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ABSTRACT: The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific
work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems
(DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with
risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by
computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation
of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented.
Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the
review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-
based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed.
C© 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J
Pharm Sci 104:3612–3638, 2015
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INTRODUCTION

Traditionally, the pharmaceutical and biopharmaceutical in-
dustries were not the forerunner of innovative engineering so-
lutions and new principles of chemical engineering. For many
decades, the manufacturing of drug products were controlled
by a regulatory framework that safeguarded the quality of
the final product and performed testing of batch-based opera-
tions, raw material and end-product characteristics, fixed pro-
cess conditions, and in-process material. Limitations related to
this quality by testing thinking have widely been acknowledged
both for small molecule and biopharmaceutical products.1,2 In
contrast, other fields of processing and related manufacturing
sciences have successfully implemented sophisticated technolo-
gies to increase our current process and product understanding.

However, over the last years, there has been growing interest
in increasing the safety and quality of medications while simul-
taneously cutting the cost of manufacturing of pharmaceuticals
by implementing more structured pharmaceutical development
and manufacturing approaches. Especially, the rapidly spread-
ing acceptance of science-based approaches has created a more
flexible environment for implementing already-existing and
well-established chemical engineering knowledge.3,4 A rather
recent example is the introduction of the United States Food
and Drug Administration (US FDA) process analytical technol-
ogy (PAT) guidance and the quality by design (QbD) approach
by the International Conference on Harmonization (ICH). The
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QbD-based thinking is a perfect opportunity for the pharma-
ceutical community to take the manufacturing sciences into the
new millennium. It has to be, however, emphasized that the con-
cept of PAT is not entirely new, as process analysis/control has
been an important area of chemical engineering for decades.5,6

Nevertheless, PAT introduced the idea of real-time process con-
trol and real-time quality assurance (QA) in pharmaceutical
manufacturing, being the basis for modern process engineer-
ing. An example of it are novel manufacturing methods (e.g.,
based on continuous flow chemistry) that are now being intro-
duced by industry, academia, and regulators.7–9 The recently
published white paper series from the MIT-Strathclyde sympo-
sium on continuous manufacturing (CM) in 2014 highlights the
current state of thinking.10–18 Moreover, the ICH is in the pro-
cess of developing a new guideline (ICH Q12) that can serve as
basis for implementing CM across the industry in a widespread
manner.

The use of QbD terminology, including such abbreviations
as QTPP (quality target product profile), CQAs (critical qual-
ity attributes), and CPP (critical process parameters), is de-
liberately minimized in this review. Although it is important
to understand these concepts, especially QTPP from a patient
point of view, when implementing QbD into practical use, this
review rather intends to cover the underlying science, intro-
duce the main techniques involved in the QbD approach, and
provide an overview of future challenges. One related yet ex-
tremely difficult to define concept is process understanding.
When do we completely, or even partially, understand a process
or a single unit operation completely? Does it happen after im-
plementation of a simple experimental design containing four
experiments or only after a full risk analysis coupled with first
principles physical modeling? Or are we aiming at ab initio
molecular modeling approaches to enlighten molecular level
phenomena during operations? As the level of process under-
standing is case specific, this review is organized around the

3612 Rantanen and Khinast, JOURNAL OF PHARMACEUTICAL SCIENCES 104:3612–3638, 2015



REVIEW 3613

Figure 1. Engineering view of pharmaceutical development (MD, molecular dynamics; DFT, density functional theory computations; MC,
Monte Carlo methods; CFD, computational fluid dynamics; DEM, discrete element method; FEM, finite element method; SPH, smoothed particle
hydrodynamics; IVIVC, in vitro–in vivo correlations; PBPK, physiologically based pharmacokinetics).

practical tools and has the objective of providing an overview
of these tools together with future perspective.

One visible part of all PAT and QbD activities during the past
decades has been sensor development.19 In many cases, near in-
frared (NIR) spectroscopy has been used almost as a synonym
for PAT. Note that science-based manufacturing of pharmaceu-
ticals involve not only application of novel process analytical
sensors and measurement solutions, but also the utilization of
other fundamental tools for increasing our understanding by
implementation of risk management strategy, formalized de-
sign of experiments (DoE), advanced data analysis techniques,
first-principles based process modeling and control, and fun-
damental material characterization together with molecular
modeling.

These fundamental tools of science-based manufacturing are
not part of a standard pharmaceutical teaching curriculum and,
in the future, special attention should be paid to identifying the
elements that should be introduced into pharmaceutical educa-
tion. As consequence, the future development of the elements of
pharmaceutical engineering in various educational programs
requires special attention. This “step forward” in education
is also needed to safeguard the development of a regulatory
framework, as several emerging areas of manufacturing are
still not generally accepted or even fully defined. The concept of
CM provides us with a fascinating opportunity to revise the en-
tire idea of a traditional batch operation. Although continuous
operations are well defined and exist in the field of chemical
engineering sciences, their implementation in the pharmaceu-
tical context requires fundamental research. Another impor-
tant concept is the implementation of real-time release, which
requires a sound combination between manufacturing sciences
and a new type of thinking in the fields of analytical sciences
and risk management. Moreover, current developments in pro-
cess validation emphasize the need for implementing the QbD
thinking.

Prescribing medicine today is based on a “one size fits all”
principle. However, more personalized (combination) solutions

in several critical therapy areas are required. The latest devel-
opments in genomics and diagnostics have enabled the advent
of new innovative drug products relying on a combination of di-
agnostic tools and personalized dose. All this paves the way to a
future health care system based on personalized medicines, as
recently outlined in the precision medicine initiative (PMI).20

The current level of innovation in dosage form design and man-
ufacturing of these products cannot meet the needs of person-
alized medicine. As such, novel manufacturing solutions, en-
abling the flexible manufacturing of personalized dosages, are
required.

In summary, we are currently observing a change in the
paradigm change, with engineering principles and product de-
sign becoming the guiding principle of pharmaceutical develop-
ment. That is, we are adopting a way of thinking, according to
which pharmaceutical ingredients, pharmaceutical products,
the related manufacturing processes, and the biopharmaceu-
tical properties are considered simultaneously and quantita-
tively. Figure 1 demonstrates this engineering view of pharma-
ceutical development.

We have to understand the compounds and materials, pre-
dict and/or measure compound properties, and define and
characterize their constitutive behavior. Moreover, we have to
understand how ingredients interact (thermodynamics vs. ki-
netics) and how the delivery requirements determine the in-
gredients and the corresponding processing. With regard to
the process, we must understand and identify the critical
variables and their effect on quality and develop and vali-
date mathematical models, which largely contributed to the
successful operation of chemical and petro-chemical plants.
Most importantly, however, the patient has to be the center of
focus.21

This review aims to cover the recent developments in the
manufacturing sciences related to QbD-based thinking and
to outline the future direction of scientific research in this
field, supporting a further development of the regulatory
framework.
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FUNDAMENTAL TOOLS FOR INCREASED PROCESS
UNDERSTANDING

Risk Management and DoE

Risk Management

Quality risk management (QRM) can be defined as an inte-
grated action aiming at, first, identifying, assessing and prior-
itizing risks and, second, at minimizing, monitoring, and con-
trolling the related undesired event. Evidently, QRM is most
effective when applied throughout the entire life cycle of a
pharmaceutical or bio-pharmaceutical product. RM is widely
utilized in various industries, and several approaches exist. In
the QbD context, QRM related to the development and manu-
facturing of pharmaceuticals with a special focus on customer
(i.e., patient) health and safety is important. In practice, all risk
management activities should be performed by a team that has
enough background to analyze the given product and related
processing. This multidisciplinary team should have partici-
pants with experience in dosage form design, manufacturing,
process engineering and quality functions, and a moderator
who can formally lead the risk management process. Risk man-
agement is a continuous process and, in many cases, an itera-
tive operation. Based on the existing supporting standards22,23

and guidelines,24,25 the proper use of risk assessment tools and
methods is a daily routine.

Risk is defined as a combination of probability of occurrence
and the severity of harm.26 The QRM workflow consists of (1)
initiation, (2) assessment, (3) control, (4) review, and (5) commu-
nication of risks, as shown in Figure 2. The assessment involves
the identification of hazards based on a systematic use of in-
formation. Then, an analysis links the likelihood of occurrence
and detectability with the severity of harm during a qualita-
tive or quantitative process. Finally, risks are evaluated and
ranked according to defined criteria. Eventually, the risk must
be reduced to an acceptable level (control). Here, recommended
actions are defined to decrease the severity, probability, and
detectability of harm. The goal is to reduce the quality risk to
a non-critical level or to implement decision loops that ensure
keeping the risk under control. The QRM workflow considers
mechanisms that monitor its output in the review phase. The

Figure 2. Overview of a pharmaceutical quality risk management
(QRM) system.

frequency depends on the level of risk.27 Finally, risk must be
communicated to various stakeholders (i.e., executive company
representatives, authorities, doctors, and patients).

A good starting point is an Ishikawa (fish bone) diagram,
which provides an overview of the system under investiga-
tion and often minimizes the possible misunderstandings in
a multidisciplinary risk management team. The next level of
risk management is a more detailed risk assessment instru-
ment. There is a variety of generally accepted tools and the
selection should be based on the formal in-house risk manage-
ment expertise. It is important to remember that the depth of
a risk assessment depends on the state of development, that is,
approaches to the first-in-man formulation are different from
those applied to commercial production. In the pharmaceuti-
cal manufacturing environment, mainly tabular risk analysis
methods are used to support plant or equipment qualification,28

process,29,30 method,31 cleaning32,33 or computerized system34,35

validation, service, and maintenance.36 These QRM tools also
support the good manufacturing practice (GMP) or good engi-
neering practice. The most commonly used methods and tools
in risk management recommended by the ICH in the Q9 “QRM”
guideline are:

� Risk ranking and filtering
� Preliminary hazard analysis-criticality assessment
� Fault tree analysis
� Failure mode and effects analysis (FMEA)37,38

� Hazard analysis and critical control points39

� Hazard and operability analysis40

One of the most widely accepted risk analysis tool is FMEA,
which enables quantitative evaluation of possible risk scenar-
ios. Recent published examples of its use in pharmaceutical
manufacturing include optimization of coating,41 mixing,42 and
spray drying43 operations. It should be mentioned that rela-
tively demanding quantitative methods, such as FMEA, are
not an ideal starting point for the first risk assessment efforts
or for evaluating early development phases.

