of an epidemics in

individual-based models from partial observations was investigated. Among the different

methods proposed, the Belief Propagation (BP) method [10] is not only very reliable and effi-

cient in identifying the origin of an observed epidemics, it also makes possible to easily recon-

struct the probability marginals of the individual states at any time, exploiting the causality

relations that are generated during the epidemic propagation. Hence, the method can be used

to complete the missing information at the time of observation and applied to the problem of

epidemic forecasting. In the present paper, we will use BP to predict the evolution of a SIR

model on a given network from a partial observation of the states of the nodes in the early

stage of the dynamics.

The paper is organized as follows. In Section Inference Models we define direct sampling

and Bayesian methods and we introduce the metrics used for validation of the results. Section

Results contains a comparison between the prediction obtained using Belief Propagation and

Monte Carlo sampling for simulated SIR epidemics on random (regular and power-law)

graphs, as well as on a real network of sexual contacts. For these networks, the effectiveness of

the methods to predict local (e.g. marginals of individual states) and global (e.g. epidemic size,

extinction-time distribution) properties are discussed. Section Methods reports the description

of the main techniques employed in this work, in particular the static factor-graph representa-

tion of the epidemic process and the Belief Propagation equations used to evaluate the relevant

posterior probabilities of the epidemic process given the observations.

Inference models

Prediction from partial observations in the SIR model

We consider a discrete time susceptible-infected-recovered (SIR) epidemic model on a graph

G = (V, E) that represents a contact network of N = |V| individuals. At each time step of the

dynamics a node i 2 V can be in one of three possible states: susceptible (S), infected (I) and

recovered (R). The state of a node i at time t is represented by a variable xti 2 fS; I;Rg. The sto-

chastic process is defined by a set of parameters {λij, λji}(i, j)2E and {μi}i2V, such that at each

time step an infected node i can infect every susceptible node j in his neighborhood @i with a

probability λij, then recover with probability μi (see Sec. Methods for further details on the

dynamics). For a given assignment of the infection parameters and a given initial condition

x0 ¼ fx0
i gi2V , a huge number of different realizations of the stochastic process exists, although

some of these outcomes are more likely to occur than others. Epidemic forecasting consists in

providing predictions about how much likely some outcomes are in the form of probability
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distributions, in particular the probability marginals for the states of individual nodes. In real-

istic situations, the epidemic forecast is performed at some time after the initial infection

event, when a number of infected cases is discovered in the population. The information avail-

able is thus usually localized in time and involves only a fraction of the overall population: we

assume that at time Tobs the state xTobsi is made available for a set of nodes i 2 Vobs� V and no

information about the state is supplied for the nodes not in Vobs. In order to focus only on the

effects of partial observation, we assume that the structure of the contact network is completely

known, and it does not change over time. We remark that, in the case we knew how the net-

work changes over time, we could easily generalize the prediction methods to time-varying

networks; unfortunately, the prediction of future contacts in time-varying networks is usually

by itself a non-trivial inference problem [13, 14].

Direct sampling

Since the SIR stochastic process is Markovian, when Vobs = V (complete observation) the prob-

ability of the future states xt for t> Tobs can be estimated performing a direct sampling, that is

generating a large number Ms of virtual realizations of the Markov chain from the same initial

conditions (a complete observation at Tobs) and directly estimating the probability of an event

from its relative frequency of occurrence in the experiment. In particular, if we call xti;‘ the

value of the variable i at time t in the ℓ-th realization of the stochastic process from the same

initial conditions, the individual probability marginal Pðxti ¼ XjxTobsÞ can be estimated from

the experimental average

P̂ðxti ¼ XjxTobsÞ ¼
1

Ms

XMs

‘¼1

I xti;‘ ¼ X
h i

ð1Þ

that converges as the empirical averages of a Bernoulli variable, i.e it rapidly converges to the

correct value with a standard deviation that decreases with the number of trials as/ 1=
ffiffiffiffiffiffi
Ms
p

.

When xTobs is only partially known (Vobs� V), the uncertainty about the future evolution of

an epidemic state is much larger; for instance, Fig 1 shows five very different evolutions of the

epidemic process after the same partial observation. We call yobs the partial configuration that

we observe at Tobs, such that xTobsi ¼ yobsi ; 8i 2 Vobs. In order to apply the direct sampling

method to the case of partial information we first need a way to complete the missing informa-

tion at Tobs. In this work we consider two simple ways to choose the states of unobserved

nodes at Tobs:

• random sampling: given the incomplete observation of the system, the states of unobserved

nodes at time Tobs are drawn randomly, independently and uniformly with the same proba-

bility 1/3, then direct sampling is performed with such an initial condition.

• density sampling: given the incomplete observation of the system, the fraction of observed

nodes in each state X 2 {S, I, R} at time Tobs is used as an empirical probability to assign,

independently and uniformly at random, the state of the unobserved nodes. Direct sampling

is then employed to predict future states. The method can be generalized to include depen-

dence on node attributes, such as the degree, by assigning to the unobserved nodes a state

with a probability computed from the knowledge of the states of observed nodes with the

same attributes.

We remark that unlike the case of complete information, the estimators obtained from these

methods through direct sampling have non-zero bias.

Predicting epidemic from partial observations
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A bayesian approach

The posterior probability of a configuration xt at time t given an observation yobs at time Tobs
can be written as

P xtjyobs
� �

¼
P xt; yobsð Þ

P yobsð Þ
/ P xt; yobsjx0

� �
P x0ð Þ; ð2Þ

where in the last expression we neglected the a priori probability PðyTobsÞ of the observed state

that only acts as a normalization constant in our analysis, while P(x0) is the prior on the initial

conditions. In this Bayesian approach, the prediction of the epidemic evolution after Tobs
requires to compute the joint probability distribution P(xt, yobs|x0) of the states at the observa-

tion time and at some later time given the initial condition. In principle, this quantity could be

evaluated experimentally, by taking into account all possible realizations compatible with the

constraints imposed by the dynamics and the observation and discarding the others. However,

the number of possible epidemic trajectories of length t grows as 3tN, making this brute-force

approach computationally unfeasible even for small systems and very early observations. An

approximate sampling method, that we call Similarity Sampling, is inspired by the Soft-

Margin algorithm recently put forward in [15] to infer epidemic origins. The Similarity Sam-

pling method consists in evaluating P(xt, yobs|x0) by computing an empirical histogram over a

large number of realizations of the epidemic process, each of them contributing with a proba-

bility weight that reflects the similarity to the actually observed states at Tobs. Every node in the

Fig 1. Each line represents a different realization for the SIR epidemic process given the (same)

incomplete observation of the initial condition. Configurations in the leftmost column represent the

observed state of the system, the other columns represent the time evolution of the epidemic process in that

specific realization. Nodes colors: Green = Susceptible, Red = Infected, Black = Recovered,

White = Unobserved.

https://doi.org/10.1371/journal.pone.0176376.g001
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set of infected and removed nodes at the time of observation Tobs is used as single seed for a

given number of realizations. We include unobserved nodes with at least one not susceptible

neighbour. We assume to know the initial time of the epidemics within a ΔT0 of time steps.

