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The Ratcliff Diffusion Model has become an important and widely used tool for the

evaluation of psychological experiments. Concurrently, numerous programs and routines

have appeared to estimate themodel’s parameters. The present study aims at comparing

some of the most widely used tools with special focus on freely available routines

(i.e., open source). Our simulations show that (1) starting point and non-decision time

were recovered better than drift rate, (2) the Bayesian approach outperformed all other

approaches when the number of trials was low, (3) the Kolmogorov-Smirnov and χ2

approaches revealed more bias than Bayesian or Maximum Likelihood based routines,

and (4) EZ produced substantially biased estimates of threshold separation, non-decision

time and drift rate when starting point z 6= a/2. We discuss the implications for the choice

of parameter estimation approaches for real data and suggest that if biased starting

point cannot be excluded, EZ will produce deviant estimates and should be used with

great care.

Keywords: diffusion model, parameter estimation, parameter recovery, method comparison, simulation study

1. INTRODUCTION

The Diffusion Model (DM; Ratcliff, 1978, 2013) allows for modelling both response time and
accuracy of fast human decisions (Forstmann et al., 2016; Ratcliff et al., 2016). Typical applications
are found in experimental psychology, especially in the context of the Two-Alternative-Forced-
Choice (2AFC) paradigm (Laming, 1968; Arnold et al., 2015; Aschenbrenner et al., 2016; Dirk et al.,
2017; Klauer et al., 2007; Mayerl et al., 2019; Mulder et al., 2010; Park and Starns, 2015; Schubert
et al., 2019; Schuch, 2016; Voss et al., 2013; Yap et al., 2015). It assumes a decision process based on
the accumulation of evidence triggered by a stimulus until one of two decision boundaries reflecting
the two decision options is reached.

This process is modelled as a Wiener diffusion process, which can be described by four main
parameters (cf. Figure 1): The boundary separation parameter a describes the distance between the
two decision boundaries and thus reflects the subject’s response caution: The larger a, the more
evidence is required before choosing one of the two response alternatives. The drift parameter
ν reflects the average accumulation rate per time unit, which is an indication of the speed of
the decision process. The starting point 0 < z < a is the location relative to the two decision
boundaries, at which the decision process starts. If the respondent expects a priori (e.g., by
instruction) that the upper decision option is more likely, z will be shifted toward a. If no
expectation exists, z = a/2. Finally, all time components not involved in decision making are
summarized in the TER (or t0; encoding and reaction time) parameter.
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FIGURE 1 | Schematic depiction of the diffusion model and the resulting response time (RT) distributions. The horizontal axis represents the response time. The top

section (green curve) shows the RT density estimate for positive responses and the bottom section (red curve) the RT density estimate for negative responses (both

accompanied by a rug-plot along the RT-axis); Note that for reaction times shorter than t0, the probability of a response is set to zero. The middle section sketches a

few examples of the trajectories representing the information accumulation process assumed to follow a random walk. The blue double-headed arrows indicate the

four main model parameters a (boundary separation), z (starting point), t0 (or TER; encoding-and-reaction time; non-decision components), and ν (drift parameter of

the random walk).

The model equation for the probability of a response at the
lower boundary is

P(−|a, z, ν) =
e−(2νa/s2) − e−(2νz/s2)

e−(2νa/s2) − 1
, (1)

and the finishing time density for negative responses is
modelled as
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(cf. Ratcliff, 1978, p. 70, Equations (A8) and (A9), notation
adapted). The probability of and density for positive responses is
obtained analogously by applying ν+ = −ν and z+ = a− z. The
term s2 denotes the variance of the Brownian motion within one
trial (therefore termed intra-trial variability of the drift), which is
not a model parameter, but rather a constant, which has to be set
to an appropriate value prior to parameter estimation. The choice
of s is not critical, as it concerns only the scale of the estimated
parameters; two values are often observed, s = 1 and s = 0.1.
A detailed derivation of the model equations can be found in
Busemeyer and Diederich (2010).

Alongside to these four main parameters, three additional
variability parameter were introduced to cover between-trials
variability of themain parameters. These are sν (for varying drift),
sz (for varying starting points), and st (for varying encoding and
reaction times). These three parameters are not part of the model
Equations (1) and (2) but have to be obtained by numerical
integration (cf. Ratcliff and Tuerlinckx, 2002).

See Alexandrowicz (2020) for details regarding the
psychological interpretation of the model parameters and
www.dmvis.at for the Diffusion Model Visualizer (DMV), an
interactive tool visualizing the effect each model parameter
(including the variability parameters) has on the resulting
response probabilities and response time densities.