A successful implementation of risk management comprises
not only the risk-based specification of qualification measures,
but also the definition of means to control the risks relating
to product quality and process performance. This includes the
prevention of failure modes caused by computerized systems.
Furthermore, the control and monitoring of CPPs depends on
the assessment’s outcome. Risk assessment leads to the defi-
nition of preventative maintenance and repair activities, such
as scheduling of the calibration interval for equipment, which
directly affects product quality. The output must be integrated
into standard operating procedures.

Quality risk management is essential for the effectiveness
of a pharmaceutical quality system as it ensures transparency
throughout the product’s life cycle. However, today QRM in the
manufacturing environment is limited, not only by a selective
(and mostly qualitative) use of risk analysis tools in the fields of
qualification, validation, service, and maintenance, but also by
current risk communication approaches. Moreover, inaccessi-
bility of knowledge, which is stored in paper documents, locally
stored files and in employee’s heads, is a limiting factor in mod-
ern QRM. In addition, QRM is applied only to specific aspects
of development or manufacturing. Integrated life-cycle QRM is
largely absent.
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In the future, the pharmaceutical industry has to enforce
a more integrated and holistic quality- and design-oriented
product and process development environment. Practicable
strategies and solutions for an efficient knowledge transfer
and data handling have to be employed. It is the responsi-
bility of academia, industry, and regulators to provide them,
which requires concepts for resolving the lack of data manage-
ment and providing opportunities of prospective and retrospec-
tive consideration. One possible approach with that regard are
ontologies44,45 or other knowledge management tools. Another
future challenge in manufacturing science is improving com-
munication within the QRM framework. Lastly, mechanistic
models and simulation tools as quantitative and objective ap-
proaches in QRM are largely under-used. However, efforts46 to
apply simulation as QRM tool for risk ranking have recently
been reported.

Design of Experiments

Investigation of the variables that affect processing can be
performed using a formal experimental design. Risk analysis
should always be the starting point for allocation of the re-
sources for this activity. Without knowledge-based exclusion of
variables, the number of experiments can increase dramati-
cally. It is also important to use prior knowledge to define the
range within which the experiments are performed and to ex-
clude experimental areas in which it would be impossible to
operate. Utilization of prior knowledge is crucial for ensuring
that only a reasonable number of experiments are performed.

A simple set of screening experiments provides a good exper-
imental overview of the system under investigation. A decision
on the number of variables to be included and the number of
levels at which they are to be investigated will determine the
final number of experiments performed. In a simplified case
when two variables are investigated at two levels, a relatively
low number of experiments are required (four). A number of
experiments when applying a full factorial design at two lev-
els can be generalized into a simple equation 2k, where k is
the number of variables. However, four experiments are rarely
enough even for screening purposes, and experimental activi-
ties can easily expand (three/four/five variables on two levels
will result in 23/24/25 = 8/16/32 experiments, respectively). Full
factorial design enables the investigation of both main and in-
teraction effects but, as mentioned above, with an exponential
increase in the cost of experimental activities.47 The number
of experiments can be reduced systematically by implementing
fractional factorial design, with the experimental load calcu-
lated as 2k-p, where 1/p is the size of fraction. For example,
Andersson et al.48 aimed to optimize early drug development
tablet formulation by creating a model with a high predictive
power and performing as few experiments as possible. The au-
thors highlighted the importance of considering the number of
experimental points when the availability of a drug substance
is a limitation and utilized a fractional factorial design to min-
imize the number of experimental runs in their study.

Design of experiments can further be used for optimization
and robustness testing of the operational variables. Factorial
design on two experimental levels does not allow modeling of
quadratic terms (i.e., possible non-linear relationships), which
can be solved by systematically adding experimental points
to the design. By adding a center point (or points, in case of
repeated experiments) to the center point and axial points,

Figure 3. Constructing central composite design (CCD) for two vari-
ables.

this problem can be solved and more complex interactions can
be modeled by implementing central composite design (CCD;
Fig. 3). As with factorial designs, the number of investigated
factors can be increased but at the cost of increased experimen-
tal load. This can be solved by using fractional factorial design
as a starting point for CCD.

Several other experimental designs are available, but the ba-
sic idea of adding experimental points in a rational way is still
the same and the only difference between these approaches is
the number and relative location of these experimental points.
For example, in a Doehlert design, in the simplest case experi-
mental points form a hexagon. Experimental points should be
selected so that they properly cover the relevant experimental
space ensuring the construction of a proper design space on
a statistically robust basis. Replicating a given experimental
design and repeated experimental points can be used to ex-
plore the effect of difficult-to-control-factors, such as a change
of the operator, a variation in weather and wear/change of
equipment.

The application of different DoE techniques as a part of a
science-based manufacturing approach is widely represented in
the literature.49,50 Currently, there are several commercial soft-
ware packages available for both choosing a suitable design and
supporting the statistical analysis of the results. Response sur-
face methodology is a classical tool for visualizing the influence
of selected variables on a selected response(s). Visualization of
the experimental results can be performed, for example, by us-
ing contour plots and providing a fast overview of a particular
case. This feature is often a built-in functionality in commer-
cial software packages. There is a variety of software solutions
for DoE, from products with Microsoft R© copy-paste logic to sta-
tistical programs requiring expert level programming skills.
Investing in a solution that requires a more skilled user allows
modification of the developed models. This more detailed anal-
ysis of the achieved results typically pays back later. Often, a
practically feasible solution is to use relatively easy program
at the scientist level and more dedicated software solutions for
the company’s statistics expert.

Classical models explaining the relationship between vari-
ables and the observed quality characteristics are based on the
ANOVA. The increasing amount of information resulting from
a typical DoE may require more efficient algorithms for the de-
velopment of a model. By implementing multivariate statistics
via, for example, GEMANOVA approach,51 a more detailed and
simple visualization of experimental data from pharmaceuti-
cal systems can be achieved.52 Non-experimental approaches
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based on analysis of historical batch data have also been sug-
gested as a data-driven support tool for identifying critical pro-
cess variables.53 The orthogonal projection to latent structures
approach has been applied to investigate the complex rela-
tionships between material characteristics and final product
performance.54

The complex nature of pharmaceutical materials often re-
quires the utilization of non-linear modeling in the analysis of
experimental results. Other types of modeling based on arti-
ficial neural networks, fuzzy logic, and neuro-fuzzy modeling
have been suggested to solve this problem. Analyzing pharma-
ceutical materials and drawing conclusions based on analytical
results is often experience based and cannot always be doc-
umented precisely. The pioneering work of Hussain et al.,55

Yliruusi and colleagues,56 and Leuenberger and colleagues57

in the field of artificial intelligence (AI) indicated that this
type of modeling can be used for interpreting the results of
the experimental design. There are several examples of im-
proved interpretation of experimental data based on AI.58,59

Fuzzy logic can also be implemented for mimicking the pro-
cess of human decision-making and handling visual informa-
tion numerically.60 AI-based models can be a part of an overall
knowledge management solution and are extremely useful for
data mining, that is, for extracting knowledge in the form of
linguistic rules from large experimental data sets.61,62 One of
the key challenges with that regard is the overall knowledge
management structure.63

Mechanistic Process Modeling

In the last years, the mechanistic modeling of pharmaceutical
unit operations has made significant progress. Many groups,
both in industry and academia, have recognized the potential
of modern process modeling, including the ability

� to improve the fundamental scientific understanding of
a process. In this case, models do not necessarily have
to provide an accurate description of the process. Often,
qualitative information of the effect of parameters on the
system behavior (i.e., via a “learning model”) can suffice.

� to optimize, scale-up or transfer a process from one equip-
ment to another. In this case, models have to accurately
represent the reality.

� to provide quantitative measures in the context of QRM
(e.g., FMEA) by performing sensitivity studies (e.g., which
parameter is a CPP).

� to study the effect of uncertainty and variability of the
material parameters on the process performance.

� to replace experiments during a process characterization
phase.

� to study the effect of process disturbance or start-up and
shut-down phases on the process performance. In this
case, transient models are required to capture the pro-
cess dynamics. Such models can also be used in control
systems, for example, for model-predictive control.

Because of a larger number of simulation tools currently in
use, only a limited overview is provided here that only focuses
on modeling and simulation of

� fluidic systems including multiphase flows (e.g., bioreac-
tors, synthesis processes, crystallizers, etc.)

� particle-based processes (e.g., particle handling, powder
mixing, etc.)

� fluid-particle systems (e.g., fluidized beds, suspensions,
and particle transport)

� pharmaceutical flow-sheet or process modeling (e.g., for
continuous processes, control models, and global optimiza-
tion)

Fluidic Systems and Multiphase Flows

Computational fluid dynamics (CFD) are well-established tools
for the simulation of pharmaceutical unit operations that in-
volve fluidic and multiphase systems, including stirred tanks,
crystallizers, gassed batch reactors, bubble columns, and biore-
actors. Generally, the goal is to understand in detail the mixing
dynamics, the effect of mixing on the selectivity of competing
reactions, the influence of gassing and stirring on the oxygen
distribution, the identification of dead zones, or the character-
ization of the shear rate distribution for shear-sensitive prod-
ucts. Typical CFD methods include Reynolds-Averaged Navier–
Stokes (RANS) solvers with turbulence modeling of various
level of detail.64,65 For example, the impact of agitation and
shear stress in various types of laboratory equipment (rota-
tor, orbital shaker, magnetic stirrer, and vortex mixer) on the
stability of proteins was investigated via RANS CFD methods
by Bai et al.66 A recent review of CFD in biotechnology was
published by Sharma et al.67 In the case of fast reactions (or
precipitation), mixing models have to be incorporated to model
the effects on a scale smaller than the grid size. To that end,
probability density function-based micro-mixing models can be
utilized, which approximate the fluctuations of the species con-
centrations on the sub-grid-scale68 (e.g., a RANS CFD model
combined with population balances and a micro-mixing model
of impinging jet crystallizers proposed by Woo et al.69).

More advanced approaches include large eddy simulations
(LES) and direct numerical simulations (DNS). The former
method only resolves the evolution of the large-scale motions
by applying a filtering process to the conservation equations
of the liquid phase. The resolved flow can be interpreted as a
low-pass filtered representation of the real flow. The effect of
the residual motion that resides on scales smaller than the
filter width is modeled using sub-grid-scale models, for ex-
ample, the Smagorinsky model.70 It was demonstrated that
the scheme can accurately predict turbulent hydrodynamics
in single-phase system71 and multiphase systems.72,73 For ex-
ample, Marchisio74 used LES to simulate particle formation in
a confined impinging jets reactors using LES coupled with a
sub-grid-scale mixing mode. In contrast, DNS does not require
any modeling as all turbulent structures are resolved down to
the smallest scale. However, with regard to typical engineering
applications, due the vast number of grid points required DNS
is still infeasible using current computational technology. How-
ever, new technologies, such as quantum computing, may solve
the complex flow problems under DNS.