Therefore we consider realizations with origin in a range [−ΔT0, ΔT0]. The similarity between

a generic realization x̂ and the real one x is measured by computing the Jaccard similarity

function

�ðx̂Tobs ; yobsÞ ¼
jSIþRðx̂TobsÞ \ SIþRðyobsÞj
jSIþRðx̂TobsÞ [ SIþRðyobsÞj

; ð3Þ

where SIþRðx̂TobsÞ is the set of infected and recovered individuals that are observed in the con-

figuration x̂Tobs . The weight function considered is a gaussian/ e� ð�ðx̂Tobs ;yobsÞ� 1Þ2=a2

, where a is a

free parameter. Then the individual marginal probability computed by Similarity Sampling

reads:

P̂ðxti ¼ XjyobsÞ ¼
1

Z

XMs

‘¼1

I x̂ ti;‘ ¼ X
h i

e� ð�ðx̂
Tobs
‘

;yobsÞ� 1Þ2=a2

; ð4Þ

where X 2 {S, I, R} and the factor of normalisation is Z ¼
PMs

‘¼1
e� ð�ðx̂

Tobs
‘

;yobsÞ� 1Þ2=a2

. Note that the

same result can be achieved by normalizing P̂ðxti ¼ XjyobsÞ after having computed the sum.

According to [15], for a fixed value of a, we consider a number Ms of realizations such that

max jPMs
ðxiÞ � PMs

2
ðxiÞj

� �
< 0:1, i.e. the maximum of the differences between individual mar-

ginals after Ms and Ms/2 realizations is smaller than 0.1. For the problem of source inference,

Antulov-Fantulin et al [15] applied the convergence criterion to the marginal probability to be

infected at time t = 0. Instead, in the case of predicting the evolution of the disease spreading,

we check the convergence of the marginal probability of being in any state at any time step.

Given the larger number of conditions, reaching the convergence is computationally more

demanding. In all results of the present paper we initially set a = 0.125. If the convergence cri-

terion is not met for Ms� 8 × 105 we use a = 0.5. The latter value guarantees the convergence

for any instance. However, it is possible to consider the marginal probabilities computed using

a = 0.125 even if the convergence criterion has not been met. In this case, results provided by

Similarity Sampling may slightly vary. Although the method could provide a much more accu-

rate estimate of the individual probability marginals than random and density sampling meth-

ods, such an accuracy is usually obtained through fine-tuning of the parameters and requires a

very high computational power beyond the aim of this work.

Following the recent work by some of the authors [10, 11] we develop here a different

approach that consists in addressing the joint probability distribution P(xt, yobs|x0) as a proba-

bilistic graphical model defined on a static representation of the dynamical trajectories. When

the underlying contact network is a tree, the factor graph on which the graphical model is

defined can be also reduced to a tree, and the joint probability distribution can be computed

exactly by solving a set of local fixed-point equations known as Belief Propagation (BP) equa-

tions. On more general graphs, the BP equations can be considered as a heuristic algorithm

that, under some decorrelation assumptions for the variables, provides a good approximation

of the real probability distribution [16]. The BP equations for the quantity P(x0|yobs), repre-

senting the posterior probability of the initial configuration given an observation at a later

time, were derived in Refs. [10, 11]. The BP equations for the more complex graphical model

in Eq (2) are discussed in detail in Sec. Methods. We stress that, with the BP approach, the pre-

diction of the future evolution of the epidemics passes through the inference of the
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(unobserved) dynamical states prior to the time of observation and the reconstruction of the

causal relations developed in the dynamics.

Validation metrics

We used the different inference models under study to compute, for every node i, the marginal

probabilities Pðxti ¼ XjyobsÞ with X 2 {S, I, R}. These quantities are then used in the binary clas-

sification problem of discriminating whether a node has been infected at a time t0 � t or not,

that turns out to be a relevant measure to quantify the performances of the different prediction

methods. In order to do that, we rank the nodes in decreasing order of magnitude of the prob-

abilities Pðxti ¼ IjyobsÞ þ Pðxti ¼ RjyobsÞ and build a Receiver Operating Characteristic (ROC)

curve [10, 11]. Starting from the origin of the axes, the ROC curve is obtained from the ordered

list of nodes by moving upward by one unit whenever a node is correctly classified as already

infected at time t (true positive) or rightward in case it is not (false positive). The area under

the ROC curve (AUC) expresses the probability that a randomly chosen node that was

infected before time t is actually ranked higher in terms of the corresponding probability mar-

ginal than a randomly chosen susceptible one. When the ranking is equal to the real one, the

area under the ROC is 1, whereas a completely random ordering gives an area equal to 0.5.

The area under the ROC curve gives indication of the fraction of the correctly classified

nodes, but it does not depends much on the actual values of the marginal probabilities. The lat-

ter ones have instead a direct effect on a global quantity of crucial important, the size of the

epidemic outbreak, i.e. the number of nodes reached by the infection. The average epidemic

size at time t can be expressed as function of the local marginals as [17]

size tð Þ ¼
1

N

X

i

P xti ¼ Ijyobs
� �

þ P xti ¼ Rjyobs
� �� �

: ð5Þ

The extinction time distribution is another relevant global quantity, that cannot be directly

computed from the knowledge of the individual probability marginals, and whose characteri-

zation on given network structures is a major issue in epidemic studies [18]. In particular, we

are interested in the posterior probability distribution PðTextjxTobsÞ that the discrete-time epi-

demic process dies out at time Text when it is conditioned on the (possibly partial) observation

of the state xTobs at time Tobs.
A crucial point of the BP algorithm is that it is very convenient for computing local quanti-

ties, such as marginal probability laws for the single variables or pair-correlations. Some global

quantities, such as the average epidemic size, can be directly computed from the knowledge of

the local probability marginals. Interestingly, the quantity PðTextjxTobsÞ can be expressed as the

difference between two terms involving the free energies of the related graphical models when

the epidemics are constrained to vanish before time Text and Text − 1, respectively. In Sec.

Methods we show that such free energy can be efficiently computed, in the Bethe approxima-

tion, as the sum of local terms by means of the BP equations.

Results

Results for individual node classification and epidemic size

Random regular graphs. A first set of results for random regular graphs of size N = 1000

nodes and degree k = 4 is displayed in Fig 2 and corresponds to the observation of a fraction of

10% of the nodes chosen uniformly at random at Tobs = 3. Fig 2 displays (a) the average values

of AUC and (b) the average epidemic size as function of the time steps t> Tobs for different

prediction methods: random sampling (green), density sampling (blue), Similarity Sampling

Predicting epidemic from partial observations
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(magenta) and Belief Propagation (red). As a reference we also plot results from direct sam-

pling with complete observation (black). The average values are computed on Mo = 103

instances of observations at the same time Tobs, obtained from independent (and so possibly

different) realizations of the epidemic propagations. For each observation, the direct sampling

algorithms are performed on Ms = 2.5 � 105 realizations of virtual epidemic processes. We set

the error on the initial time ΔT0 = 1. The Similarity Sampling method seldom converges in a

number of realizations Ms = 8 � 105 when a = 0.125, therefore most of the results are obtained

using a = 0.5.

