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Abstract: Compared with their monolithic version, layered structures are known to be beneficial
in the design of materials, especially ceramics, providing enhanced fracture toughness, mechanical
strength, and overall reliability. This was proposed in recent decades and extensively studied in the
engineering literature. The source of the property enhancement is the ability of layered structures to
deflect and often arrest propagating cracks along internal interfaces between layers. Similar crack-
stopping abilities are found in nature for a broad range of fibrillary layered biological structures.
Such abilities are largely governed by complex architectural design solutions and geometries, which
all appear to involve the presence of various types of internal interfaces at different structural levels.
The simultaneous occurrence at several scales of different types of interfaces, designated here as hier-
archical interfaces, within judiciously designed layered composite materials, is a powerful approach
that constrains cracks to bifurcate and stop. This is concisely described here using selected biological
examples, potentially serving as inspiration for alternative designs of engineering composites.

Keywords: interfaces; fracture arrest; biological composites; layered structures; crack deflection

1. Introduction

The issue considered in the present communication, in a mostly observational and
qualitative way, deals with selected sophisticated design solutions offered by specific
natural architectures to the problem of blocking fracture propagation in layered composite
structures. The interest in this problem, which has been extensively examined over the
last few decades in the literature, originated in the brittle nature of engineering ceramic
materials under tension or bending, despite their otherwise excellent thermomechanical
properties. Indeed, modern structural materials are often used in critical applications such
as aircraft jet engines, where reliability is the key property, and thus sudden, unstoppable
fracture is unacceptable. For those structures, toughness is at least as important as strength
(if not more important). It is only recently that physics- and materials-based research has
concentrated on the quest for materials and/or structures possessing high simultaneous
strength and toughness [1]. Perhaps surprisingly, such structures are frequently found in
nature, which explains the recent interest in studying them. Here, a brief summary is given
of the mechanical function of interfaces in synthetic (engineering) layered materials and
structures. This is followed by a description of less well-known design patterns produced
by nature to generate crack bifurcation and arrest in complex layered structures.

2. Interfaces in Engineering Materials

The brittle rupture of monolithic engineering materials may be overcome by using lay-
ered architectures, a technique that simultaneously enhances the energy needed to fracture
the structure and its overall reliability. Let us consider a simple, two-layer structure, as in
Figure 1. When a sharp crack propagates toward the interface, Figure 1a, several scenarios
may arise. If a relatively strong interface is present, the crack will run through material
A, cross the interface and penetrate into material B with no change in direction, Figure 1b,
leading to rapid (brittle) failure. By contrast, a weaker interface may split well before the
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crack tip reaches the interface (this is the well-known Cook–Gordon mechanism [2]) as in
Figure 1c, or, alternatively, cause the propagating crack to deflect relative to its original
(self-similar) direction as soon as it hits the interface, as in Figure 1d. Both bifurcation
mechanisms at a bi-material interface not only delay the fracture process (and thus increase
structural reliability), but are also a source of increased toughness through additional
mechanisms, such as the pulling-out of ligament bridges from the matrix [3].
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Based on the above, practical ways of preparing tougher ceramics and ceramic-based 
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crossing an interface in a self-similar fashion; (c) crack splitting at interface ahead of the crack tip (the
Cook–Gordon mechanism [2]); (d) crack bifurcation at interface.

The propagation of cracks along interfaces makes it possible to hamper the evolution
of damage by complicating the fracture paths. Since rapid failure is delayed or avoided,
structural reliability is increased even if materials A and B are fragile on both sides of the
interface. Whether a crack tends to propagate parallel to itself in a Griffith-like fashion or
bifurcate in a deflected direction (not necessarily perpendicular to its original path) has
been thoroughly studied for the bi-layer case [4–8]. The elegant model of Kendall [4] can,
in principle, be generalized for a multilayer–multimaterial configuration [9].