Another set of methods to solve the Navier–Stokes equation
are particle-based [e.g., the Lattice-Boltzmann method (LBM)].
The LB scheme employs a simple form of the Boltzmann kinetic
equation to recover the macroscopic hydrodynamic behavior of
fluids.75 The main idea is that fluid flow, which is governed
by conservation laws, can be simulated by a many-particles
system obeying the same laws. A set of (fictitious) particles re-
siding on a lattice moves to neighboring sites and exchanges
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Figure 4. Snapshot of a 3D free-surface flow in a co-rotating twin-
screw extruder via smoothed particle hydrodynamics (SPH). The im-
age shows two fully filled intermeshing screws with conveying and
mixing elements. The polymer melt is shown as blue and white par-
ticles with identical properties, representing the flow. Energy dissipa-
tion, flow rate, power consumption, mixing performance, and pressure
characteristics can be determined from the simulations.

momentum (i.e., by colliding) with particles coming from other
directions. The collision rules and the topology of the lattice are
defined in such a way that the Navier–Stokes equations are
recovered.76 Another recently emerging method is smoothed
particle hydrodynamics (SPH), a Lagrangian, particle-based
approach that approximates the continuum equations of fluid
mechanics based on an interpolation technique for spatially dis-
ordered nodes. With this grid-free method complex free-surface
flows can be captured. A recent example is the simulation of
the complex flow in a co-rotating twin-screw hot-melt extruder
for pharmaceutical applications77,78 (a snapshot is shown in
Fig. 4).

Similarly to single-phase simulations, a variety of methods
can be used to describe flows in multiphase reactors, which are
typically based on RANS or LES descriptions of the continuous
phase. Currently, the most detailed methods allow the analy-
sis of the deformation of individual bubbles, which in this text
are referred to as multiphase DNS (MDNS) as they typically
involve DNS of all the phases.79 These techniques include the
volume of fluid,80 Lagrangian methods (where the grid follows
the gas-liquid interface, e.g.,81 and82) and the front-tracking
method introduced by Unverdi and Tryggvason.83 The latter
method has been applied by numerous groups84–86 to study mix-
ing effects including chemical reactions, for example, reactive
bubble swarms (�100 bubbles) with fully resolved deformable
and dynamic interfaces84 (Fig. 5).

Another approach is the Euler–Euler (EE) method, which
treats the involved phases as interpenetrating continua. Its
advantage is that, as there are no particles or bubbles, the
number of particles is not a limiting factor. However, the in-
terface between the phases is not resolved and, consequently,
sophisticated closure models that predict the local bubble size
and momentum/mass exchange are required to correctly de-
scribe the interaction between the involved phases. Often, a
population balance equation (PBE) has to be solved in conjunc-
tion with mass, momentum and, possibly, the energy balance,
which is computationally demanding. In addition, it can cause
instability in the solution procedure and is still a topic of ac-
tive research as breakage and coalescence kernels cannot be
predicted from theory alone and remain somewhat of a fitting
parameter.87,88

Figure 5. Direct numerical simulation (DNS) of a swarm of fully
deformable reacting bubbles, including mass transfer. Reynolds num-
ber = 38, Schmidt number = 50. The figure shows the concentration
field of gas transferred from bubbles into the gas phase. The complex
concentration distribution (striations) in the liquid phase can be seen.

The last major method is the Lagrangian particle tracking,
which tracks the dispersed phase, for example, the individ-
ual bubbles or droplets, in the flow field as point sources. As
the motion of the continuous phase is solved on an Eulerian
frame of reference, it is often referred to as Euler–Lagrange
(EL) approach.89 It was first applied to gas–solid flows in the
mid-90s.90,91 With regard to the EL approach, DNS of the con-
tinuous phase, that is, a full resolution of all length scales92 and
the filtered Navier–Stokes equations93 have been reported.

Particle-Based Systems

Many pharmaceutical manufacturing operations, especially in
secondary (drug product) manufacturing, deal with particles.
Examples include powder blending, granulation, milling, roller
compaction, tableting, and tablet coating. Depending on the
properties of the material, the granular flows can be highly
complex, containing arbitrarily shaped particles of various
sizes, mechanical attributes, and concentration. Although for
many years only continuum approaches prevailed (based on
soil mechanics for quasi-static flows or on kinetic theory for
granular flows in the collisional regime), recently new model-
ing techniques became available to a wider community, which
allow a mechanistic simulation of particulate flows. In these
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Figure 6. Comparison of experiments and DEM simulations of a powder blending process of cohesionless particles.95 In both experiments and
simulations, a four-bladed powder mixer was filled with identical 2 mm Dragonite R© glass spheres. One half of the bed was colored red and the
particle mixing process was followed for several rotations of the stirred. A good agreement between experiments and DEM simulations was
observed.

methods, particles are considered individual elements and col-
lision forces and the resulting particle trajectories are deter-
mined for each collision or time step. There are two main meth-
ods: the hard-sphere approach (assuming binary, instantaneous
collisions) and the soft-sphere approach (allowing multiple and
enduring contacts that are modeled by assuming an overlap of
particles) that is commonly referred to as the discrete element
method (DEM). Although the former is suitable for dilute flows
(such as powder conveying) with few collisions, the latter is ap-
plied to dense powder flows,94 which are typically encountered
in pharmaceutical manufacturing. Note that these methods do
not consider the gas phase and filling inter-particle voids.

In DEM simulations, linear (Netwon’s second law) and angu-
lar momentum balances in all three coordinate directions are
solved for every particle. The most critical aspects are the con-
tact detection and the particle interaction model that is used to
calculate the forces acting on individual particles during their
collisions with other particles and/or walls. Each of these two
contact types can be resolved using the same contact model,
and the material properties (Young modulus, Poisson ratio, co-
efficient of restitution, and friction coefficients) for each con-
tact type may differ, such that various materials can be mod-
eled. The forces are used to calculate (linear and rotational)
accelerations, which are then integrated in time to compute
each particle’s velocity, rotation speed, and location. One of
the simplest and most commonly used normal and tangential
force models are the linear and dashpot and a Hertzian (non-
linear) spring model. However, models allowing the description
of plastic deformation also exist. For a more detailed review see
Ref. 94.

In recent years, the DEM has widely been applied to improve
the understanding of particulate processes in the pharmaceuti-
cal industry.94–96 For example, blending processes were studied
by Remy et al.97 to understand the effect of blade orientation on
particle flow patterns and mixing kinetics. In another paper,98

they used experiments and simulations to quantify the effect
of varying particle roughness on the granular flow of cohesion-

less particles and the effects of varying blade speed (see Fig. 6).
Zhou et al.99 investigated the effects of the blade speed, the
particle size, the volume fraction, and the particle density on
the segregation of binary mixtures. In addition, Zhou et al.100

performed a microdynamic analysis of the particle flow and,
especially, the effects of sliding and rolling friction coefficients
on three-dimensional (3D) recirculating particle zones. Contin-
uous blending in a convective mixer was studied by Sarkar and
Wassgren.101,102 Radl et al.103 examined the mixing character-
istics of wet granular matter and observed better mixing rates
and performance compared to dry granular matter under the
same conditions. Radeke et al.104 recently presented a GPU-
simulation based approach and studied blending of up to 8
million particles. DEM simulations of a tote blender for perfor-
mance improvement were recently performed by Ren et al.105

DEM simulations of powder blenders were reported to be the
basis for design space definition of a blending process within
the QbD framework.42

Drum coating processes were extensively studied using DEM
(see Fig. 7). With that regard, DEM can provide information
about the movement of individual tablets and the duration and
frequency of tablet appearance in the spray zone. The num-
ber of tablets involved in the process is high enough to have
granular behavior, yet in many cases, it is small enough to be
handled well using the available computational hardware. For
example, Pandey et al.106 investigated the movement of spher-
ical particles in a pan coater via DEM. Sahni et al.107 used
both simulations and experiments to consider the influence of
various parameters on mixing in a pan coater. In many simu-
lation studies, to reduce the computational effort the particles
either have spherical shape or are approximated by spheres.
Few studies focus on the influence of the shape itself.108,109 In
these cases, the glued-sphere method is employed to approx-
imate arbitrary shapes by a number of spheres.110 An alter-
native new approach is to apply a contact detection algorithm
that models the bi-convex tablet shape via parts of intersecting
spheres.111,112 The shape is especially important for intra-tablet
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Figure 7. DEM simulation of a tablet coating process, including the
coating spray. The spray droplets are colored blue, with darker shades
indicating bigger droplets. The tablets are colored according to coating
mass, from white (no coating mass) to red (high coating mass). For more
details of the simulation setup, refer to Toschkoff and Khinast.114

uniformity, as non-spherical tablets may not achieve perfect
uniformity even if the coating time were infinite.113

To study such attributes as (inter and intra) coating unifor-
mities, one must know which tablets are in the spray region
(i.e., receiving coating mass) at a given time and which are
not. Various approaches have been proposed to determine that.
Freireich et al.115,116 calculated intra-particle coating variabil-
ity using a DEM simulation of a rotating cylinder coater. An
experimental and computational study of the inter-tablet coat-
ing variability was performed by Kalbag and Wassgren.117 The
bi-convex tablets from experiments were approximated in the
DEM simulations by spheres of the same volume, since they
were reported to have nearly identical circulation times.118 Us-
ing the output data of a DEM simulation, spray zone detection
can be carried out based on the fill fraction of static cubical
voxels.119 Toschkoff et al.109 studied the effect of three fill vol-
umes on the residence time of the tablets under the coating
spray, leading to a quantification of the inter-tablet coating
variability for each particle shape. Moreover, Toschkoff and
colleagues114,120 investigated the impact of different spray mod-
els on the simulation results (see Fig. 7). Dubey et al.121 investi-
gated the effects of pan speed, fill level, and design of the spray
pattern on the coating variability of tablets coated in a rotating
pan.