1.1. Parameter Estimation Methods
Various methods for estimating the parameters of the DM exist
coevally following various different estimation principles. We
introduce them below, as they are essential for the present study.

1.1.1. A Closed Form Expression and Its Enhanced

Version
A closed form solution (EZ) has been developed by
Wagenmakers et al. (2007), which makes use of three descriptive
statistics, viz. mean of correct responses (MRT), variance of
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correct responses (VRT), and proportion of correct responses
(Pc), allowing for an estimation of the boundary separation a, the
drift parameter ν, and the non-decision time component TER;
no provisions are made to estimate the response bias z or any of
the three variability parameters sν , sTER , and sz . Rather, the bias
is fixed at z = a/2 and the variability parameters at zero.

In a critical assessment, Ratcliff (2008) showed that
contaminant responses (i.e., response times distorting the true
distribution, like lapses of attention, distraction, anticipation,
or fast guesses) could have a large impact on the response
time variance and thus lead to inaccurate parameter estimates.
Moreover, he demonstrated that the EZ method delivers larger
parameter estimates’ variability than the χ2-Method (CS; see
section 1.1.2) and that the two methods appear to be sensitive to
different characteristics of the data. Also model misspecification
regarding the parameters fixed in the EZ model may lead to
deviant parameter estimates. In their rejoinder, Wagenmakers
et al. (2008b) proposed a robust EZ method, applying mixture
modelling to improve the handling of RT contaminants, on top
of that they introduced an extended algorithm, EZ2, allowing for
estimating the response bias z as well. This modified method,
termed EZ2 (Grasman et al., 2009), allows for estimating the bias
parameter z as well, but only in designs providing for more than
one stimulus condition.

1.1.2. Comparing Observed and Expected

Frequencies Using the χ
2 Statistic

Ratcliff and Tuerlinckx (2002) proposed an estimation method,
in which they binned the reaction time distributions separately
for both the correct and incorrect decisions using the 0.1, 0.3, 0.5,
0.7, and 0.9 quantiles of the respective distributions, thus yielding
the observed frequencies of each bin. The expected frequencies
of each bin are obtained from the density function according to
Equation (2) (for both the correct and the incorrect responses)
given a candidate set of model parameters. Observed and
expected frequencies are compared with the χ2-statistic across
all bins of both distributions, CS =

∑

b(obsb − expb)
2/expb,

with b = 1 . . .B denoting the bin index. Parameter estimates are
updated in an iteration loop using the simplex downhill method
of Nelder and Mead (1965) to minimize the value of the CS-
statistic. The authors outline the method in Appendix B of their
paper (pp. 479–481).

The advantage of this method is that the CS-statistic allows
for an inferential assessment of model fit using the (1 − α/2)-
quantile of a χ2-distribution with df = C(B − 1) − P, with
C representing the number of experimental conditions, B the
number of bins across both distributions, P the number of
estimated parameters, and α denotes the risk of a type-I-error.
However, from a theoretical point of view, the CS-statistic is only
approximately χ2-distributed, because the bins are determined
by the data (cf. Ratcliff and Childers, 2015, p. 252).

A disadvantage of this method could be the loss of information
by aggregating data into bins. Note that the binning proposed
by Ratcliff and Tuerlinckx (2002) remains—albeit reasonable—
still arbitrary and a different choice of bins might result in
different parameter estimates. Voss et al. (2004) pointed out
that too many bins may introduce chance dependence due to

small bin frequencies, whereas too few bins may cause loss of
information (p. 1217).

1.1.3. Comparing Observed and Expected

Cumulative Distribution Functions of the Response

Times Using the Kolmogorov-Smirnov Statistic
The Kolmogorov-Smirnov statistic (KS; Kolmogorov, 1933,
1992; Smirnov, 1939; Stephens, 1992) allows for comparing
two cumulative distribution functions using the maximum
vertical distance between the two curves. Voss et al. (2004)
proposed to use this measure for estimating the parameters
of the DM by comparing the cumulative distribution of the
observed response times and the one from the expected response
times under the model given parameter estimate candidates.
However, in order to determine the measure (described below)
simultaneously for both response time distributions of the
correct (passing the upper threshold) and the incorrect (passing
the lower threshold) responses, a “trick” is applied: The two
curves are put next to each other, with one mirrored (i.e.,
values multiplied by −1), thus forming one “super-curve”
representing both cumulative distributions contiguously (the
authors credit Heinrich von Weizsäcker for the hint to this
trick). Figure 2 shows this super-curve for the data used
in Figure 1.