Due to the intrinsic stochasticity of the SIR model, node classification is not perfect (AUC

values smaller than 1) even in case of direct sampling with complete observation. In fact, the

corresponding AUC values rapidly decrease after the observation time and recover only at late

times since the epidemics dies out and almost all nodes are either in R or S states. If we inter-

pret the average values of the area under the ROC as a proxy for the epidemic predictability, in

the case of a complete observation (best-case scenario) the behavior observed is compatible

with the effects due to epidemic heterogeneity reported in [5]. The most interesting region cor-

responds to intermediate times, when the predictability of the process is the lowest. Fig 2a

shows that the Belief Propagation technique with partial observation gives values of averaged

AUC that are closer to those from complete observation than the other methods. BP and

Fig 2. a) Area under the ROC curve as function of the time t > Tobs = 3 on a random regular graph of N = 1000

nodes and average degree k = 4. The average is computed over Mo = 103 epidemic realizations (with

homogeneous parameters λ = 0.7, μ = 0.5); the vertical bars represent the standard error of the mean. The

prediction is obtained after the observation at Tobs of a 10%-fraction of the nodes chosen uniformly at random

(random observation). b) Predicted average epidemic size on random regular graphs (N = 1000, k = 4, λij =

0.7, μi = 0.5) as function of time for a random observation of 10% of the nodes at Tobs = 3. The inference

methods used are direct sampling with complete observation (black), random sampling (green), density

sampling (blue), Similarity Sampling (magenta) and Belief Propagation (red).

https://doi.org/10.1371/journal.pone.0176376.g002
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Similarity Sampling perform largely better in the first stage after the observation, correspond-

ing to the exponential outbreak phase [19]. In particular Similarity Sampling gives an AUC

value similar to BP at the time of observation, but a lower AUC value in the subsequent time

steps.

Fig 2b shows that density sampling strongly overestimates the average epidemic size with

respect to results from complete observation; this is probably an effect of the homogeneous

deployment over the graph of infected nodes used to complete the information, that favors a

larger epidemic spreading. Disregarding existing correlations between the 90% of the nodes,

this scheme could lead to the overestimation of the probability of being infected—in a similar

way to mean field approximations. In Similarity Sampling the overestimation of the epidemic

size is due both to this procedure to set the seeds of the Ms virtual epidemic realizations and to

the approximation on the initial time. Belief Propagation also slightly overestimates the epi-

demic size, but we think this is essentially due to the fact that in most of the instances the algo-

rithm does not properly converge to the correct marginals.

The heatplots in Fig 3 display the same set of data classified as function of the number of

observed nodes that were infected before the observation time, respectively for density sam-

pling, Similarity Sampling and Belief Propagation. Results for direct sampling with complete

observation are presented as a reference. In the case of the average AUC (Fig 3), BP performs

Fig 3. a) The heatplots represent the average AUC as function of time and of the number of observed nodes

that were infected before Tobs, computed by density sampling, Similarity Sampling, Belief Propagation. b) The

average epidemic size predicted by density sampling, Similarity Sampling and Belief Propagation is also

shown as function of the number of infected and recovered nodes in the observation. As a reference, in both

panels, we plot results obtained, for the same realizations of the SIR process, by direct sampling with

complete observation. The horizontal axis refers to the number of infected or recovered nodes present in the

10% observation (also in the case of complete observation).

https://doi.org/10.1371/journal.pone.0176376.g003
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better than both density sampling and Similarity Sampling in all regimes, in particular the per-

formance is very good in the first steps after the observation, almost independently of the

actual number of infected and recovered nodes in the observation. For all methods the results

slightly improve when a larger number of nodes reached by the epidemics is observed at Tobs.
For the average epidemic size, Fig 3b shows that the early-stage prediction by density sampling

is negatively affected by the observation of a larger number of infected and recovered nodes.

The opposite occurs, though to a lesser extent, for BP: when few infected nodes are observed

BP overestimates the epidemic size, the worst prediction by BP giving an average size about

20% larger than that obtained from complete observation. The deviation observed by Similar-

ity Sampling is also more evident when a lower number of infected and recovered nodes is

observed, but the overestimation is more homogeneously distributed. Interestingly, the poor

performance at large times is localized on realizations in which only a few of the observed

nodes already got infected at Tobs.
In Fig 4 we show the results for the classification of individual states and the average epi-

demic size on random regular networks when different values of the epidemic parameters are

considered. We include the results obtained considering the marginal probabilities computed

by Similarity Sampling with a = 0.125 even if the convergence criterion is not met. In general,

it provides similar results to the case in which the convergence is required. For λ = 0.7, μ = 0.5

Fig 4. (a) Area under the ROC curve and (b) predicted average epidemic size as function of the time t > Tobs

= 3 on a random regular graph of N = 1000 nodes and average degree k = 4. The average is computed over

Mo = 50 epidemic realizations and the prediction is obtained after the observation at Tobs of a 30%-fraction of

the nodes chosen uniformly at random (random observation). The inference methods used are direct

sampling with complete observation (black), random sampling (green), density sampling (blue), Similarity

Sampling (magenta), Similarity Sampling with a = 0.125 (dashed magenta) and Belief Propagation (red).

Homogeneous parameters λ = 0.7, μ = 0.5, λ = 0.5, μ = 0.5 and λ = 0.3, μ = 0.5.

https://doi.org/10.1371/journal.pone.0176376.g004
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it provides slightly better results shortly after Tobs, but worse than those obtained by BP. We

verified that the these results are compatible with the ones obtained considering only the epi-

demic realizations in which the convergence for a = 0.125 is actually reached (additional infor-

mation on the convergence of Similarity Sampling is provided in Sec. Methods). We argue

that this result provides an upper bound to the performances of Similarity Sampling, because

these realizations are somehow “simpler” to predict than others for this method.

Barabási-Albert random graph. In the case of heterogeneous graphs, such as those

obtained with the Barabási-Albert (BA) growing network model, in addiction to the random
observation, it is interesting to define other observation schemes for the same density of

observed nodes:

• degree-based observation: nodes are observed in descending order of their degree;

• local observation: a connected cluster of observed nodes is generated from a randomly cho-

sen infected node.

We investigated the effect of different observation schemes on random sampling, density sam-

pling, Similarity Sampling and BP.

The results for the average AUC, obtained with observation of 30% of the nodes at Tobs = 3,

are reported in Figs 5 and 6. In the case of complete observation, direct sampling produces

Fig 5. Area under the ROC curve as function of the time t > Tobs = 3 on a Barabási-Albert random

graph of N = 1000 nodes and average degree hki � 4 (with homogeneous epidemic parameters λ = 0.5,

μ = 0.6), in the case of observation of a 30%-fraction of (a) nodes chosen at random uniformly and

independently, (b) nodes forming a connected subgraph, (c) the most connected nodes. The average

is computed over M = 201 epidemic realizations. The inference methods used are direct sampling with

complete observation (black), random sampling (green), density sampling (blue), Similarity Sampling

(magenta) and Belief Propagation (red).

https://doi.org/10.1371/journal.pone.0176376.g005
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monotonically decreasing AUC values for increasing times. The reason is that in finite size net-

works the parameters chosen give a non-zero probability of finding susceptible nodes in the

last stage of the epidemic evolution, then wrong predictions are possible and the AUC remains

considerably below one. For random observation, Fig 5a shows that Belief Propagation always

gives larger AUC values than the other sampling methods, especially in the first stage of the

epidemics, i.e. during the exponential outbreak. The same behavior is found plotting the

results as function of the actual number of observed nodes (see heatplots in Fig 6a) that were

already infected at the time of observation; in particular, the performances of BP are better

when this number is small.