Moreover, other processes were investigated via DEM sim-
ulations, including ball milling,122 powder rheometry,123 hop-
per flows,124 or powder sampling.125 An integrated approach
to simulating pharmaceutical powder processed was recently
presented by Rogers et al.126

Fluid–Solid-Particle Systems

Solid particles that are fluidized or suspended in a liquid are
frequently used in pharmaceutical manufacturing, for example,
in fluid bed drying, agglomeration and coating processes, wet
milling, dissolution, suspension production, as well as in the
transport of solids. Liquid-particle systems (e.g., suspensions)
and gas-particle systems behave quite differently and require
different simulation approaches. With that regard, we focus on
dense fluid (liquid and gas) particle suspensions (i.e., particle

volume fractions φp up to the close-packing limit). A recent re-
view of simulation methodologies for dilute suspensions (where
particle–particle collisions are relatively rare but turbulence is
important, which is generally the case for φp � 0.01), can be
found in Toschi and Bodenschatz.127 Most of the methods men-
tioned below have been applied only to mono-disperse spherical
particles. Studies on irregular particles are scarce and limited
to simple shear flow simulations of particles without interstitial
fluid.128,129

Direct Numerical Simulation. Direct numerical simulation
provides the most general description of the two-phase sys-
tem, with the lowest level of additional models needed. If the
true shape of the particles is well approximated, direct simu-
lations can be treated as the ultimate description of the sus-
pension flows and do not necessarily require validation via ex-
perimental data. Furthermore, since any additional model for
non-hydrodynamic interaction between particles (e.g., van der
Waals or electrostatic forces and the effect of Brownian mo-
tion) can easily be incorporated, direct simulation became one
of the most powerful tools in the field of suspension mechan-
ics, effectively replacing experiments in some areas (e.g., for
microstructure analysis, rheological characterization). Because
of the extremely high-resolution requirements, direct simula-
tions are currently limited to O(103) particles. Studies of larger
systems are rare130 and require significant computational re-
sources. Below we describe three widely accepted methodolo-
gies, which have been used primarily to study the rheology of
liquid-particle suspensions (i.e., systems with a density ratio
close to unity). They are also applicable to gas-particle flows
and dense bubbly flows.131 A more detailed review of suspen-
sion mechanics was published by Stickel and Powell.132

� Stokesian dynamics (SD): This approach provides the
most accurate description of the suspension flow at zero
Reynolds numbers, using an analytical solution to the
flow of the interstitial fluid.133 This is possible because
at zero Reynolds number, the equation of fluid motion be-
comes linear. Hence, SD is intrinsically limited to systems
with negligible fluid inertia, that is, the particle Reynolds
number must be much smaller than unity. Sierou and
Brady134 significantly improved SD by increasing the com-
putational efficiency of solving the Stokes flow problem.

� LBM: Incorporating the Lattice-gas-based algorithms for
studying the fluid flow, LBM introduced by the group
of Ladd135–138 was widely applied to study suspension
flow. LBM-based simulations can be used for arbitrary
Reynolds numbers and provide a significant advantage
over SD. LBM was recently applied to study suspension
flow by Derksen and colleagues,139–141 van der Hoef and
colleagues,142,143 and Hölzer and Sommerfeld.144,145

� Immersed Boundary Method (IBM): IBM refers to an ap-
proach that resolves the flow around individual parti-
cles via a “classical” Navier–Stokes solver (typically on
a regular computational grid) and accounts for the pres-
ence of particles by imposing a virtual force at the fluid-
particle interface. It creates a very accurate representa-
tion of the two-phase system and, unlike LBM, does not
require any calibration (provided that the resolution be
high enough). However, IBM is the most computation-
ally demanding methodology and has only been applied
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to moderately large systems of particles146,147 or single
particle systems.148

Most importantly, for large-scale, industrial simulations,
drag force laws for particle collectives can be derived via DNS.

Euler–Lagrange Simulation. When using the Euler–
Lagrange Simulation (ELS) for a dense suspension, the details
of the flow around individual particles are not resolved (parti-
cles are point sources) and the fluid-particle interaction force
has to be modeled. It is a major drawback when suspensions
with density ratios close to unity, bubbly flows, or a suspension
flow at large particle Reynolds numbers (typically larger than
100) are considered. In these cases, the inertia of the fluid is
large compared with the inertia of the particles, but detailed
information on the fluid motion is unavailable. Hence, ELS is
typically applied to gas-particle systems. Moreover, models for
the drag forces are required, which are only approximations of
the real system. Depending on whether DEM or HS is used,
either the so-called “CFD–DEM approach”99,149 or the “CFD–
HS” approach150 can be used. Although the latter has widely
been used to study gas-fluidized particle systems, the former
can be applied on a broader scale as it is more flexible with
respect to inter-particulate forces. According to Zhou et al.99

and Feng and Yu,151 the main advantage of CFD–DEM is
that detailed particle-scale information is obtained, including
particle trajectories and forces acting on individual particles.

CFD–DEM coupling methods are rarely used to describe
pharmaceutical manufacturing processes. Recent pharmaceu-
tical CFD–DEM application include the work of Guo et al.152

and Wu and Guo153 who studied the effect of air on powder flow
during die filling and the analysis of the pneumatic transport
of granular media by Sturm et al.154 Recently, Jajcevic et al.155

reported CFD–DEM simulations of up to 30 million fluidized
particles in pharmaceutical manufacturing (see Fig. 8).

A recently proposed method by Sakai and colleagues156,157

is based on coupling the DEM and the Moving Particle Semi-
implicit” approach (DEM–MPS), allowing the simulation of sus-
pension flows with free surfaces (DEM–MPS) via fully resolved
3D Lagrangian–Lagrangian simulations.

Euler–Euler Simulation. As Euler–Euler Simulation (EES)
treats both the fluid and the particle phase as a fluid (some
authors refer to EES as two-fluid models), the details of fluid
motion, fluid-particle interaction, and particle collision dynam-
ics have to be modeled. The advantage of EES is that it does
not require tracking of individual particles. Although the the-
oretical foundation for EES was established by Anderson and
Jackson,158 research on models for particle collisions is still
an active field of fluid mechanics.159–165 However, studies are
mostly limited to mono-disperse spherical particles with only a
few exceptions. EES are often used in chemical/pharmaceutical
engineering applications as it is the only approach that enables
studies of suspension flow in large-scale equipment. As small-
scale details of the flow are neglected, EES requires rigorous
validation and the computational grid size often has a signifi-
cant effect on the result.166 The latter study has triggered the
development of advanced EES models that aim at eliminating
the grid dependency, some of which were recently created167–169

(and successfully validated with detailed simulations) for

Figure 8. CFD–DEM of a fluid bed process involving 25 million parti-
cles. The fine structure of particle clusters (streamers) can be observed.
For details regarding the simulation setup refer to Jajcevic et al.155

gas-particle systems, making EES an efficient tool for study-
ing suspension flow in large-scale equipment.

Process Simulation

For many years, simulation of the plant-wide system behavior,
via either static or dynamic simulators, has been a common
tool used by process engineers to study and optimize the per-
formance of chemical and petrochemical plants. In the phar-
maceutical field, however, it has rarely been used as (1) CM is
still only in the adoption phase and (2) process simulators for
solid materials have only recently reached the level of sophis-
tication required for routine applications. For example, Parsi-
val, SolidSim, and gSolids are flow-sheet simulation tools es-
pecially designed for solid processing operations, which offer
a comprehensive set of additional features (e.g., unit opera-
tions libraries, custom modeling, dynamic simulation, phys-
ical property libraries) and allow the implementation of ki-
netic models and coupling with other classical simulation tools
(e.g., CFD, DEM, and Matlab). They can model size fractions
via so-called PBE models. Using population balance models
to study particle-population dynamics (i.e., the change in par-
ticle size distributions) has become increasingly common in
the last few decades. Hulburt and Katz170 were the first to
present PBEs for a class of problems in particle technology.
A large number of attempts have since been made to apply
population balance modeling to particulate processes. Several
numerical techniques exist for solving PBEs. They were re-
viewed by Ramkrishna and Mahoney171 and Kraft.172 In re-
cent years, various studies have been performed with the spe-
cial focus on understanding the dynamics of the process: time
to steady state, the interaction of unit operations, the effect
of process upsets, start-up, and shut sequences and process
optimization. Application examples include crystallization,173
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granulation174,175 tablet manufacturing,176 and blending.177,178

Modeling of continuous process plants were carried out as
well, for example, by.178,179 Flow-sheet-based control models for
plant-wide control via model predictive control (MPC) were re-
cently implemented.179,180

In the future, process optimization and control via dynamic
flow sheeting will be of increasing importance, especially in the
context of CM where these models are crucial for process con-
trol and process optimization. However, more robust simulation
tools, allowing the standard use of multi-dimensional PBE and
dynamic simulation are required. In addition, modern tools to
characterize the dynamics of non-steady-state systems, such as
bifurcation analysis, should be used.181

Final Remarks on Process Simulation

Clearly, models are just an approximate representation of re-
ality and are valid only within a certain range of conditions.
Materials and process parameters have to be established using
sophisticated experimental methods. Accuracy, reliability, and
prediction ability have to be established for every model and
for every simulation method. This process (termed model val-
idation) is critical, especially for design and scale-up models.
Validation is best performed via (1) simplified setups for which
analytical or exact solutions are known, (2) comparison with
existing well-established solutions in the literature, (3) pre-
dictions by well-established simulations tools or experiments
carried out at various scales. With that regard, it is important
to note that experiments are error-prone as well. In engineer-
ing, an agreement in the range of 10% between experiment
and simulation is considered sufficiently accurate for most
applications.

Finally, it should be noted that field of modeling and simu-
lation is rapidly advancing. Not only simulation codes are be-
coming more sophisticated every year and mechanistic models
are improved continuously, but also the hardware is develop-
ing. For example, a short while ago, a few hundred-thousand
particles were considered the upper limit for DEM simulations.
Currently, advanced GPU codes (running on graphic cards) can
be used to simulate in the order of 100 million particles. A
few years from now even particle numbers above 1 billion may
be achieved. Although the area is rapidly developing, ways to
combine process models with molecular simulation tools (not
reviewed here) and methods to simulate/predict material prop-
erties and constitutive relationships in a straightforward man-
ner have to be identified. Thus, significant research efforts are
required in the future.