The parameter estimates are obtained by iteratively fitting the
parameter estimates so that the expected curve is closest to the
observed one using the Nelder-Mead method. As an advantage,
the K-S method also allows for an assessment of model fit by
comparing the final value of the K-S-statistic KS =‖ Fobs−Fexp ‖

(F(·) denoting the cumulative distribution function) to the (1 −
α)-quantile of the K-S distribution (which may be approximated
for a given limit α by Qα =

√

log(2/α)/2).

1.1.4. Maximum Likelihood Estimation
The Maximum Likelihood (ML) estimation method can be
considered the most prominent principle in statistical modelling
[from a so-called “frequentist” point of view; (cf. Berger and
Sellke, 1987; Casella and Berger, 1987; Edwards, 1992; Royall,
2000), and section 1.1.5]. ML estimates dispose of advantageous
features, most prominently consistency, efficiency, and normal
distribution (e. g., Pawitan, 2001). We find a detailed account
of the ML estimation for the DM in the Appendix of Ratcliff
and Tuerlinckx (2002). One special issue seems worth reiterating:
Because density estimates of the reaction time can only be
obtained for values of t > TER, an important regularity condition
for ML estimation is violated. Therefore, the common method
of finding the root(s) of the first partial derivatives of the
model’s likelihood function cannot be applied. Rather, general
purpose numerical search algorithms are required, causing ML
methods to become computationally expensive. Two prominent
methods are the simplex downhill search algorithm of Nelder
and Mead (1965) and the Broyden-Fletcher-Goldfarb-Shanno
method (BFGS; named after the four researchers, who proposed
the method independently from each other in 1970; Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).
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FIGURE 2 | Super-curve of the combined cumulative distribution function of the data used in Figure 1. The horizontal axis depicts the reaction time (with response

times of lower threshold passes mirrored at the origin). The vertical axis represents the probability P(X < x). The left (red) part of this curve represents the mirrored

cumulative distribution function of the incorrect responses and the right (green) part the cdf of the correct ones. The vertical dashed line indicates the point, where the

two separate curves have been joined. The combined curve intersects this line at height 1− Pc (which, in this case, is 0.28, corresponding to 28 % incorrect

responses).

1.1.5. The (Hierarchical) Bayesian Approach
Lee et al. (2006) applied the Bayesian estimation framework to
the DM, using a slightly modified model definition, in which
the starting point is zero, the upper boundary is termed α, and
the lower boundary β ; hence, a = α + β and z = (β −

α)/(α + β). They used non-informative priors, namely (with τ

set to 10−6) N(0, τ ) > 0 for both α and β , N(0, τ ) for ν, and
U(0,min(t)) for TER. Using the program WinBUGS (see section
2.1.4) and running three chains of length 105, they obtained
fairly similar values for α and β , which conforms to a z of
approximately a/2 in our notation. Except for a bimodality in
the drift parameter posteriors, their results were comparable to
a conventional analysis.

Rouder et al. (2003) applied a hierarchical Bayesian method to
model response time densities using a three parameter Weibull
distribution (cf. Evans et al., 2000, ch. 42.5), which accounts for
the typical skewedness of such densities in a manner similar to
the DM.

1.1.6. Further Estimation Principles
Ratcliff and Tuerlinckx (2002) also proposed a Weighted Least
Squares (WLS) method, minimizing the squared difference
between observed and predicted frequencies of reaction time
quantiles for both correct and incorrect decisions. The weights
are obtained from the standard deviations within the bins arising
from the quantile points. However, this approach has proven
less than convincing, as the authors have shown in a simulation
study that the parameter estimates exhibited bias and a larger
standard error than the CS method. Therefore, they recommend
the WLS method as an exploratory tool, especially when other
methods (mainly referring to the CS method) do not provide
satisfactory fit.

Besides the Pearson χ2 statistic as quoted in section
1.1.2, there is also the likelihood ratio statistic G2 =
∑

b obsb log(obsb/expb) (e.g., Ratcliff, 2013, p. 39; notation
adapted), which follows the same χ2 distribution under the null-
hypothesis of model fit. Hence, it also delivers approximately the
same results (cf. Hays, 1994, ch. 18, and Ratcliff and Childers,
2015, p. 244). Heathcote et al. (2002) proposed a quantile based
ML estimation method, reporting to deliver results similar to
those obtained with the G2 statistic.

1.2. Previous Studies Comparing
Estimation Methods
While numerous studies apply the DM, only few compare the
various estimation methods.