Figs 5b and 6b report results obtained with the observation of a 30%-fraction of nodes

forming a connected subgraph. The overall results are very similar to those with random

observation, even though density sampling and BP perform slightly better in the time steps

immediately after the observation, while Similarity Sampling is slightly worse in the same

regime. A degree-based observation is particularly convenient for heterogenous networks.

Fig 5c shows that the average values of the ROC area increase in the first stage of the epidemics

for all prediction methods, in particular the difference between values obtained by BP and

those from direct sampling with complete observation is less than 2%. The results reported in

the heatplots (see Fig 6c) are qualitatively similar to those from the other observation schemes,

with slightly better prediction performances at early times when the number of infected nodes

Fig 6. The heatplots represent the average AUC as function of time and of the number of observed

nodes that were infected before Tobs = 3, computed by density sampling, Similarity Sampling, Belief

Propagation, on a Barabási-Albert random graph of N = 1000 nodes and average degree hki � 4 with

homogeneous parameters λ = 0.5, μ = 0.6. As a reference, we also plot results obtained, for the same

realizations of the SIR process, by direct sampling with complete observation. The prediction is obtained after

the observation at Tobs of a 30%-fraction of (a) nodes chosen at random uniformly and independently, (b)

nodes forming a connected subgraph, (c) the most connected nodes. The horizontal axis refers to the number

of infected or recovered nodes present in the 30% observation (also in the case of complete observation).

https://doi.org/10.1371/journal.pone.0176376.g006
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in the observation is small. This is possibly due to the fact that these cases correspond to

smaller epidemics whose initial evolution is more predictable.

Results on the prediction of the average epidemic size on Barabási-Albert networks are

reported in Figs 7 and 8, except for random sampling that strongly overestimates the size in all

regimes and observation schemes. With a random observation scheme (see Fig 7a), density

sampling and BP provide very accurate prediction along the whole dynamics, while Similarity

Sampling provides strong overestimate of the size value at early time and underestimate at late

times. Fig 8a suggests that for both density sampling and BP, the accuracy is lower when a

small number of infected and recovered nodes is observed. When the number of nodes

reached by the infection at Tobs is larger, BP performs better than density sampling (4.5% of

the nodes larger than the direct sampling with complete observation). The very bad results of

Similarity Sampling at late times are mostly due to a very strong underestimation of the aver-

age size when the observation contains only few infected/recovered nodes. On the contrary at

early times overestimate appears when a large number of infected/recovered nodes is

observed.

In Fig 7b we show the prediction of the average epidemic size when the partial observation

is performed considering a connected subgraph of 30% of the nodes. In this case all methods

Fig 7. Predicted average epidemic size as function of the time t > Tobs = 3 on a Barabási-Albert

random graph of N = 1000 nodes and average degree hki � 4 (with homogeneous epidemic

parameters λ = 0.5, μ = 0.6), in the case of observation of a 30%-fraction of (a) nodes chosen at

random uniformly and independently, (b) nodes forming a connected subgraph, (c) the most

connected nodes. The average is computed over M = 201 epidemic realizations. The inference methods

used are direct sampling with complete observation (black), density sampling (blue), Similarity Sampling

(magenta) and Belief Propagation (red).

https://doi.org/10.1371/journal.pone.0176376.g007
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overestimate the epidemic size, with BP performing considerably better than the others. The

poor performances of density sampling are expected because it completely neglects the topo-

logical information in the observation. For example if infected nodes are surrounded by sus-

ceptible ones, the probability of infection for unobserved nodes is lower, but this is not taken

into account in the density sampling approach. BP performs instead poorly when there are

very few infected nodes in the observed area. This is expected, because in such a situation this

method is not able to correctly reconstruct missing information. Finally, Similarity Sampling

gives good results for small and intermediate time steps but again it strongly deviates at large

times, mostly because of observations with few infected/recovered nodes (see Fig 8b).

We already noticed that Belief Propagation performs very well in the case of a degree-based

observation; this is true also for the epidemic size prediction, as shown in Fig 7c. The differ-

ence between the average epidemic size predicted by Belief Propagation and the one obtained

by direct sampling with complete observation is less than 2% of the nodes in the network.

Instead, density sampling overestimates the average epidemic size, especially in the first epi-

demic outbreak and for a large number of infected and recovered nodes in the observation

(see Fig 8c). Density sampling does not make use of the connectivity knowledge, which is a

valuable information: an observed highly connected node is more likely to be infected, ignor-

ing this fact leads to assign the same infection probability of the hubs to every node in the

Fig 8. The heatplots represent the average epidemic size as function of time and of the number of

observed nodes that were infected before Tobs = 3, computed by density sampling, Similarity

Sampling, Belief Propagation, on a Barabási-Albert random graph of N = 1000 nodes and average

degree hki � 4 with homogeneous parameters λ = 0.5, μ = 0.6. As a reference, we also plot results

obtained, for the same realizations of the SIR process, by direct sampling with complete observation. The

prediction is obtained after the observation at Tobs of a 30%-fraction of (a) nodes chosen at random uniformly

and independently, (b) nodes forming a connected subgraph, (c) the most connected nodes. The horizontal

axis refers to the number of infected or recovered nodes present in the 30% observation (also in the case of

complete observation).

https://doi.org/10.1371/journal.pone.0176376.g008
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network, leading to larger predicted epidemic sizes. In this respect, one could expect that better

results could be obtained simply by introducing a degree-dependence in the infection proba-

bility inferred from the observation; nevertheless, preliminary results show no significant

improvement in the quality of the prediction.

In Fig 9 we show the results for the classification of individual states and the average epi-

demic size on BA networks when different values of the epidemic parameters are considered.

We include the results obtained considering the marginal probabilities computed by Similarity

Sampling with a = 0.125 even if the convergence criterion is not met. In this case it provides

better results shortly after Tobs, but worse predictions at large time. In any case it is still less

accurate than BP. We verified that the these results are compatible with the ones obtained con-

sidering only the epidemic realizations in which the convergence for a = 0.125 is actually

reached (additional information on the convergence of Similarity Sampling is provided in Sec.

Methods). Following the same argument as in Fig 4, we argue that this result provides an

upper bound to the performances of Similarity Sampling.