Materials Science

The chemical compounds used for medication purposes are
becoming more complex and, simultaneously, the demand for
highly engineered innovative formulations is growing.182–185 As
such, the role of materials science is gaining importance.186–188

Material characterization will be progressively more signifi-
cant, as explaining the processability of complex systems re-
quires a detailed characterization of the structure of matter.
Development of products based on well-defined solid forms
(polymorph, solvate, salt, co-crystal, and amorphous) of a given
low-molecular-weight compounds, as well as the complex na-
ture of biopharmaceutical drugs, such as monoclonal antibod-
ies and recombinant proteins, are underpinning the importance
of fundamental materials science. Understanding the material

properties is a key for successful commercial-scale manufac-
turing of pharmaceuticals. Future manufacturing solutions for
innovative drug delivery systems (DDSs) can be based on com-
plex and non-traditional pharmaceutical engineering princi-
ples, for example, microfluidics and lithography.189,190 At the
same time, the success of innovative therapies can be investi-
gated using nano-level theranostics with increasingly power-
ful imaging modalities, such as magnetic resonance imaging
(MRI), optical imaging, ultrasonography, positron emission to-
mography, computer tomography, and single photon emission
computed tomography.191 This review is not aiming to provide
a full overview of all available techniques, but we present a few
examples of solid-state analytical tools and related screening
approaches.

Techniques that have earlier not been considered as a first
choice when analyzing pharmaceutical solid dosage forms are
becoming routine: the structure of matter and intermolecular
interactions can be explored using solid-state nuclear magnetic
resonance (NMR)192 and synchrotron radiation.193,194 Via syn-
chrotron radiation, a snapshot of changes in the solid form
composition of the sample can be provided in less than a sec-
ond. Through special sample holder designs, structural changes
during dissolution testing have been evaluated. By mimick-
ing the stress conditions occurring at various process steps,
a more detailed representation of the solid form composition
during processing can be achieved. The implementation of var-
ious tools for visualization of the inner 3D structure of dosage
forms195,196 and novel imaging modalities197,198 offers a com-
plete picture of the entire dosage form and not only the sur-
face information. Electron microscope techniques can be cou-
pled with elemental analysis to provide an overview of the
spatial distribution of various elements in the sample. Prob-
lems related to sample preparation (cutting) can be avoided by
utilizing some of the imaging modalities as mentioned above:
X-ray computed micro-tomography, MRI, imaging at terahertz
frequencies and optical coherence tomography (OCT). Innova-
tive thermal analysis199 and rheological evaluation of molten
polymer–API mixtures can help to design processing conditions
for preparation of solid dispersions, for example, with extru-
sion and 3D printing principles.200 Surface-sensitive techniques
probing surface energetics are of critical importance when ex-
ploring bulk powder behavior.201 There are several methods
of quantitative analysis of bulk powder behavior, and powder
rheometer is a commonly used approach for troubleshooting in
the production environment.202

Detailed analysis of material properties on a nanoscale can
be related to processability of this material (Fig. 9). Single-
crystal level observation with an atomic force microscope (AFM)
was directly related to the packing of molecules in the crystal
and used to explain the behavior at the particle level.203

The number of innovative DDSs on the market is still lim-
ited. One of the major obstacles is the lack of scalable manu-
facturing solutions for DDSs. As drug products administered
orally and in the solid dosage form remain the most preferred
solutions, it is important to develop these complex formula-
tions with acceptable particulate properties. The size and shape
of particles for the final product can be designed from the
molecular point of view.204,205 Both top-down and bottom-up
approaches have been suggested for optimizing the bulk char-
acteristics of starting materials.206 Bottom-up particle design
approach via, for example, controlled crystallization could be
implemented already during the final purification phase after
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Figure 9. Nanoindentation with atomic force microscope (AFM) help-
ing to identify a weak crystallographic direction in the crystal.203 Re-
produced with permission of The Royal Society of Chemistry.

primary manufacturing (synthesis).207 Bottom-up approaches
can follow different strategies with a specific aim to control
both the crystallization of a desired solid form and the particle
morphology with desired surface characteristics. Tailor-made
additives can be effective for achieving the optimal material
for downstream processing. Control of intermolecular interac-
tions can be based on a strategic selection of polymers with
desired functionality and on advances in understanding of the
mechanisms (e.g., of polymer-induced hetero-nucleation, indi-
cating the potential of this approach208). Computational work
can contribute to this approach, for example, in investigating
solvent effects on the morphology209 and in estimating com-
putationally the additive-active ingredient interactions.210–212

Small molecules, such as water, can also be used as a design el-
ement in materials engineering.213 The role of excipients should
also be revisited, and excipients (or additives in the engineer-
ing language) can become a more natural part of up-stream
processing in the future.214 This way, less processing steps will
be involved in producing a material with an acceptable per-
formance for the final dosage form. Materials with appropri-
ate bulk characteristics (flowability) are required when im-
plementing innovative engineering for processing of the final
product.

Solid-form screening is a normal part of drug development
activities and several strategies and platforms on different
scales do exist for this activity.215–219 Significant progress has
been made in the computational prediction of solid forms dur-
ing the past decade. A good indicator of the development in this
field is the crystal structure prediction blind test series orga-
nized by the Cambridge Crystallographic Data Centre.220 The
recent fifth blind test showed that although crystal structures of
relatively rigid and slightly flexible small molecules can be pre-
dicted, more work is required for larger, more flexible molecules
and complex systems, such as salts and hydrates. Because of
the continuously improving performance of computer systems
and force fields, several computational groups can now predict

the crystal structure. The challenge is to relate these computa-
tional findings to practical pharmaceutical formulation devel-
opment or for the prediction of complex phenomena, such as
stability or dissolution.

Handling high numbers of samples has been made pos-
sible by technical innovations in the field of robotics and
high-throughput screening (HTS) and related analytics, for
example, Raman spectroscopy. One difficult aspect of experi-
mental solid form screening is the small-scale handling of solid
matter (weighing and transport of powder in various HTS ge-
ometries). Efficient solid-form screening also requires fast so-
lutions for estimating the practical importance of the identified
new solid form,221 support tools for decision-making concern-
ing the optimal final dosage form and the related manufactur-
ing solutions222,223 and, further, innovative analytical tools for
clustering the experimental results.224 Figure 10 illustrates an
experimental platform for evaluating the role of excipients in
the development of solid dosage forms and decision support for
final process solution.

An important part of the bottom-up-based materials engi-
neering approach is monitoring and controlling the solid form
composition of the product during manufacturing in order to
achieve the desired fine-tuned clinical response. When per-
forming the process design for potential future dosage forms
consisting of carefully designed high-tech materials, it becomes
increasingly important to utilize appropriate process analytical
tools during manufacturing.

PROCESS ANALYSIS FROM THE ENGINEERING POINT
OF VIEW

Process Measurements

Process Interfacing

An important starting point of implementing process analytical
solutions is interfacing with the materials under investigation
(Fig. 11). Collecting the representative signal can be ensured
by a proper consideration of the placement of analytical instru-
ments and, especially, the placement of a sensor/probe head.
Interfacing can be performed in several ways:

� at-line,
� on-line, and
� in-line.

The term off-line is used to describe a situation in which
samples are removed from the process stream and taken to a
centralized lab located outside the processing area. This is the
optimal solution from the analytical point of view, which implies
a centralized location of the instruments and expertise. How-
ever, if the obtained information is to be used for process analy-
sis decision-making or real-time quality control (QC), time gap
between sampling and receiving the results might be too long.

The other extreme, in-line analysis, is used to describe a
situation in which the probe head is directly inserted into the
process stream. Because of the challenges related to cGMP, it is
not always a preferred solution and can especially be difficult
with regard to biotechnological processes (sterility issues).

Between these two extremes is at-line or on-line analyses,
which involve removing a sample from the process stream but
analyzing it in the process area. At-line analysis is performed
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Figure 10. Small-scale formulation screening platform for estimating the role of secondary manufacturing operations on solid form stability.223

Reprinted with permission from Elsevier.

Figure 11. Schematic illustration of various modes of process analy-
sis. Modified from Ref. 5.

by manually taking the sample to the measuring instrument
and, in many cases, not returning it to the process stream. On-
line analysis often involves automated sampling and returning
it to the process stream.

Practical issues, such as fouling of the sensor/probe head,
can become a major hurdle for the implementation of process
analytical solution. Different sampling solutions for at-line/on-
line analysis and process window solutions for in-line measure-
ments can be a part of commercial process analytical solution.
Many of these solutions involve purging gas or mechanical re-
moval of the material disturbing the process measurement. In-
novations in this area have been reported in the literature.225

Process measurements from liquid phase process streams
are well-established. Interfacing with liquid phase systems
and sampling, for example, from synthetic reaction streams
for HPLC analysis, create other challenges than interfacing
with solid-state samples. When interfacing a process probe with
a moving powder/tablet stream, several additional issues re-
lated to powder handling can arise. Because of the segregation

tendency, a wrong placement of the probe can lead to a com-
pletely misleading analytical result. Interfacing decisions must
also be based on the flow dynamics of the solid material un-
der investigation and the process dynamics.226,227 Sampling fre-
quency of the measurement should be realistic in terms of the
measured phenomena, for example, monitoring of a drying pro-
cess does not require a millisecond scale sampling frequency,
but fast chemical reactions may need fast analytics. Finding
an optimal place for the probe head can be facilitated by com-
putational approach and process simulations.228 Another strat-
egy would be to increase the number of measurement points
and multiplex several probes (e.g., perform multipoint NIR
measurement).229–231

Several process measurements involve complex physical in-
teractions of light and material (e.g., scattering in spectro-
scopic measurements, diffraction for particle size determina-
tion). These interactions have been evaluated theoretically.232

In practice, the required sampling volume needs to be esti-
mated for successful measurements.233,234 A good example is
Raman spectroscopy, with several practical probe-design fac-
tors are affecting the collected signal. Probe-head optics can be
used to optimize the effective sampling volume and make sure
that the collected signal represents the whole dosage form.235

Raman spectroscopy is associated with a challenge related to a
possible energy input from the measurement itself—intensive
radiation from the laser can induce degradation of components
of the formulation. These examples highlight the importance
of carefully considering the physical principles of the measure-
ment technique and optimizing the measurement solution for
the intended use.

Sensor Technologies and Related Data Management

Careful selection of a right sensor for a specific process ana-
lytical task is key for successful process monitoring and con-
trol solution. Robust processes can be developed based on rel-
atively simple (univariate) measurements, without necessarily
requiring a high-end expensive process measurement solution,
for example, spectrometer. Standard measurements, includ-
ing temperature, absolute/relative humidity, pressure, mass,
force, and torque, are elements of well-established engineering
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methods that should form a basis for all process analytical
work. The investment into expensive and more complex process
analytical tools should be based on risk assessment and a well-
documented need. There is a wide variety of complex process
analytical tools opening a possibility for totally new manufac-
turing solutions and regulatory philosophy. Interfacing a con-
tinuously operating manufacturing line with the correct pro-
cess analytical tools will constitute a fundamental change in
the pharmaceutical field.