Ratcliff and Tuerlinckx (2002) used predefined parameter
sets for their simulation reflecting a 2-AFC experiment using
four levels of stimulus difficulty. Correspondingly, they varied
the drift rate but fixed other parameters either to a single or
two different values. They compared the ML, the CS, and a
WLS method, finding (amongst other things) ML to outperform
the other contestants, but failing in the presence of response
time contaminants.

Van Ravanzwaaij and Oberauer (2009) simulated data
for a 2-AFC experiment that manipulated stimulus-response
compatibility (with a presumed effect on drift rate ν) and speed-
accuracy settings (with a presumed effect on threshold a) while
fixing z = a/2. They considered the EZ method, the K-S method
as implemented in fast-dm, and the DMAT routine, which
applies an algorithm comparable to the ML method. They found,
in general, high correlations of the parameter estimates and
the true parameters, somewhat decreasing when changing from
800 trials to random samples of 80. The EZ method showed
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some bias in their study and the K-S method of fast-dm
showed even more bias for ν. Generally, they found bias to
increase with the size of the respective parameters. However,
they concluded that “EZ did consistently better than fast-dm
and DMAT” (p. 471). Arnold et al. (2015) compared the same
three routines in a parameter validation study using experimental
recognition-memory data and found results to differ between the
methods. However, their main focus was on parameter validity,
i.e., how experimental conditions were adequately reflected in the
parameter estimates. On that score, they stated “that themeasures
derived via parameter estimation—at least as estimated with
the fast-dm method—are not entirely ‘process pure’” (p. 896).
They further noted that “[a]ll manipulations [of experimental
conditions] had some side effects on other parameters as well,”
but that “in every case the effect sizes were considerably larger for
the target parameters than for the side effects” (ibid.).

Wiecki et al. (2013) compared their HDDM program (in
a hierarchical and a non-hierarchical variant) to the CS and
the ML method, finding the Bayesian method superior. In this
study, the CS method performed worst compared to the other
ones, especially regarding the threshold separation a and the
non-decision time TER.

Ratcliff and Childers (2015) compared the ML and the CS
method (using a “home-grown fitting program”; p. 245), and the
DMAT routine, fast-dm with the K-S option, HDDM, and the
EZ method. The specific simulated parameter sets were based
on their estimates from studies of numerosity discrimination
and lexical decision. They found high correlations of estimated
with true parameter values (>0.9 for 1,000 trials, dropping
considerably when disposing of 100 or 40 trials). Especially
HDDM and DMAT suffered from reducing the number of trials.
Generally, they found the ML, CS, and K-S “slightly superior to
the EZ method” (p. 257).

Lerche et al. (2016) compared the three fast-dm methods
(ML, K-S, and CS), the HDDM program, and the EZ method in a
simulation scenario with crossed-out parameters. Generally, they
found all methods but CS to recover the original parameters well,
however limited for designs involving variability parameters.
Moreover, the CS method also showed bias for designs with
<200–500 trials. The ML and the HDDM (Bayes) method
showed overestimation of a and underestimation of TER in
designs not involving the variability parameters. As regards
estimation precision (evaluated with the squared difference of
true value and parameter estimate) the HDDM performed best
and CS worst. EZ performed well in recovering ν. The K-S and
the EZ method proved most robust when outliers were present.

In a recent competition of Dutilh et al. (2018), expert teams
were invited to model the condition differences in 14 two-
condition data sets, each reflecting a random dot motion task.
In particular, they were asked to provide a model that represents
the condition differences in terms of processing ease (drift rate),
response caution (boundary separation), a priori bias, and non-
decision time, while being unaware of the true model and
manipulations used to generate the data. Overall, 56 inferences
could be made about the true underlying effects. Among the
modelling approaches from 17 expert teams, EZ2 performed best
predicting 84 % of the underlying effects correctly.

1.3. Research Questions
While for many statistical models one or a few parameter
estimation methods are widely considered “canonical,” the
overview has shown that a fairly broad variety of methods
popularize the application of the DM in experimental
psychology. However, currently available method comparison
studies are remarkably discordant in their evaluations. Hence,
it is still an open question, which routine provides the most
convincing parameter estimates under which conditions. In
the present simulation scenario, we therefore compare five
principles used to determine DMmodel parameters, closed-form
EZ, Bayesian approach, ML, CS, and Kolmogorov-Smirnov.