Results for the extinction time distribution

The extinction time distribution is a global feature of the epidemic process, that can strongly

depend on the epidemic parameters, the initial conditions and the topological structure of the

Fig 9. (a) Area under the ROC curve and (b) predicted average epidemic size as function of the time t > Tobs

= 3 on a Barabási-Albert random graph of N = 1000 nodes and average degree hki � 4 in the case of

observation of a 30%-fraction of nodes chosen at random uniformly and independently, with homogeneous

epidemic parameters λ = 0.7, μ = 0.5, λ = 0.5, μ = 0.5, and λ = 0.2, μ = 0.5. The average is computed over

M = 50 epidemic realizations. The inference methods used are direct sampling with complete observation

(black), random sampling (green), density sampling (blue), Similarity Sampling (magenta), Similarity

Sampling with a = 0.125 (dashed magenta) and Belief Propagation (red).

https://doi.org/10.1371/journal.pone.0176376.g009
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underlying contact network. Here we are interested in predicting the probability distribution

for the extinction time when a (possibly partial) observation is provided. Even in the case of

complete observation, the results are highly non-trivial, in particular on networks with peculiar

topological structure. Fig 10 shows the extinction time distribution Pext(t) = P(t = Text|yobs) for

regular trees (a) and regular random graphs (b). In the case of trees the probability distribution

is highly variable: depending on the observation, the width and the maximum value of the dis-

tribution can change significantly. Fig 10c–10e show three different realizations at the time of

observation Tobs. In terms of the number of infected node and their average degree, the snap-

shots in panels (c) and (e) are similar, but their extinction time probability distributions are

rather different (Tpeak = 16 and Tpeak = 23). On the contrary, despite the very different realiza-

tions at Tobs, snapshots in panels (c) and (d) correspond to similar distributions (Tpeak = 23

and Tpeak = 21). This is due to the arrangement of infected and recovered nodes at the time of

observation: the configuration in Fig 10e does not allow to access the root of the tree, so the

epidemics is limited and diffusion to other branches of the graph is blocked. In Fig 10c and

10d, instead, the epidemics can spread throughout the graph, causing the distribution to reach

a maximum at larger times. The heterogeneity of the extinction time distribution is peculiar of

trees and graphs with topological bottlenecks, while random graphs, or graphs with small-

Fig 10. The extinction time distributions for different complete observations: a) on trees with branching ratio

k = 3 and N = 1092 (epidemic parameters λ = 0.7, μ = 0.5, and observation time Tobs = 5); b) on random

regular graphs of degree 4 and N = 1000 nodes (epidemic parameters λ = 0.7, μ = 0.5 and observation time

Tobs = 4). Panels (c)-(e) illustrate similar realizations of the epidemic process at Tobs on a tree graph

corresponding to rather different predicted extinction time distributions with maximum value respectively at

T = 21 (c), T = 23 (d), and T = 16 (e). Nodes color: Green = Susceptible, Red = Infected, Black = Recovered.

https://doi.org/10.1371/journal.pone.0176376.g010
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world properties in general, are characterized by very similar distributions for different realiza-

tions of the epidemic process (with same epidemic parameters and observation).

The results on the prediction of the extinction time distribution from partial observations is

shown in Fig 11. Motivated by the observed strong variability of the extinction time distribu-

tion, we first considered the case of regular trees of branching ratio equal to 4 (average degree

hki � 2). The partial observation was obtained sampling randomly the state of 10% of the

nodes at Tobs = 5. Fig 11a displays the average difference between the extinction time distribu-

tion predicted using direct sampling with complete observation and that obtained using Belief

Propagation (red), density sampling (blue), and Similarity Sampling (magenta). All methods

present two regions of higher discrepancy with respect to the prediction with complete obser-

vation. As shown by the heatplots in Fig 12b, this is usually due to an underestimation of the

probability of extinction in the early stage of propagation and to an overestimation of the prob-

ability of extinction at large times. BP is usually able to qualitatively identify the most probable

extinction time even when the other methods instead assign more probability mass to much

larger times. Heatplots show that the two-peak discrepancy is especially due to observations

with few infected and recovered nodes, while the discrepancies between the distributions

move mostly at intermediate times when this number is increased. BP performs better than

the other methods at every time step, although it presents the same qualitative weaknesses.

Fig 11. Absolute value of the difference between the extinction time distribution Pext(t) computed

from direct sampling with complete information and those calculated with density sampling (blue),

BP (red) and Similarity Sampling (magenta). a) On trees of N = 1092 nodes, with branching ratio 3 (hki � 2)

and with uniform epidemic parameters λ = 0.7, μ = 0.5. The partial observation is performed sampling

uniformly the state of 10% of the nodes at Tobs = 5 and averaging over Mo = 210 such realizations. b) On

random regular graphs of N = 1000 nodes and degree k = 4 with uniform epidemic parameters λ = 0.7, μ = 0.5.

The partial observation is performed sampling uniformly the state of 30% of the nodes at Tobs = 4 and

averaging over Mo = 150 such realizations.

https://doi.org/10.1371/journal.pone.0176376.g011
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Interestingly, the Similarity Sampling method overestimates the probability for the epidemics

to die out at early time step. In fact, a fraction of the epidemics with a large Similarity index to

the observed incomplete snapshot immediately dies out after Tobs, leading to an overestimation

of the extinction probability at early time steps.

Figs 11b and 12b display the same analysis in the case of random regular graphs of degree

k = 4 with partial observation of the 30% of the nodes at Tobs = 4. Although all prediction meth-

ods under study are able to reproduce the existence of a unique peak, there are remarkable

quantitative differences with the results from direct sampling with complete observation. The

BP algorithm provides the best performances, in particular for observations with a large number

of infected and recovered nodes. For a low number of infected and recovered nodes, instead, BP

gives a larger average difference with respect to density sampling. This effect is mostly due to

the non-convergence of the BP algorithm in some instances of the epidemic process, leading an

overestimation of the probability of long extinction times. At the time steps close to the peak the

Similarity Sampling give a larger average difference with respect to density sampling and BP.

The Similarity Sampling gives the largest average difference. The main contribution to the aver-

age difference comes when low number of infected and recovered nodes are observed. In this

case information provided by the observation is insufficient for Similarity Sampling.

Fig 12. Absolute value of the difference between the extinction time probability distribution Pext(t)

computed from direct sampling with complete information and those calculated with density

sampling, BP and Similarity Sampling as a function of the number of infected and recovered nodes in

the observed subset of nodes. a) On trees of N = 1092 nodes, with branching ratio 3 (hki � 2) and with

uniform epidemic parameters λ = 0.7, μ = 0.5. The partial observation is performed sampling uniformly the

state of 10% of the nodes at Tobs = 5 and averaging over Mo = 210 such realizations. b) On random regular

graphs of N = 1000 nodes and degree k = 4 and with uniform epidemic parameters λ = 0.7, μ = 0.5. The partial

observation is performed sampling uniformly the state of 30% of the nodes at Tobs = 4 and averaging over

Mo = 150 such realizations.

https://doi.org/10.1371/journal.pone.0176376.g012

Predicting epidemic from partial observations

PLOS ONE | https://doi.org/10.1371/journal.pone.0176376 April 26, 2017 17 / 28

https://doi.org/10.1371/journal.pone.0176376.g012
https://doi.org/10.1371/journal.pone.0176376


A case study of real contact network

We consider a real network dataset of the sexual encounters of internet-mediated prostitution

[20, 21], that was obtained analyzing a Brazilian web community exchanging information

between male sex buyers. The original dataset is in the form of a bipartite temporal network,

in which an edge between a “sex buyer” A and “sex seller” B is drawn if A posted a comment in

a thread about B. The dataset covers the period September 2002 to October 2008 (2,232 days)

and 50,185 contacts are recorded between 6,642 sex sellers and 10,106 sex buyers. In our analy-

sis, we do not consider separate classes of vertices and we focus on a sample network compris-

ing a time window between day 1000 and day 1100. The resulting network (SC) has N = 1293

nodes, E = 1571 edges, average degree hki � 2.4 and maximum degree kmax = 55.