Based on the above, practical ways of preparing tougher ceramics and ceramic-based
composites by introducing weak interfaces that deflect growing cracks have been proposed
by Evans [10] (among others). Clegg et al. [11] described a simple, inexpensive way of
preparing a ceramic material that contains such interfaces. Silicon carbide powder was
made into thin sheets, coated with graphite to provide weak interfaces, pressed together,
and sintered without pressure. Relative to the monolithic material, the apparent fracture
toughness for cracks propagating normal to weak interfaces increased more than fourfold,
and the work required to break the samples increased by a factor of more than a hundred-
fold. Mayer [12] noted the controlling role of special architectures and thin viscoelastic
organic layers in the energy dissipation in these structures. In our recent work, composites
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were prepared from high-grade commercial alumina with spin-coated interlayers of ductile
polymers (PMMA and PVA) [13]. In some cases, the fracture toughness of the composites
was increased by up to an order of magnitude. In another work, evaporation-driven
self-assembly (EDSA) was used to deposit a thin network of multi-wall carbon nanotubes
on ceramic surfaces, thereby generating an interphase-reinforcing layer in a multiscale lam-
inated ceramic composite. Both strength and toughness were improved by up to 90% while
keeping the overall volume fraction of carbon nanotubes in a composite below 0.012%,
making it a most effective toughening and reinforcement technique [14].

Similar toughening principles have existed in nature for a long time, in even more
sophisticated ways, as exemplified in the next section. From these, further advances could
potentially be made in future synthetic structures.

3. Interfaces in Natural Materials

Recent reviews focus on the relative ubiquity and mechanical significance of layered
structures and interfaces in natural structures [3,15,16]. It is accepted that the deforma-
tion and toughness of natural materials are largely governed by the interfaces that join
these building blocks [15–18]. These interfaces channel nonlinear deformations and deflect
cracks into configurations in which propagation is more difficult. However, our quanti-
tative appreciation of the role of these interfaces is still limited, and there are associated
controversies in our understanding of how they are constructed and how they operate.
Barthelat et al. [16] show that the strength and toughness of interfaces in natural materials,
such as nacre, cortical bone and wood, are from two to three orders of magnitude lower
than the strength and toughness of the materials themselves. As a general (apparently
universal) rule, the interfaces must be (i) sufficiently strong to maintain cohesion between
the building blocks and to ensure the structural integrity of the material, and, at the same
time, (ii) considerably weaker than the rest of the material to channel deformations and
cracks, and for the intricate architectures to generate attractive mechanisms and properties.

Rigid biological materials are packed with relatively softer interfaces, which can
glide and slide, and facilitate crack bifurcation, thereby hindering or arresting fracture
propagation. In other words, interfaces generate powerful toughening mechanisms and
increase structural reliability; see Figure 2. In a material such as bone, these principles
simultaneously apply over several hierarchical length scales [19,20]. Recent material
models seek to incorporate the mechanical behavior of these interfaces explicitly [21], and
the development of bio-inspired materials increasingly concentrates on duplicating the
behavior of natural interfaces [12,22,23].
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Figure 2. (a) Reliability of a layered structure as a function of the level of interfacial adhesion. Cracks
do not deflect or stop at strong interfaces (low structural reliability), whereas they bifurcate or even
arrest at weak interfaces (high structural reliability), as schematically shown in (b).

However, in contrast with the bi-material configurations discussed earlier, multi-
material layered architectures, which frequently appear in biological layered structures,
are much more complex to analyze and model. This is because the preferred propagation
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of cracks along many weaker/softer interfaces highly complicates the cracking paths. Such
a toughening strategy is widely observed in biological materials, for example, in wood,
bone, fish scales, plants, sponge spicules, etc. In the following sub-sections, we present
and discuss the presumed effects of less well-known architectural parameters appearing in
natural layered structures that should be further explored and possibly exploited.