Lerche et al. (2016) argue that method comparisons across
different software solutions could be restricted by software-
specific issues, which applies in our case to the ML method,
which is implemented in fast-dm and in R. Moreover, there
are severalML optimization principles available for obtainingML
estimates (most importantly Nelder-Mead and BFGS), which will
also be taken into consideration. Importantly, we only consider
programs that are freely available including their source code.

Regarding the model parameters, we will examine the four
main parameters a, z, TER, and ν, but neither the three
variability parameters nor response time contaminants (for a
recent treatment of best approaches to obtain stable estimates of
the variability parameters see Boehm et al., 2018).

2. STUDY DESIGN AND METHODS

The present study is based on a simulation comparing selected
algorithms (see Table 1) with respect to their parameter recovery
in terms of bias and root mean squared error (RMSE) of the
estimates as well as the run time of eachmethod. The study design
follows a grid search across selected true values of each of the four
parameters (see Table 2). The rationale for this design is that we
do not want to restrict our simulation to the results of studies,
which focus on specific experimental conditions, but to cover a
wider range of possible outcomes.

2.1. Programs and Algorithms
The eight estimation methods were applied with four different
programs: A direct implementation of the EZ method (see
section 2.1.1), the fast-dm program (Voss and Voss,
2007), the RWiener package (Wabersich, 2013) using the R
optimizers optimize() and nlm(), and the RJAGS package
(Plummer, 2003) using the rwiener module (Wabersich
and Vanderkerckhove, 2014). Table 1 gives an overview and
introduces the abbreviations used throughout the text.

2.1.1. The EZ Method
We used the R implementation of the algorithm as given in
Wagenmakers et al. (2007), which employs a value of 0.1 for the
standard deviation of the drift standard deviation s. Therefore,
the obtained parameter estimates have to be multiplied by the
factor 10 in order to become comparable to the estimates of the
other routines. The extended version EZ2 (Grasman et al., 2009)
has not been applied, because this algorithm requires at least two
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TABLE 1 | Evaluation methods, abbreviations, and algorithms.

No. Routine Abbrev. Estimation method

1 The EZ method implemented in R R-EZ Closed form

2 The Bayes method using the rjags/jwm routines R-BY Bayesian

3 The R optimize() function using the N-M algorithm R-NM Maximum likelihood

4 The R optimize() function using the BFGS algorithm R-BF Maximum likelihood

5 The R nlm() function R-NL Maximum likelihood

6 The fast-dm ML method F-ML Maximum likelihood

7 The fast-dm CS method F-CS Chi-square

8 The fast-dm KS method F-KS Kolmogorov-Smirnov

TABLE 2 | Parameters used in the simulation routine.

Par. True values Start. Val. Prior Dist.

a 0.5, 1.0, 1.5, 2.0 U(0.2, 0.8) U(0.0001, 3)

z 0.2, 0.5, 0.8 U(0.2, 0.8) U(0.002, 0.998)

TER 0.1, 0.3, 0.5 0.001 U(0, 1)

ν −1.0,−0.5, 0, 0.5, 1.0 U(0.2, 0.8) U(0, 1)

n 50, 100, 400

experimental conditions, a setting not considered in the present
simulation study.

2.1.2. The Fast-DM Program
We used the program fast-dm (Voss and Voss, 2007), a
free software published under the GNU General Public Licence
and written in C++. It is a stand-alone program for the
MS Windowsr operating system (fast-dm.exe) taking a
data file (experiment.dat) containing the responses, the
respective response times and (if necessary) the experimental
condition. A control file (experiment.ctl) has to be
provided containing relevant information on program execution
(e.g., which parameters are to be estimated, whichmethod is to be
applied, what is the data format, or logging details). The output is
written to a file (experiment.out). Further program details
can be obtained from Voss et al. (2015).

fast-dm allows for estimating all seven model parameters.
As we focus on the four main parameters in the present study,
the three variability parameters were fixed at a value of zero.

The program supports the CS, the K-S, and the ML estimation
methods. The CS-statistic is calculated as described in section
1.1.2, the K-S method uses the “super-curve” as described in
section 1.1.3, and the ML method employs the Nelder-Mead
Simplex search. The program provides an option allowing to
control the precision of the parameter estimates defaulting to a
value of 3. In the present study, a value of 5 has been chosen
in order to minimize numerical inaccuracies. The fast-dm
program uses s = 1 for the drift standard deviation.

The fast-DM algorithm has been implemented in the
rtdists package (Singmann et al., 2018, listing Andreas
and Jochen Voss, the authors of fast-DM, as contributors in

the package documentation). We, therefore, did not include
rtdists in this simulation, for it does not constitute an
estimation method of its own.