We study the predictability of the epidemic evolution on a static projection of the sexual

contact network when the observation takes place at times Tobs = 4,8 as representatives of early

and later time observation. In both cases, density sampling and random sampling make unreli-

able predictions of the classification of individual states of the nodes (see Fig 13a–13c). For

Tobs = 4, BP gives good results only in the time steps immediately after the observation, then

the performances rapidly deteriorate. BP results slightly improve increasing the observation

Fig 13. Average area under the ROC curve (a,c) and average epidemic size (b,d) as function to the

time t� Tobs for SIR dynamics (λ = 0.5, μ = 0.4) on the SC network. Results are obtained with random

sampling (green), density sampling (blue), Similarity Sampling (magenta) and Belief Propagation (red) from a

random observation of 30% of the nodes at Tobs = 4 (a,b) and Tobs = 8 (c,d). In all plots direct sampling from a

complete observation is shown for comparison (black).

https://doi.org/10.1371/journal.pone.0176376.g013
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time. Nevertheless BP is better than other methods. For the average epidemic size, Fig 13b

shows that Similarity Sampling gives the best prediction at Tobs = 4 (though underestimating

the epidemic size), whereas BP performs as bad as density sampling (and random sampling

even worse). BP results improve considerably for Tobs = 8 while Similarity Sampling turns out

to overestimate the epidemic size at early times (Fig 13d).

We remark that results are strongly influenced by the number of infected and recovered

nodes in the observation. In this respect, in Fig 14, we repeat all measurements considering

observations at Tobs = 4 containing a number of infected and recovered nodes equal to NI+R�
6 (corresponding to the 46% of all instances), and at Tobs = 8 with NI+R� 18 (75% of all

instances). BP performances improve considerably at Tobs = 4, outperforming all other meth-

ods in the case of Tobs = 8. These results can be better understood if we consider that the net-

work is characterized by a well connected core surrounded by many low degree nodes. When

few infected nodes are observed, they typically are low-degree ones and the epidemic process

spreads slowly at early time. In this situation Similarity Sampling is facilitated because the tra-

jectories leading to the observed states are a small set. On the contrary, it is less accurate when

Fig 14. Average area under the ROC curve (a,c) and average epidemic size (b,d) as function to the

time t� Tobs for SIR dynamics (λ = 0.5, μ = 0.4) on the SC network. Results are obtained with random

sampling (green), density sampling (blue), Similarity Sampling (magenta) and Belief Propagation (red) from a

random observation of 30% of the nodes at Tobs = 4 (a,b) and Tobs = 8 (c,d). For Tobs = 8, only instances with a

number of observed infected and recovered nodes NI+R > 18 is considered (75% of instances). For Tobs = 4,

only instances with observed infected and recovered nodes NI+R > 6 is considered (46% of instances). In all

plots direct sampling from a complete observation is shown for comparison (black).

https://doi.org/10.1371/journal.pone.0176376.g014
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many infected nodes are observed or the observation occurs at later times. However results

can likely be improved by an higher computational power. Belief Propagation does not choose

the seed among the observed infected and recovered nodes only, it computes the probability of

being seed for each node of the network, hence it is more accurate than Similarity Sampling

when many infected and recovered nodes are unobserved. When the number of nodes reached

by the epidemic spreading at the observation time is small, the effect of the existence of short

loops in the network is more important and BP is more likely to overestimate the probability

of a node to be infected [22]. It is worth noting that we provide to Similarity Sampling the

information about the initial time t = 0 ± ΔT0 of the epidemic spreading, on the contrary we

don’t provide such an information to BP.

We also consider a weighted static projections of the sexual contact network (WSC), in

which every existing edge ij is assigned a weight wij corresponding to the number of contacts

between node i and node j during the period under consideration. Then we define the proba-

bility that node i infects node j as lij ¼ 1 � ð1 � lÞ
wij . Fig 15 shows results for the average

AUC and the average epidemic size. Belief Propagation provides higher values for the AUC

than all the other methods at all times, even though AUC decreases with time much faster

compared to direct sampling with complete observation. Immediately after the observation BP

also provided the best prediction of the average epidemic size, while at late times Similarity

Sampling works better.

Fig 15. Average area under the ROC curve (a) and average epidemic size (b) as function to the time t�

Tobs for SIR dynamics (λ = 0.5, μ = 0.4) on the WSC network. Results are obtained with random sampling

(green), density sampling (blue), Similarity Sampling (magenta) and Belief Propagation (red) from a random

observation of 30% of the nodes at Tobs = 8. Direct sampling from a complete observation is shown for

comparison (black).

https://doi.org/10.1371/journal.pone.0176376.g015
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Conclusions

In the present work, we extended the Bayesian Belief Propagation approach to the prediction

of the future evolution of an epidemics, providing an efficient distributed algorithm to com-

pute, at any time, the marginal probability of the states of individual nodes in the network.

Some global quantities, such as the average epidemic size, can be directly computed as function

of the individual marginal probabilities. Here we show that also quantities such as the extinc-

tion time distribution, that is intrinsically non local, can be reduced, in the BP approach, to a

distributed calculation of local marginals on a locally tree-like factor graph. On random regu-

lar graphs and Barabási-Albert networks, the predictions obtained with the BP algorithm are

compared with those from other heuristics based on Monte Carlo direct sampling from the

same partial observations, while direct sampling with complete information is taken as a refer-

ence to assess the quality of the results. We also analyzed a real-world contact network

obtained from a Brazilian database of sexual encounters. On random networks, BP provides

better prediction than the other methods under study at all time steps. For all methods, the

accuracy of the prediction is lower when the actual number of infected and recovered nodes in

the observation is small. The errors introduced in the analysis of these configurations can

result in a significant distortion of the overall results, in particular in the long time regime, as

observed in the case of the average epidemic size measured by Similarity Sampling.

In general, BP is more accurate in the classification of individual marginals than in the esti-

mate of the average epidemic size. A possible reason is that, in some cases, BP equations do

not properly converge, resulting in a set of local probability marginals that are slightly different

to the correct ones. In particular, convergence issues are mostly due to the presence of small

loops in the network, that typically lead to an overestimate of the value of probability marginals

by BP. As a consequence, the inaccuracies have little effect on the ranking of individual mar-

ginals, on which the ROC classification is based, whereas they are amplified when considering

a global quantity such as the average epidemic size. Finally, BP usually approximate the extinc-

tion time probability distribution better than other methods.

In the real-world case study, results are affected by the presence of a much higher density of

edges with respect to random graphs. BP gives better results for observations at late times.