Current developments in process analytical chemistry have
provided new insights into manufacturing of pharmaceuticals.
Several spectroscopic techniques are widely used236–238: during
the last decade, process spectroscopy using IR, NIR, and Ra-
man have been well described for several applications and have
becoming widely accepted in the industrial setting. Moreover,
novel methods and combinations have been proposed, for exam-
ple, the combination of Raman spectroscopy and dynamic light
scattering for the characterization of therapeutic proteins.238

Spectroscopic methods have been described in pharmacopoeia
and increasingly accepted by regulatory side. As such, imple-
mentation of these methods in real life application should be
relatively straightforward.

One of the simplest methods, that is, normal visible light
image information, is not as widely utilized as in many other
industries. Optical imaging with various innovative configu-
rations has been applied for capturing information related to
powder behavior.225,239–241 Imaging performed with the help
of other wavelength regions and chemical imaging using the
above-mentioned techniques (IR, NIR, and Raman) are becom-
ing increasingly popular.242–244 Chemical imaging has potential
in the production environment, and NIR imaging of continu-
ous wet granulation line confirm that this approach is suitable
for residence time analysis and mapping of moisture within the
moving material.245 Fast imaging of moving freeze-dried biolog-
ical samples with the similar NIR setting enabled the visual-
ization of moisture distribution and the detection of moisture-
induced crystallization of the excipient in the formulation.246

Imaging of chemical components and solid form variation in
moving dosage units can offer new opportunities in QC in the
pharmaceutical environment. All this image information can
be used as a part of machine vision system to create innovative
process control solutions.

A wide variety of other process analytical tools exists, and
NIR spectroscopy should not be viewed as the one and only
PAT solution. High-end analytical chemistry tools, including
electrochemistry,247 chromatography, mass spectrometry, and
NMR,247 can be considered if risk assessment indicates so. From
a more physics-based-methods standpoint, diffraction methods
have commonly been utilized for particle size determination,248

and several other techniques can capture particle size related
information as well.249 Information from the process can also be
extracted using innovative approaches, such as acoustics,250,251

ultrasound,252 and electrostatic monitoring.253 Another exam-
ple is OCT for monitoring inline the coating thickness and the
inter- and intra-tablet coating variability during the coating
process (both in pan and fluid-bed coaters).254 These examples
were given to provide an idea of the existing possibilities and
demonstrate that everything can be measured. With regard to
implementing new process analytical sensors, the possibilities
are unlimited.255 Although it may be tempting to implement
several analytical tools in a given unit operation, in reality, the
optimal solution can be a very simple system with only a few

univariate sensors. However, this may not always be true, and
increasing amount of data has to be properly analyzed.

Advances on the sensor side together with the increased
interest in hyphenated (combined) techniques and chemical
imaging necessitate robust data analytical tools that are capa-
ble of handling complex information.256–259 Multivariate data
analysis (MVDA) and chemometrics are the terms used for de-
scribing activities related to establishing the relationship be-
tween the complex analytical signal (e.g., spectrum/spectra or
image) and the investigated quality attribute. MVDA is becom-
ing a generally accepted and widely applied technique in the
pharmaceutical sciences for both qualitative work (e.g., clas-
sification of raw material using principal component analy-
sis, PCA, NIR/Raman spectra from handheld instruments) and
quantitative examples (e.g., measurement of water with NIR).
The real challenge in the implementation of MVDA is when
data are structured in a multi-way manner,260,261 for example,
fluorescence emission spectra measured at several excitation
wavelengths. Processing of pharmaceuticals involves complex
multicomponent systems and, in many cases, requires hyphen-
ated techniques to provide an insight into the system and the
implementation of multi-way data analysis. Although this area
of science is developing fast, more work is necessary to secure
the development of appropriate standards in the pharmaceuti-
cal sector, ensuring implementation of MVDA as a part of fu-
ture quality system. Implementation of a multivariate method
requires critical evaluation of the model, and possible pitfalls
have recently been described.262,263

Miniaturization of analytical instruments has great poten-
tial in the pharmaceutical field. Hand-held spectrometers can
be carried in a pocket of a process operator, adding a new di-
mension to QA. While integrating hand-held analytical devices
and electronic notebooks into quality systems will be one of
the future challenges, it appears to be an attractive option for
flexible manufacturing solutions. Implementation of movable
analytical devices providing information on moving samples to
existing QA/QC and laboratory information management sys-
tems requires some fundamental rethinking. Another challenge
is the maintenance of a multivariate method, which may re-
quire a model/data transformation in order to make it/them
compatible with multiple analytical instruments. Several data
transformation, model update and systems robustness evalua-
tion methods have been described in the literature.264

These developments necessitate improved overall data man-
agement solutions and database structures.63 One of the major
motivating factors and a key driver for using PATs is real-time
release philosophy. Increasing the load of information with a
time label can be created to describe one specific batch or, in
the case of a continuously operating manufacturing line, be
utilized to fulfill the regulatory compliance requirements.

Process Control Strategies

Shifting market demands and the trend toward CM re-
quire novel control strategies for pharmaceutical production
processes.179,265–267 While control configurations and controller
tuning for single batch units are rather straightforward, inte-
grating several unit operations into one continuous plant cre-
ates highly complex interactions and dependencies.268 Possible
solutions include operator-based control strategies or auto-
mated control systems that act directly on the process. In
general, a process control system has to have three major
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Figure 12. Various levels of control strategies. Adapted from Ref. 269.

features: (1) fast and controlled startup and shutdown, (2) con-
tinuous satisfaction of all CQAs by achieving the steady state,
and (3) assurance of quality regardless of disturbances, dynam-
ics, uncertainties, nonlinearities, and constraints. The three
quality levels of control strategies (see summary in Fig. 12) in-
creasingly depend on real- (or almost real-) time data signals
and mechanistic process understanding.

In this context, the choice of the right monitoring tool is
important and often challenging, for example, in the case of
complex multivariate models for spectroscopic data acquisi-
tion. Well-placed PAT sensors and probes are key elements of
an efficient control strategy, enabling CM and possibly real-
time release. In addition, manufacturing-related data have to
be provided for many reasons: to enable QA and QC functions,
to satisfy regulatory requirements and to provide the basis for
trouble shooting or future formulation development as part of
a knowledge management system.

In general, the modular structure of a typical automation
system has multiple levels. First, selected measurement de-
vices (probes) have to be physically connected to the process
stream at the desired level (at-/on-/in-line) (Fig. 13). Next, an
interface enables the transmission of the obtained data to a
data acquisition and process control system that collects and
processes the measurement information. Finally, the control
system returns the controller action to the process, using actu-
ators that adjust the process accordingly.

In order to conform to quality requirements and regulatory
demands, both data collection and structure of the associated
knowledge management system are critical for an automated
control system. Real-time release and storage of all relevant
process information are especially important. With that regard,
newly arising issues, such as traceability of the pharmaceutical
product throughout the continuous process stream and storing
processed data rather than raw data (e.g., the spectrum-derived
API content over time vs. the time-resolved spectral data), still
have to be resolved to avoid conflicts with the regulatory re-
quirements.

The centerpiece of the control system is the controller struc-
ture that initiates corrective actions based on the provided mea-
surement information. Control theory suggests various control
configurations, for example, feedback, feed-forward, and cas-
cade control to name a few. A typical feedback control structure
is shown in Figure 14a. It constantly calculates the difference
between the variable that has to be controlled and a specified
set point value (i.e., the error). This error is then processed and
forwarded to an actuator that manipulates a correlated process
variable (manipulated variable) accordingly. As demonstrated
in Figure 14b, desired set points may not be reached imme-
diately or exactly. However, rise and settling time, as well as
oscillations around the desired set point, can significantly be re-
duced and adjusted according to specific process requirements
by accurate tuning of the controller parameter and appropriate
expertise in the controller design.

Figure 13. Schematic structure of an automation system (adapted from Ref. 270). The data obtained from the measurement devices are collected
and processed in a data acquisition and process control system. The resulting controller action is implemented in the process through suitable
actuators. Process data are stored in a comprehensive database for quality assurance and regulatory purposes.
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Figure 14. (a) Schematic structure of a feedback control loop. The
deviation between the controlled variable and the specified set point
is used to trigger and actuator action, adjusting the associated ma-
nipulated variable and compensating for the occurring disturbances.
(b) Exemplary control action resulting in an overshoot reaction and
oscillatory behavior during the set point changes.

In contrast, feed-forward controllers constitute an open loop
control system by triggering an actuator action based on a pre-
defined set point and without considering or monitoring the
current status of the controlled variable. Controllers of this
type require excellent knowledge of the controlled system and
all occurring disturbances so that adequate actuator actions are
performed to keep the controlled variable within its acceptable
limits. Cascade controllers combine two or more controllers in
master and slave loops to serve control variables that interact
on various time scales, e.g., faster local stabilization loops and
slower supervisory control loops. Proportional (P), differential
(D), and integral (I) control terms and combinations thereof are
the simplest and most commonly used controller types for de-
termining the control action of the manipulated variable. PID
control is considered to be the best option for a general process
with unknown dynamics and optimal for serving fast control
loops.

Unlike PID control, fuzzy controllers evaluate physical input
signals with linguistic terms gained from human expert knowl-
edge via logic of operations.271 This allows to process fuzzy
process knowledge and expertise and to transform them into
precise actuator settings for the automated control purposes.

Figure 15. Schematic structure of a MPC approach (adapted from
Ref. 265). Past measurements of control variables and prior imple-
mented actuator values are used to predict the future behavior of the
system.

In industries, in which automated process control is an in-
herent part of process development,176 advanced controller ap-
proaches, such as MPC, have been applied for many years. The
pharmaceutical industry is beginning to introduce such meth-
ods as well.265,272,273 MPC is especially suitable for multivari-
ate problems with difficult dynamics and large time delays, in
conjunction with certain input/output constraints. It calculates
future actuator values using a dynamic presses model (either
mechanistic or stochastic) and past and current measurements.
A schematic of the control scheme is shown in Figure 15. The
future actuator values, spanning the so-called control horizon,
are determined such that the predicted values of the controlled
variables are approaching the desired target values over the
prediction horizon. It is achieved by solving a minimization
problem of a defined objective function fulfilling all given pro-
cess constraints. A distinguishing feature of MPC is that even
though the control horizon comprises several actuator steps,
only the first control action is effectively implemented. For the
next action, future values of the new control horizon are recal-
culated and, again, only the first control action is implemented.
This is the reason why MPC is also referred to as the “receding
horizon approach.”274 With regard to pharmaceutical CM, the
computationally extensive MPC can be integrated into a super-
visory control layer as time delays between control action and
the effect on the product quality may be greater, for example,
in the order of 10 min to 1 h.