2.1.3. The RWiener Package
Turning to an R-based solution, we used the RWiener package
(Wabersich and Vandekerckhove, 2014). Basically, this program
provides a set of functions allowing for calculating the density
function (2). The package contains 4 R-style distribution
functions, dwiener(), pwiener(), qwiener(), and
rwiener(), representing the density function P(X = x), the
cumulative distribution function P(X ≤ x), the quantile function
F−1(X), and the random draw function, each with respect to the
response time distribution as denoted in Equation (2).

Moreover, the package comprises the likelihood functions
wiener_likelihood() and wiener_deviance() (the
latter calling the former and multiplying the result by −2).
These two functions yield (minus two times) the log-likelihood
of a data.frame (containing responses and response times),
given the four main parameters of the model, a, z, TER, and
ν. Furthermore, the package also comprises two goodness-of-
fit functions, wiener_aic() and wiener_bic(), and the
wiener_plot() function for drawing the typical DM plot (cf.
Figure 1).

The wiener_deviance() function is the key to parameter
estimation. It is handed over to an optimizer, which seeks the
parameters minimizing the deviance measure for a given data
set (i.e., an observed or a simulated data.frame) given a
set of starting values for the parameters. R provides for several
such optimizers, each offering several options for fine-tuning
the estimation process. We used the optim() (with both the
Nelder-Mead and the BFGS-method) and the nlm() optimizer.

2.1.4. The RJAGS Package and the Wiener Patch
The free software JAGS (Just Another Gibbs Sampler; Plummer,
2003) is a universal tool for performing Bayes analyses using
Markov ChainMonte Carlo sampling (MCMC; see Gelman et al.,
2014, ch. 11 or Kaplan, 2014, ch. 4 for a detailed introduction and
further references). In short, MCMC allows for drawing samples
from the joint posterior parameter distribution of a Bayes model.
A key feature of MCMC is that the conditional distribution
of a sample X(s) depends only on the previous sample X(s−1),
but not on “older” samples, drawn before s − 1. The transition
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from sample X(s) to sample X(s+1) is described by a transition
matrix. This fairly general principle requires specification for the
respective problem at hand, which can be accomplished with the
Gibbs sampler.

Basically, a Gibbs sampler draws from the conditional
distribution of one variable (here: parameter posterior) given
the others. This drawing is performed in turn for all parameters
thus arriving at a new sample of the seeked joint distribution.
The Gibbs principle can be written as a special case of the more
general Metropolis-Hastings algorithm (Monahan, 2001).

One standard program to run a Bayesian analysis using
the Gibbs sampler is BUGS (Bayesian inference Using Gibbs
Sampling; Lunn et al., 2012, 2009), a command line tool. It has
been developed further to WinBUGS, which provides a graphical
user interface. BUGS is at the same time the name of the language
used to define the model in a batch script. Alternatively, one
may choose to use JAGS, which is written in C++ and runs
in a console. It uses the BUGS language and it is intended to
constitute a free alternative to the WinBUGS program (Plummer,
2003, p. 2). We used the rjags package (Plummer, 2019), which
is a wrapper to the JAGS program, allowing to control a JAGS run
from within the R environment.

One advantage of the rjags solution is that it supports the
module rwiener (Wabersich and Vanderkerckhove, 2014, or
JWM, JAGS Wiener Module). It provides definitions tailored to
perform a Bayesian analysis for the DM bymaking the dwiener
function of the RWiener package available to JAGS.

2.2. The Simulation Routine
The present simulation study has been realized with R (R Core
Team, 2019). In a set of nested loops, all parameter combinations
(see next Section) were used to generate random samples.Table 1
shows the routines used for evaluation.

Data sets were generated with the rwiener() function from
the RWiener package, which uses the exact, rejection-based
algorithm for data simulation (cf. Tuerlinckx et al., 2001). To
avoid peculiarities caused by the data generation, we additionally
checked the RT-distributions and accuracy rates with the R-
package rtdists (Singmann et al., 2018), which covers the
fast-dm algorithm. No divergences were found (we want
to thank one anonymous reviewer for reminding us of such
a check).

The fast-dm program was called from within R using
the system() function generating the required control file
(experiment.ctl) with the write() function and reading
the fast-dm results with the read.table() function of R.