When the observation takes place early, the prediction of all methods is clearly worse, but BP

gives the best prediction. The inaccurate prediction by BP is probably due to a combined effect

of low level of information in the observation and the existence of many short loops in the net-

work that limits the validity of BP. When considering only observations with a sufficiently

large number of infected and recovered nodes, BP results improve considerably with respect to

all other methods. An evidence of the role played by short loops comes from the better results

generally obtained on the weighted network, because by construction the weighted network is

effectively more sparse than the unweighted projection first used. In general, on networks that

are not locally tree-like Belief Propagation may show convergence issues that become more

significant as the density of the loops increases. In this cases, Belief Propagation likely would

not be the recommended method. However, since locally tree networks represent a significant

portion of real world and synthetic networks involved in epidemic spreading analysis, we

believe that that this work still provides a significant improvement in this field.

In conclusion, BP and Similarity Sampling have advantages and drawbacks depending on

the time and type of observation, but BP can be considered the most accurate method to pre-

dict both local and global quantities when the underlying network is sparse and when the

observation contains a sufficiently large number of infected and recovered nodes. We remark

that BP results have been obtained with no knowledge about the initial time of the epidemics,

that is another important advantage compared with the other methods.
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Methods

The SIR epidemic process

A node i 2 V can be in one of the possible states: susceptible (S), infected (I) and recovered

(R). At each time step an infected node i can infect each of his neighbor j with a given probabil-

ity λij, then recover with probability μi. The state of a node i at time t is represented by a vari-

able xti 2 fS; I;Rg. The process is irreversible, so once a node recovered it does not get infected

anymore. The Markov chain is described by the following transition probabilities

Pðxtþ1

i ¼ SjxtÞ ¼ I½xti ¼ S�
Y

j2@i

ð1 � lijI½xtj ¼ I�Þ ð6Þ

Pðxtþ1

i ¼ IjxtÞ ¼ ð1 � miÞI½xti ¼ I� þ I½xti ¼ S�ð1 �
Y

j2@i

ð1 � lijI½xtj ¼ I�ÞÞ ð7Þ

Pðxtþ1

i ¼ RjxtÞ ¼ I½xti ¼ R� þ miI½xti ¼ I�: ð8Þ

A realization of the SIR stochastic process is univocally expressed in terms of infection times ti
and recovery times gi, 8i 2 V. Given the initial configuration x0, for each node i 2 V, a recovery

time gi is randomly drawn according to the distribution GiðgiÞ ¼ mið1 � miÞ
gi and the infection

transmission delays sij from node i to node j are generated from the conditional distribution

o sijjgi
� �

¼
lijð1 � lijÞ

sij sij � gi
P

s>gi
lijð1 � lijÞ

s sij ¼ 1:
ð9Þ

(

Infection times are then given by the deterministic equation

ti ¼ min
j2@i
ðtj þ sjiÞ þ 1: ð10Þ

Factor graph representation

Every realization of the trajectory (x0, . . .,xt) is in one-to-one correspondence with a static con-

figuration of individual infection times t = {ti}i2V and recovery times g = {gi}i2V. Using this

static representation of the epidemic dynamics we can express the posterior probability as

P xtjyobs
� �

/
X

t;g;x0 ;xTobs

P xtjt; gð ÞP xTobs jt; gð ÞPðyobsjxTobsÞP t; gjx0ð ÞP x0ð Þ ð11Þ

where P(t,g|x0) is the joint probability distribution of infection, PðyobsjxTobsÞ ¼
Q

i2Vobs
dðyi; x

Tobs
i Þ

is the matrix that connects the complete configuration xTobs to the partially observed one yobs

and recovery times conditioned on the initial configuration x0, and P(xt|t, g) and PðxTobs jt; gÞ
are deterministic functions of the set (t, g) representing the connection between a (t, g) config-

uration and configurations xt and xTobs . Although the sum on the right-hand side of Eq (11)

still runs over a possibly huge number (exponentially large in N) of configurations, a represen-

tation in which the dynamical relationships between trajectories of neighboring variables is

reduced to a set of local constraints on the activation/recovery times is more convenient to

develop approximation methods using tools from graphical models and statistical mechanics.

By means of Bayes’ theorem we compute the posterior probability of a configuration xt at time
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t given an observation xTobs at time Tobs:

P xtjyobsð Þ ¼
X

t;g
P xtjt; gð ÞP t; gjyobs

� �

/
X

t;g;xTobs

P xtjt; gð ÞP xTobs jt; gð ÞP t; gð ÞPðyobsjxTobsÞ ¼

¼
X

t;g;x0 ;xTobs

P xtjt; gð ÞP xTobs jt; gð ÞP t; gjx0ð ÞP x0ð ÞPðyobsjxTobsÞ ð12Þ

where Pðx0Þ ¼
Q

igiðx
0
i Þ with

g0ðx
0

i Þ ¼ gI½x0

i ¼ I� þ ð1 � gÞI½x0

i ¼ S� ð13Þ

is the factorized prior on the initial condition, and P(xt|t, g) and PðxTobs jt; gÞ are deterministic

functions of the set (t, g) representing the probability of a configuration xt at time t (and,

respectively, at time Tobs):

P xtjt; gð Þ ¼
Y

i

z
t
i ti; gi; x

t
i

� �
ð14Þ

with

z
t
i ti; gi; x

t
i

� �
¼ I xti ¼ S; t < ti
� �

þ I xti ¼ I; ti � t � ðti þ giÞ
� �

þ I xti ¼ R; t > ti þ gi
� �

: ð15Þ

The joint probability distribution of infection and recovery times conditioned on the initial

configuration reads

P t; gjx0ð Þ ¼
X

sij

PðsjgÞPðtjx0; g; sÞPðgÞ

¼
X

sij

Y

i;j

oijðsijjgiÞ
Y

i

�iðti; ftk; skigk2@iÞGiðgiÞ
ð16Þ

where

�i ti; tk; skif gk2@i
� �

¼ dðti; I ½x
0

i 6¼ I�ðmin
k2@i
ðtk þ skiÞ þ 1ÞÞ: ð17Þ

The factor graph representation of a probability distribution is made up of a bipartite graph

composed of factor nodes and variable nodes [16]. Each factorized term in Eq (12) is repre-

sented by a factor node and each variable of the problem is represented by a variable node.