Most current publications propose simple and common
proportional–integral(–derivative) [PI(D)] control systems for
pharmaceutical production plants.179,266,267,275–278 Only a few
studies have so far reported a successful development of
an MPC or MPC-hybrid control structure for simulated
processes.265,272,273,278,279 Since several works indicated unsat-
isfactory performance of control approaches based on PID, ad-
vanced process control structures, such as MPC,267,275,277,278,280

are generally recommended.
An interesting method was proposed by Rolandi and Romag-

noli in 2005 and 2010.281,282 Even though it was designed for
the chemical industry, their MPC for on-line full optimizing
control may encourage future developments in the pharma-
ceutical industry. A similar process-adaptive approach was re-
ported by Singh et al. in 2013265 who updated model order and
corresponding coefficients of a linear MPC online via system
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identification after a certain run time interval to comply with
current process dynamics and make more precise predictions.
A combination of scheduling and control via MPC was reported
recently.283

In the end, the choice of a control structure depends on the
specifics of the process and a consideration of all control expec-
tations and requirements. In some cases, a combined approach
may be most suitable. Such combined structures can vary from
simple cascaded PI(D) controllers, serving faster and slower
control loops and interacting process variables at a time,266,267

to novel MPC–PID hybrid approaches where MPC represents a
supervisory control layer that delivers the set points for faster
acting regulatory PID loops.265 This is especially beneficial, as
the MPC algorithm requires a certain computational time that
increases with the complexity of the model and, therefore, can-
not serve faster control loops. Furthermore, it depends on accu-
rate, multivariable, and linearized models of the process that
might not always be available.

In order to facilitate the implementation of automated con-
trol systems in the pharmaceutical industry, in 2008 the In-
ternational Society for Pharmaceutical Engineering (ISPE) re-
leased the Good Automated Manufacturing Practice guideline
(GAMP R© 5). It provides a pragmatic industry guidance to un-
derstanding and risk management of computerized systems in
GxP environments, ensuring the identification, analysis, eval-
uation, and control of associated risks.284

Regulatory authorities play an important role in promoting
automated CM. Although, in the past, issues such as trace-
ability, real-time release, recalls, and documentation require-
ments were addressed, today such principles as the “proposed
operation conditions” have to be considered and a tight control
of intermediate quality attributes has to be established rather
than keeping process parameters within a certain design space.
Moreover, appropriate training of technical staff should to be
encouraged, and a larger number of joint projects of industry
and academia are required to reduce regulatory risks and at-
tain regulatory clarity for industry.268

In summary, the industry is moving (slowly but surely) to-
ward automated plant-wide control systems in standard pro-
duction. This task is not impossible. Reconsidering obsolete
process development approaches and regulatory demands are
critical for its success. Advanced automated process control is a
critical issue for automated CM and more research in this field
is required.

PERSPECTIVE TO FUTURE PROCESS PHILOSOPHY

Future Manufacturing Technologies

Over the last years, decade-old paradigms of pharmaceuti-
cal and bio-pharmaceutical manufacturing have changed dra-
matically, as regulators, industry, and pharmaceutical scien-
tists began to realize that new product generations could not
be produced using outdated technology. Future products are
more complex. They are structured on many levels including
nano-structures, typically involve (combinations of) highly ac-
tive substances at low concentrations and are administered in
novel ways. At the same time, higher and higher quality de-
mands and an ever-increasing cost awareness require effective
and robust solutions. Thus, new production technologies will
augment classical routes more and more. The main drivers of
new technology include (1) CM, including QA in real-time via

PAT, (2) processes suitable for nano-structured DDSs, and (3)
manufacturing technology for individualized and on-demand
drug products. Especially the last issue should not be underes-
timated. Personalized and individualized medicines, including
drug products for specific patient populations (e.g., the pediatric
and geriatric patients) and combination products, will rapidly
change the pharma landscape. Process engineers will have to
provide solutions for future individualized demands. In the fol-
lowing sections, we provide an overview of current and future
trends.

In contrast to batch manufacturing, CM establishes a contin-
uous flow of material exposed to a sequence of time-invariant
unit operations, which is constantly monitored and controlled
by in-line analysis tools to ensure that the final product com-
plies with pre-defined quality attributes. Several advantages
are associated with CM, and flexibility is a major one: new
processes can be developed faster using the existing CM lines.
Moreover, it contributes to the industry’s response capacity in
case of emergencies by reducing the manufacturing time and
the increasing or decreasing the amount of material produced,
depending on current needs. Another important advantage is
speeding up the supply chain. Existing supply chains may re-
quire a few months or even a year or longer, reducing the abil-
ity to react to changing market demands (such as epidemics).
Long supply chains also complicate the clinical development
stage. In addition, CM can reduce scale-up problems as devel-
opment can be performed using the manufacturing equipment.
By eliminating scale-up, which may become a significant ob-
stacle on the product’s path to market, CM enables a more
agile manufacturing process that can quickly be adapted to
changes in the demand. During CM CQAs are monitored in
real time, improving the product quality. As CM plants have a
small footprint, they can be setup in flexible and portable en-
vironments, for example, containers, which can be shipped to a
specific location (e.g., in developing countries) and have a wide
range of applications (e.g., local epidemics, military use, space
travel). Intermediate storage and stockpiling can drastically be
reduced. In the area of primary manufacturing, more selective
catalytic routes and much faster, more exothermic and more
elegant chemistries can be applied, involving unstable inter-
mediates or products, high pressures or temperature extremes
(e.g., organo-metallic reactions, nitrations, halogenations, and
diazo reactions). Having a low environmental impact and be-
ing a source of high-tech jobs in various regions, CM has a
positive effect on the society. Moreover, it helps to reduce the
cost of drugs and their development, benefiting the healthcare
system and potentially enabling more investment in new prod-
ucts. Using CM, a much wider range of novel dosage forms can
be developed and a wider range of doses can be manufactured
without extensive alterations to the process.

Figure 16 provides an overview of CM in the pharmaceu-
tical field. Different tools are required for API synthesis and
API finish (primary manufacturing) and for drug product man-
ufacturing (secondary manufacturing). During the API synthe-
sis, continuous chemical reactors, which are well-established
in other fields, can be used. However, in the multi-step syn-
thesis of APIs several problems need to be solved.285,286 Novel
chemistries, which are not “translated” from batch synthesis,
are required. Continuous crystallization (API finish) is another
critical step in the purification and final production of API crys-
tals. Several research groups studied various systems of con-
tinuous crystallizers, such as mixed-suspension mixed-product
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Figure 16. General overview of a continuous manufacturing process, from primary manufacturing (API synthesis, purification, and finish) to
secondary manufacturing. It is also possible to make individualized products directly for the patient in a continuous manner.

removal (MSMPR),287 plug-flow,288 and continuous oscillatory
baffled crystallizers.289

Modeling of such systems has been reported in the
literature.290 Continuous filtration and washing (API finish),
although well established in other process industries at a large
scale have received less attention on a small scale suitable
for API manufacturing and in the GMP environment. Un-
like small-molecule APIs, continuous biopharmaceutical man-
ufacturing, including the corresponding purification technol-
ogy, is still in its infancy. However, several companies such
as Genzyme, are taking steps towards CM of biologic drugs.
In upstream bioprocessing, perfusion methods advanced from
concentrations of 10–15 million cells/mL to of 50–80 million
cells/mL. Moreover, several down-stream options are now avail-
able, such as continuous centrifuges, filtration systems, contin-
uous precipitators, extraction, and chromatography, including
simulated moving-bed chromatography that is in an adoption
phase for downstream separation and purification.291

In the field of solid dosage form, over the last years CM of
several industrial systems has been developed (e.g., the GEA
ConsiGmaTM continuous line, the GLATT continuous granula-
tors and dryers and the continuous blenders for example by

Gericke or Hosokawa). Other systems are underway (e.g., by
Bohle) and will become available in the years to come. Several
academic studies in this field have been performed.292–294

Printing is another interesting technique, which is currently
being developed by several groups.295–299 It has several advan-
tages, including the high precision and technological maturity
of printing systems, the ability to print complex formulations
of various APIs and the potential for on-demand individual-
ized manufacturing. However, issues, such as speed, robust-
ness, and reliability, remain challenging. Currently envisioned
carrier systems range from edible paper to oral thin films that
dissolve upon delivery and/or printing of multi-layer systems.
However, more complex formulations and delivery pathways
can be realized through printing of drugs. However, several is-
sues need to be controlled and monitored, including the spatial
distribution of API, the interaction with carriers, the exact dose
and the removal of solvent. Moreover, logistics of the systems
and its deployment in hospitals, pharmacies or, in the future,
even to the patient have to be addressed.

Although 3D printing is another possible route for manufac-
turing DDSs, because of the limited speed, it can be used mainly
in the manufacturing of drug-eluting implants, scaffolds,300 and

Figure 17. Schematic structure of a co-rotating, intermeshing twin-screw extruder.
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medical devices301 or special DDSs, such as vaginal rings, den-
tal, or otic drug delivery devices, or other complex 3D prod-
ucts, the simplest being bi-layer tablets.302 The ability to struc-
ture a product in three dimensions allows a precise control
over the drug loading and release characteristics. 3D print-
ing can be accomplished with powders, melts, and liquids,
depending on the characteristics of the carrier material and
the API.