2.2.1. Preparative Steps: Starting Values, Multiple

Maxima, and Instable Estimates
In a set of pilot runs of the simulation study, we found an
inacceptably high number of missing results when using the
optimize-function of R. Both the Nelder-Mead and the BFGS
methods failed to deliver a valid result in up to half of the
estimation runs. Ancillary simulation runs revealed that failures
occurred in those cases, in which the starting value of the TER-

parameter (T(0)
ER) was larger than the true parameter, which

determines the minimum response time realized. Because the

response time density vanishes for t < TER, such a case would not
constitute a valid measurement. As a consequence, the starting

value T(0)
ER was fixed to 0.001 for all designs. The starting values

of the other three parameters did not show any systematic
tendencies to prevent the algorithm from starting the iterations.
The nlm-routine was not affected and yielded valid estimates
independently of the starting values chosen.

Moreover, estimation iterations stopped with the BFGS-
methods issuing an error encountering a “Non-finite finite-
difference value”. This problem could be overcome by reducing
the step-size from (default) 1e-3 to 1e-4. Finally, stops were
encountered in cases, in which the starting value for awas chosen
too small (below∼0.1, independently of the true value of a).

Another set of preparative simulations was undertaken to
find out, whether multiple maxima existed. For this purpose,
100 data sets were generated randomly with true parameters
randomly drawn: a ∼ U(1, 3), z ∼ U(0.2, 0.8), t ∼ U(0.01, 3),
and ν ∼ N(0, 1). Each data set was evaluated 20 times along
with a new set of starting values from the same distributions as
the true parameters. Generally, all estimates from one data set
yielded estimates equal up to the third decimal place. However,
some data sets showed exceptionally high variability in their
estimates. These could be identified as special cases, realizing
only one kind of response (i.e., only “upper” or only “lower”)
as a result of extreme parameter combinations, like high bias z
along with large values of the diffusion rate ν. To avoid such
peculiarities, the final simulation limited these two parameters
to 0.2 ≤ z ≤ 0.8 and −1 ≤ ν ≤ +1. With this choice, we
wanted the starting point parameter z to cover almost the entire
possible range—if it was outside the chosen interval, the decision
would be virtually determined (i.e., P(+) would approach 0 or
1, especially in cases, in which ν points in the same direction,
as can be easily verified with the DMV (Alexandrowicz, 2020).
If one border is not crossed at all, the corresponding distance
between starting point and boundary is not defined (cf. Lerche
et al., 2016). Therefore, Lerche et al. excluded problematic data
sets with fewer than 4% of crossings at one of the boundaries.
In other simulations, the problem was circumvented by using
specific parameter sets and constraining other parameters but not
drift rate (Ratcliff and Tuerlinckx, 2002; Ratcliff and Childers,
2015; van Ravanzwaaij and Oberauer, 2009). We decided to
constrain drift rate, in order to contribute to the overall results on
the accuracy of the estimation methods. Additional preliminary
simulations revealed that for the parameter space in Table 2, on
average only 9% of data sets were problematic. By comparison, if
we had included |v| = 2, more than a third of the data sets (37%)
and for |v| = 3more than half of the data sets (51%) would result
in estimation problems for certain parameter constellations. We
considered such a systematic loss substantial and consequential
for the performance comparison of the eight methods as listed
in Table 1. At the same time, the interval of the drift parameter
ν covers values distinctly different from zero so that systematic
effects are likely to be detected as well.

2.2.2. Simulation Parameters and Analysis Settings
Column 2 of Table 2 shows the parameter values used in the
simulation. We generated five data sets for each of the 4 × 3 ×
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3 × 5 × 3 = 540 combinations of true parameters. For each
of these combinations, three parameter estimation runs were
performed using different starting value vectors drawn from the
distributions given in Table 2. This procedure resulted in a total
of 8,100 estimation runs for each of the methods taken into
consideration. Note that in Table 2 and thereafter, n will denote
the number of trials.

The maximum number of iterations for the R optimizer was
set to 5,000. For the Bayesian analysis, three chains of length 500,

each, were sampled using the starting values a = 1, T(0)
ER = 0.001,

ν = 0.5 for chain 1, a = 2, T(0)
ER = 0.001, ν = −0.5 for

chain 2, and a = 0, T(0)
ER = 0.001, ν = 0 for chain 3. To

obtain a point estimate for each parameter, the three chains were
concatenated and the EAP estimator was applied. The number
of samples chosen is lower than in practical applications of the
Bayesian method, for three reasons: first, no contaminants or
outliers are added, second, we estimate only four parameters, and
third, we only consider one single “experimental condition.”

3. RESULTS

The present simulation considered eight algorithms for 180
different parameter combinations, each applied to five samples
of 50, 100, and 400 trials and replicating the parameter
estimation with three randomly drawn starting value sets. The
resulting output of 8,100 estimates × eight methods is therefore
remarkably large. Hence, crucial elements are reported here,
more details are provided in the Supplementary Material.