3.1. Hierarchical Interfaces

Recently, we investigated the microstructural features of the Scorpio maurus palmatus
(SP) [24–26], which is not a dangerous scorpion to humans. Referring to Figure 3, structural
analysis of the SP tibia cuticle revealed the existence of a layer made of stacked lamellae
reinforced by chitin fibers, a layer that is absent in the cuticle of other arthropods. High-
resolution scanning and transmission electron microscopy (SEM and TEM, respectively)
and atomic force microscopy (AFM) images of the tibia cuticle revealed the microstructural
details of the biological tissue. We found an unusual Bouligand architecture with varying
chitin-protein fiber orientations, including the in-plane twisting of laminae around their
corners rather than through their centers, and a second orthogonal rotation angle that
gradually tilts the laminae out-of-plane [24–26]. The resulting Bouligand laminate unit
(BLU) is highly warped, such that neighboring BLUs are intricately intertwined, tightly
nested and mechanically interlocked (Figures 4 and 5). A single BLU consists of about
40–100 laminae of chitin-protein fibers embedded in a proteinaceous matrix. Bouligand
or helicoid structures are often found in living organisms [27]. First observed in 1965 by
French biologist Yves Bouligand [28], they consist of layered arrangements of unidirectional
fibril-based proteinaceous lamellae that follow a twisted plywood structure where each
layer is rotated by a small angle with respect to the directly adjacent layer. Often based on
chitin nanofibrils, such helicoids exist in the exoskeleton of arthropods such as lobsters,
crabs, mantis shrimp and insects. A similar structure, based on collagen nanofibrils, is
found in fish scales (in the arapaima, the coelacanth, the carp), and forms the cellulose
crystallite-based walls of several kinds of plants (green algae, ferns). The helicoid motif
appears to enhance the deformation and toughness of the organisms, likely through crack
deflection, and to improve in-plane isotropy, as helically stacked, highly aligned layers can
better withstand multi-directional forces [29].
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Under stress, the surface cracks that occur in the tibia of the SP appear to induce
Cook–Gordon-like delamination patterns, as seen in Figure 6, arising from stresses just
beyond the tip of the surface crack, which tend to open a perpendicular interfacial rupture
(delamination). The relative intensities of these stresses were found to be such that crack
deflection requires an interfacial strength five times lower than the cohesive strength [2,4].

The different types of propagating and interfacial cracks induced in the endocuticle
architecture by a propagating crack under stress at different scales are most interesting
(Figure 7). Such hierarchical interfacial cracks likely play the role of traps or sinks that slow
down and arrest crack propagation, thereby maximizing the reliability of the tibia structure
(as in Figure 2a).
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Figure 7. Scanning electron microscope imaging of the scorpion layered endocuticle and Bouligand
laminate units (BLU) layers. White, red and blue arrows point to different interfacial failure types
(refer also to Figure 5), termed hierarchical interface failures: White, interlamellar (nanoscale) within
BLUs; Red, intralayer (microscale) between BLUs; Blue, interlayer (microscale) between layers;
Yellow arrows designate non-interfacial (Griffith) internal cracks within BLUs.

The development and propagation of these hierarchical microfailures represent a
potential source of energy dissipation and stress relaxation that ultimately contributes
to significant damage tolerance and, thus, to structural reliability [30]. In particular, the
layers of nested BLUs are capable of developing a fair amount of local relative twisting
microcracks between BLUs that do not lead to catastrophic failure: the hierarchical structure
of the endocuticle, with its various types of interfaces at different scales, seems to serve
as a way for cracks to deflect and twist. This has important consequences, including an
increased surface crack area, nested crack growth and local (and thus global) toughening as
the applied force necessary to further damage the microcracked structure must constantly
increase, generating further resistance in the material. It is interesting to note that BLUs
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may appear to act as fracture energy traps/sinks by absorbing fracture energy from the
multilayer structure and dissipating it, thereby contributing to crack arrest. In a sense, they
may be considered as ‘sacrificed BLUs’.