Each factor node is connected to the set of variable nodes involved in the corresponding fac-

torized term. The factor graph of Eq (12) has a loopy structure which can compromise the

accuracy of the BP approximation. We can use a factor graph representation that maintains

the same topological properties of the original graph in order to guarantee that BP is exact

when the underlying graph is a tree. Following [22, 23], we do that by grouping pairs of vari-

able nodes (ti, tj) in the same variable node. For each edge (i, j) emerging from node i we intro-

duce a triplet ðtðjÞi ; tji; g
j
iÞ, where tji and gji are copies (on j) of the infection time and recovery

time of i and the variables tij ¼ tðjÞi þ sij on which factors ϕi depend. Including a constraint that

forces copies ti and gi to have a common value, we get

ci ¼ dðti; I½x0

i 6¼ I�ðmin
j2@i
ðtji þ 1ÞÞÞ

Y

j2@i

dðtðjÞi ; tiÞdðg
ðjÞ
i ; giÞ ð18Þ
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and

�ij ¼ oijðtij � tðjÞi jg
ðjÞ
i Þojiðtji � tðiÞj jg

ðiÞ
j Þ: ð19Þ

In this representation we can write the posterior probability as the following graphical model:

PðxtjyobsÞ ¼
X

t;g;s;xTobs

Y

i;j

oij

Y

i

�iGigiz
Tobs
i z

t
i

Y

i2Vobs

dðyi; x
Tobs
i Þ: ð20Þ

Belief propagation equations

Given a set x ¼ ðx1; . . . ; xNÞ of random variables with a joint probability distribution

M zð Þ ¼
1

Z

Y

a

Fa z@að Þ ð21Þ

where z@a � fxiji 2 @ag is the set of variables involved in the constraint a. Messages are associ-

ated with every directed edge on the factor graph and they take values in the space of single-

variable probability distributions. The following equations for messages are solved by itera-

tion:

pFa!i zið Þ ¼
1

Zai

X

zj:j2@anif g

Fa zif gi2@a
� �Y

j2@ani

mj!Fa
zj
� �

mi!Fa
zið Þ ¼

1

Zia

Y

b2@ina

pFb!i zið Þ

mi zið Þ ¼
1

Zi

Y

b2@i

pFb!i zið Þ:

At the fixed point they provide an approximate value for the variables marginal probability

[16]. In our case the factors Fa are ci; �ij; gi; z
Tobs
i ; z

t
i and Gi and the variables zi are couples (ti,

gi), and triplets ðtðjÞi ; g
ðjÞ
i ; tijÞ, ðti; gi; x

Tobs
i Þ, ðti; gi; xtiÞ. The explicit form for the update equations

of the ψi factor nodes is:

pci!jðt
ðjÞ
i ; tji; g

ðjÞ
i Þ /

X

gi ;ti

X

tðkÞi ;tki ;g
ðkÞ
if g

mi!ci
ðti; giÞ�

�
Y

k2@inj

mk!ci
ðtðkÞi ; tki; g

ðkÞ
i Þci ti; gi; ðt

ðkÞ
i ; tki; g

ðkÞ
i Þ

n o

k2@i

� � ð22Þ

and

pci!jðti; giÞ /
X

tðkÞi ;tki ;g
ðkÞ
if g

Y

k2@inj

mk!ci
ðtðkÞi ; tki; g

ðkÞ
i Þci ti; gi; ðt

ðkÞ
i ; tki; g

ðkÞ
i Þ

n o

k2@i

� �
: ð23Þ

Efficient forms for these update equations are given in [10, 11].

In the factor graph representation, the Bethe free-energy of the graphical model can be

expressed as (see also [16])

� f ¼
X

a

fa þ
X

i

fi �
X

ðiaÞ

fðiaÞ ð24Þ
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in which the local contributions can be expressed as function of the Belief Propagation mes-

sages

fa ¼ log
X

zi :i2@af g

Fað zif gi2@aÞ
Y

i2@a

mi!aðziÞ

 !

ð25Þ

fi ¼ log
X

zi

Y

b2@i

pFb!iðziÞ

 !

ð26Þ

fðiaÞ ¼ log
X

zi

mi!aðziÞpFb!iðziÞ

 !

: ð27Þ

The extinction-time constraint

The posterior probability P(Text|yobs) of the extinction time from a partial observation at Tobs
can be written as a difference of posterior probabilities that an epidemic ends within a given

Fig 16. (a) Area under the ROC curve and (b) predicted average epidemic size as function of the time t > Tobs

= 3 on a random regular graph of N = 1000 nodes and average degree k = 4. The prediction is obtained after

the observation at Tobs of a 30%-fraction of the nodes chosen uniformly at random (random observation).

Homogeneous parameters λ = 0.7, μ = 0.5, λ = 0.5, μ = 0.5 and λ = 0.3, μ = 0.5. The solid magenta line

represents the Similarity Sampling for epidemic realizations enabling the convergence for a = 0.125

(respectively Mo = 21, Mo = 21, Mo = 45); the dashed blue line represents the Similarity Sampling with

a = 0.125 although convergence is not met (the average is computed over Mo = 50 epidemic realizations).

https://doi.org/10.1371/journal.pone.0176376.g016
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time,

P Textjy
obs

� �
¼ P text < Textjy

obs
� �

� P text < Text � 1jyobs
� �

: ð28Þ

Using the static representation of dynamical trajectories,

Pðtext < Textjy
obsÞ ¼

X

t;g

Pðtext < Textjt; gÞPðt;gjy
obsÞ

/
X

t;g;xTobs

Pðtext < Textjt;gÞPðx
Tobs jt;gÞPðt;gÞPðyobsjxTobsÞ

¼
X

t;g;x0 ;xTobs

Pðtext < Textjt;gÞ PðxTobs jt;gÞPðt; gjx0ÞPðx0ÞPðyobsjxTobsÞ

¼
X

t;g;x0

Qðyobs;Text; t;g; x
0Þ ¼ ZðText;y

obsÞ:

ð29Þ

The terms in the latter expression are the same as in Eq (12), with the exception of the fol-

lowing term factorized over the nodes

P text < Textjt; gð Þ ¼
Y

i

I ti þ gið Þ < Text½ � ð30Þ

Fig 17. (a) Area under the ROC curve and (b) predicted average epidemic size as function of the time t > Tobs

= 3 on a Barabási-Albert random graph of N = 1000 nodes and average degree hki � 4 in the case of

observation of a 30%-fraction of nodes chosen at random uniformly and independently. Homogeneous

parameters λ = 0.7, μ = 0.6, λ = 0.5, μ = 0.6 and λ = 0.2, μ = 0.6. The solid magenta line represents the

Similarity Sampling for epidemic realizations enabling the convergence for a = 0.125 (respectively Mo = 18, Mo

= 21, Mo = 36); the dashed blue line represents the Similarity Sampling with a = 0.125 although convergence

is not met (the average is computed over Mo = 50 epidemic realizations).

https://doi.org/10.1371/journal.pone.0176376.g017
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that constrains the calculation to epidemics that vanish before Text. In this way, we give null

probability to every single site configuration with ti + gi larger than Text (except for ti = Tinf that

describes susceptible nodes). The logarithm of the partition function is the free energy of the

model, hence

� f Text; y
obs

� �
¼ logZ Text; y

obs
� �

¼ logP text < Textjy
obs

� �
: ð31Þ

In the factor graph representation, the free-energy can be approximated with the Bethe

free-energy, that is computed by means of the BP equations.

Similarity Sampling convergence

Figs 16 and 17 display the effects of forcing the convergence criterion with a = 0.125 in the case

of regular random graphs and Barabasi-Albert graphs, respectively. The solid curves represent

results obtained considering only the epidemic realizations for which convergence is met,

whereas the dashed curves correspond to results obtained including all realizations (as in the

main text). Only in the case of BA graphs with λ = 0.5 the two curves are not within the error

bars. Nevertheless, this difference does not change the qualitative behaviour and the compari-

son with the BP method (see Figs 4 and 9).
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