Hot-melt extrusion (HME), although established in other
fields for decades, is still a rather novel and innovative process
in pharmaceutical manufacturing and is quite promising with
regard to advanced delivery requirements. For example, it has
high potential to enhance the bioavailability of poorly soluble
drugs, which is a frequent and growing challenge in formulation
development. Beyond that, the possible capabilities of HME in-
clude the achievement of controlled release systems303 or the
incorporation of nanoparticles in a solid matrices.304 Moreover,
the continuous characteristics of HME can be beneficial (de-
pending on the application), for example, to achieve high pro-
ductivity and constant product quality in a cost-efficient way.
For more details about goals and applications of HME, readers
are referred to Refs. 270,292, and 305. In addition, co-extrusion
is increasingly viewed as an interesting tool for developing
structured drug-release systems.306 Furthermore, the modeling
and online control of HME systems have been reported.307–312

With regard to pharmaceutical HME, a co-rotating inter-
meshing twin-screw design (Fig. 7) is typically preferred be-
cause of its self-cleaning screw profile and excellent mixing
capabilities. A more complex multi screw design is rarely used,
for example, for specific applications with extreme devolatiliza-
tion requirements, as it can achieve a higher specific surface
than single and twin-screws. Downstream equipment includes
hot-die cutters, calandering systems, cold-strand cutters, and
so on.292

Similarly to HME, injection molding (IM) is well known in
the polymer industry. As well-defined shapes and sizes can be
produced using this technique, it is promising with regard to
flexible solid dosage forms in pharmaceutical manufacturing.
Because of similar process conditions, the potential to produce
solid dispersions and to enhance the bioavailability of poorly
soluble drugs is comparable to HME. A recent review of phar-
maceutical IM was published by Zema et al.313 The IM process
is similar to HME in some aspects. First, the granular feed is
molten. Mixing is typically not performed using IM, but rather
prior to IM in a HME unit. Instead of continuous extrusion
during HME, during IM the melt is injected semi-continuously
into the shaping mold under high pressure. The operating pres-
sure during IM can reach up to several 1000 bar (which is not
suitable for all APIs) and depends on the shape of the cav-
ity and the rheological properties of the melt. The number of
pieces per cycle can easily be adapted via the geometry of the
mold cavity. Depending on the shape of the product, it is pos-
sible to achieve a quantity of 100 pieces and even more per
cycle. The cycle time depends on the material properties of the
formulation and is typically in the order of seconds. Thus, a pro-
duction rate up to 100,000 pieces per hour can reasonably be
achieved.

Capsule filling is another old yet innovative process for man-
ufacturing individualized low-dose drug products for oral de-
livery or inhalation. However, low-dose capsule filling is not
trivial and only a few systems exist that have reached the
technical maturity. They are typically not used for routine

manufacturing but are rather applied in small-scale clini-
cal studies and during development phases that typically in-
volve vibrating capillaries.314,315 Examples include the Cap-
sugel Xcelodose micro-dosing system and the micro-dosing sys-
tem by MG2. In both cases, vibrations are used to dose small
amounts of powder. In the MG2 system, the fill weigh is mea-
sured by an electrical capacitance sensor. Standard capsule fill-
ing processes are most likely not precise enough for individu-
alized low dosing. Nevertheless, it can be expected that such
approaches will increasingly be used for on-demand manufac-
turing of drug mixtures for oral and inhalation delivery.

Future Healthcare System

The healthcare sector is facing several major challenges: the
ageing population and the increased cost of medications for
the society require fundamental changes in this business area.
The fields of genomics and personal diagnostics have undergone
a fast development. The Human Genome Project has created
a massive database enabling the development of more tailor-
made drug products and decreased the price of sequencing an
average human genome to the $1,000 (Illumina, the leading
maker of DNA sequencers announced the $1,000 early 2014).
However, all this knowledge has not been translated into com-
mercial success yet.316,317 At the moment, oncology is the dis-
ease area with most late-stage development projects.318 The
recently introduced PMI emphasizes the importance of devel-
opment in this area, and manufacturing methods for future
pharmaceuticals should be modernized now to make this de-
velopment possible.20

There is a gap between the investments into genome re-
search and the final drug product. The research in manu-
facturing of highly engineered pharmaceuticals has not been
acknowledged.319 There is a clear need for new manufacturing
solutions for the 21st century drug products.320,321 Closing the
gap between state-of-the-art biology and the final drug prod-
uct requires focusing more on the innovative pharmaceutical
product design. The key enabling factor for cost-effective per-
sonalized therapies is the development of new manufacturing
principles. More flexible processing solutions based on continu-
ous operations will enable personalized DDSs with tailor-made
dose, drug release characteristics and combination of multiple
drug compounds based on individual needs. All these devel-
opments should occur in parallel with the development of ge-
nomics and, especially, technological innovations in the field
of IT, diagnostic tools, and miniaturized analytical devices.322

CM of personalized medicines requires a complete change of
mindset in the pharmaceutical business area.

Individual features derived from the genome of a patient
can be combined with real-time diagnostic information from
miniaturized analytical devices (Fig. 18). At the patient level,
this information can be managed via a portable device (e.g.,
iPhone) and used for planning a long-term therapy supported
by a feedback from a health care professional. This development
emphasizes the need for more flexible manufacturing solutions
for the production of personalized drug products.17 Manufac-
turing of all these varying products will be a challenge for the
pharmaceutical industry, but more flexible engineering solu-
tions (e.g., extrusion and printing) will make manufacturing-
on-demand based facilities possible. That will put pressure on
the existing distribution chain, which can also be restructured
in the case of 100% QC system with real-time release testing
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Figure 18. Elements of the future healthcare system.

(RTRT). A patient can receive personalized medicines based on
manufacturing-on-demand not only from the local pharmacy,
but also directly from the manufacturer or even by printing
them at home. This will change the role of pharmacies in the
future. The safety of a medication can be ensured through di-
agnostic information from the patient and follow-up using a
portable device. This required flexibility can be achieved by
implementing fully instrumented CM environment with con-
tinuous process/product monitoring and control. As such an en-
vironment should be protected from potential hackers, cyberse-
curity of these systems will be one of the big future challenges,
as already identified in the medical device industry.323

Regulatory Framework and Education

Development of engineering solutions in manufacturing sci-
ences puts significant pressure on the existing regulatory
framework. Fundamental concepts that were valid during the
last century limit the implementation of innovative engineering
solutions. Whenever the concept of CM is mentioned, concerns
related to the batch concept are immediately raised. Standard
pharmacopoeia tests for the variation in the content of an ac-
tive compound of the final product employ analytical solutions
based on wet-chemistry and off-line analysis. Today, spectro-
scopic tools can be used for analyzing thousands of dosage units
almost at the production speed. However, in real life, using all
this information often causes more regulatory obstacles than
improved quality or real financial benefit. It has to be noted
that there is regulatory support for the implementation of CM
using science- and risk-based approaches.324

Recent RTRT guideline and US FDA validation guideline
are the examples of positive development in the regulatory
field. At the same time, suggestions from the industry325 have
translated into modified monographs, as in the case of recently
adopted Ph.Eur. Monograph 2.9.47, which describes the use of
large sample sizes for demonstrating the uniformity of dosage
units. All of the above indicates that there is positive attitude
toward the paradigm shift in regulatory sciences, which has
to be realized as a joined effort of industry, regulatory, and
academy.

One of the major obstacles in putting new engineering prin-
ciples into practice is the structure of educational programs.
The global trend in pharmaceutical education programs is to
increase the emphasis on biology and social sciences, often
at the cost of the “old-fashioned” pharmaceutical technology
discipline. At the same time, several engineering programs
have established pharmaceutically oriented programs. Both of
these solutions produce candidates with a new type of skill
set. This, however, might also have an undesired outcome

of having highly skilled engineers from the manufacturing
environment trying to communicate with a regulatory per-
son with a more biology-oriented pharmacist background.
Thus, rather than transforming pharmacists into engineers,
we should ensure that engineering principles are properly im-
plemented into pharmaceutical education.

CONCLUSIONS

In this review, we offer an introduction to the toolbox needed
for future manufacturing of pharmaceuticals. It demonstrates
that in recent years significant progress has been made driven
by changes in the regulatory framework (e.g., the PAT ini-
tiative and ICH’s QbD-associated guidelines) and a stronger
interaction between pharmaceutical and engineering sciences.
Moreover, existing gaps with respect to a rational development
of drug products and the associated manufacturing processes
have become more apparent, ranging from the need to combine
molecular, materials, and process models in a comprehensive
computational framework to the demand for more advanced
PAT tools for certain applications. Although it can be concluded
that much of the fundamental knowledge and the technical
tools for implementing innovative pharmaceutical manufactur-
ing principles do exist today, more work is required, especially
at the interface between pharmaceutical sciences and engineer-
ing, essentially defining a new discipline, that is, pharmaceu-
tical engineering science. In summary, the elements required
for production of high-tech future pharmaceuticals have been
developed, gaps have been identified and the next step will be
a joint effort of academy, industry, and regulatory experts to
begin implementing these principles in practice.
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Grohganz H, Alcalà M, Juuti M, Ketolainen J, Rantanen J. 2014. Near-
infrared imaging for high-throughput screening of moisture induced
changes in freeze-dried formulations. J Pharm Sci 103(9):2839–2846.
247. Colnago LA, Andrade FD, Souza AA, Azeredo RBV, Lima AA,
Cerioni LM, Osán TM, Pusiol DJ. 2014. Why is inline NMR rarely used
as industrial sensor? Challenges and opportunities. Chem Eng Technol
37(2):191–203.
248. Ma Z, Merkus HG, de Smet JGAE, Heffels C, Scarlett B. 2000. New
developments in particle characterization by laser diffraction: Size and
shape. Powder Technol 111(1–2):66–78.
249. Silva AFT, Burggraeve A, Denon Q, Van der Meeren P, Sandler
N, Van Den Kerkhof T, Hellings M, Vervaet C, Remon JP, Lopes JA,
De Beer T. 2013. Particle sizing measurements in pharmaceutical ap-
plications: Comparison of in-process methods versus off-line methods.
Eur J Pharm Biopharm 85(3, Part B):1006–1018.

250. Ketolainen J, Oksanen M, Rantala J, Stor-Pellinen J, Luukkala
M, Paronen P. 1995. Photoacoustic evaluation of elasticity and integrity
of pharmaceutical tablets. Int J Pharm 125(1):45–53.
251. Leskinen JTT, Okkonen M-AH, Toiviainen MM, Poutiainen S,
Tenhunen M, Teppola P, Lappalainen R, Ketolainen J, Järvinen
K. 2010. Labscale fluidized bed granulator instrumented with non-
invasive process monitoring devices. Chem Eng J 164(2–3):268–274.
252. Leskinen JTT, Simonaho S-P, Hakulinen M, Ketolainen J. 2010.
In-line ultrasound measurement system for detecting tablet integrity.
Int J Pharm 400(1–2):104–113.
253. Murtomaa M, Räsänen E, Rantanen J, Bailey A, Laine E,
Mannermaa J-P, Yliruusi J. 2003. Electrostatic measurements on a
miniaturized fluidized bed. J Electrostatics 57(1):91–106.
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