The necessary energies for the preferential sequences of propagation-bifurcation crack-
ing, which, as previously mentioned, have been quantified for bi-material interfaces by
Kendall [4] and others, can, in principle, be generalized for a multi-layer-multimaterial con-
figuration [9]. The derivation of analytical expressions for the interfacial adhesive strength
or energy of multilayered structures would provide a ranking tool for the level of resistance
to fracture of the various types of cuticular interfaces. Additionally, numerical modeling
would add to our understanding of interfacial failure in complex layered structures. This is
currently under investigation.

3.2. Layer Thickness Variability in Cylindrical Structures

Among the various design strategies of structural biological materials intended to
resist mechanical stresses, one type of architecture stands out, which consists of alternating
concentric cylinders separated by interlayers. Examples include wood, osteonal bone, the
skeletal spicules of sponges, the cuticle of some beetles, the scorpion cuticle, etc.

Focusing on the scorpion endocuticle, it can be seen from the SEM image (right-hand
side of Figure 4) that, moving radially from the external side of the cylindrical cuticle down
to its hollow core, the layers become increasingly thinner. From the plot in Figure 8, the
layer thicknesses range from about 7 µm down to 3 µm, whereas the interlayer thickness is
approximately constant, at 1–2 µm.
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Whether the cylindrical layers and interlayers have specific thicknesses seems to be
intimately related to the mechanical function and adaptation to the type of stresses to which
the structure is subjected. The thickness of the cylindrical layers in wood or in osteonal
bone are approximately equal, likely because the applied loading is mainly compression.
Under bending, tension and compression stresses appear on opposite sides of the loaded
structure, which then develops adaptative strategies to maximize structural strength and
toughness, and reliability.

The explanation for the observed decrease in scorpion endocuticular layer thickness
(Figure 8) is similar to that for the silica sponge spicule [31–34], with some important
differences. According to Miserez et al. [33] and Monn et al. [34], the thickness of silica
sponge layers diminishes with radial distance from the core, reaching a minimum value
at the outer surface where, under bending, the stress is highest and tensile in nature. In
the scorpion cuticle, however, the minimum thickness of the layers is at the core (thus
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the inner surface), likely because when a scorpion undergoes sharp blows or indentations
from unfriendly incidents, the highest stress occurs at the core and is tensile. For layered
architectures, the stress needed to cause cracks in an individual layer is proportional to
t−1/2, where t is layer thickness [33,35]. The thinnest layer should thus have the highest
strength. In addition, note that thin layers also significantly limit the depth of straight
crack penetration into the structure interior [35]. The key point is that layer thickness
changes appear to be a natural consequence of the increased stress applied to the scorpion
cuticle and sponge spicules. Additionally, Gao et al. [36] have shown that if a characteristic
dimension of a structure is smaller than a certain critical length scale (which is a function
of the material and geometry of that structure), then strength no longer depends on size. In
other words, at that point, nature does not need to generate thinner external layers.

Other differences between the scorpion cuticle and sponge spicules are material and
structural: (i) the scorpion (endo)cuticle is a chitinous fibrous composite, whereas the
spicule is a layered ceramic; (ii) the 1–2 µm thick interlayers in the scorpion endocuticle are
fibrous and orthotropic, with the chitin fibers running parallel to the interface direction
(they exit from the BLUs in the perpendicular direction), whereas, in the sponge spicule,
those interlayers are separated by a very thin proteinic interlayer in the 5–10 nm range [35].
Both types of interlayer design contribute to a significant increase in the work of fracture
and, thus, structural reliability. Indeed, a crack formed in a layer would be expected
to arrest at the closest interlayer, then proceed by bifurcation or crack renucleation at a
random site in a neighboring layer. SEM observations of breaks in the scorpion endocuticle
(Figure 7), or of broken spicules [31–34], reveal fracture patterns consistent with such a
sequential process.

Research is currently underway to derive predictive analytical and numerical approaches
(for which models have begun to appear [21,37,38]) that would accurately describe the pro-
gressive fracture and increased reliability of layered natural composite structures. This could
potentially be used as an inspiration for alternative designs of future engineering composites.
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