3.1. Sample Statistics
Table 1 in the Supplementary Material shows the proportions of
upper and lower threshold passes, the average response times and
the average standard deviations of the response times realized in
the samples for each of the 180 designs.

3.2. Checking Bayes: Estimation Failures
and Convergence
From the 8,100 runs using the Bayesian method, 162 (2 %)
failed to deliver a result. No parameter combination failed
entirely (i.e., at least one of the five different data sets did allow
for an estimation). However, if a failure occurred for a data
set, then none of the replications with newly drawn starting
values succeeded. Hence, failures occurred due to features of the
individual data sets, but they are not specific to certain parameter
combinations. Table 2 in the Supplementary Material shows
the true parameters and the descriptive statistics for those 54
data sets failing to deliver an estimate in all three starting value
replications. Probably most striking is the fact that all omissions
occurred in samples with a = 2. Moreover, omission occurred
predominantly for samples of 400 trials (69 %).

Next, we turn to the convergence behavior of the MCM-
chains. The sheer number would not allow for detailed reporting
here (4a×3z×3TER×5ν×3n×5 datasets×3 replications = 8,100
estimation runs), however, interested readersmay obtain a 90MB
pdf (of size 5 m × 38 cm; don’t print!) containing all plots for all

TABLE 3 | Descriptive statistics of the Potential Scale Reduction Factor.

Min Mean Median Max SD

a est 0.998 1.014 1.009 1.260 0.016

a uci 0.998 1.044 1.028 1.711 0.050

z est 0.998 1.023 1.015 1.352 0.027

z uci 0.998 1.071 1.047 1.934 0.082

TER est 0.998 1.024 1.016 1.256 0.026

TER uci 0.998 1.068 1.046 1.834 0.074

ν est 0.998 1.012 1.009 1.097 0.012

ν uci 0.998 1.041 1.028 1.304 0.041

est, point estimate; uci, upper 95 % confidence interval limit.

parameters upon request. Both authors and one colleague (NV)
have checked the plots not detecting any conspicuous features.

Moreover, the Potential Scale Reduction Factor (PTSR;
Gelman and Rubin, 1992) allows for a descriptive assessment
regarding the convergence of the three chains per parameter by
comparing the variance within the chains with their between-
variance in an ANOVA-like fashion. A value of 1 denotes optimal
convergence and values substantially larger than 1 indicate that
the chains may not be indistinguishable to a sufficient extent. The
index was computed with the gelman.diag() function of the
coda package (Plummer et al., 2006). Table 3 shows descriptive
statistics of this measure for each parameter computed across all
successful runs.

The largest value of all chains for all parameters was 1.9
for the upper 95 % confidence limit of TER. The largest mean
was 1.07 and no value exceeded 1.35. All upper confidence
interval limits were below 2. Figure 1 in section 2 of the
Supplementary Material shows the histograms of the PSRF
statistic of the four parameters. Again, the distributions do not
show outliers indicating convergence problems. We therefore
conclude from both analyses that with the present settings,
the Bayesian estimation method converged successfully in
all instances.

3.3. Sample Statistics and Parameter
Estimates
Figure 3 shows the correlation coefficients of descriptive
statistics of the samples with for the true and the
estimated parameters.

Considering the true parameter values (bold red lines
in Figure 3), we find the well-known relations, i.e.,
a is strongly related to the response time means and
variances, z depends primarily on the proportion of upper
boundary crossings and, to a fairly lesser extent, on the
response time means, TER depends on the minimum
response time observed, resulting in a medium size
correlation with the response time means, and, finally,
ν is associated with the proportion of upper/lower
boundary crossings.
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FIGURE 3 | Correlation coefficients of descriptive statistics with the parameter estimates. The bold (red) lines indicate the correlations with the true parameter values;

the estimation methods are indicated by numbers, 1 = R-EZ, 2 = R-BY, 3 = R-BF, 4 = R-NL, 5 = R-NM, 6 = F-ML, 7 = F-KS, 8 = F-CS; p_up, proportion of upper

boundary crossings; m_rt, mean response time; m_up, mean response time for upper boundary crossings; m_lo, mean response time for lower boundary crossings;

v_rt, variance of response time; v_up, variance of response time for upper boundary crossings; v_lo, variance of response time for lower boundary crossings.

The interesting information from Figure 3 is to which
extent the correlation coefficients of the true parameters with
the descriptive measures are recovered when we turn to the
parameter estimation methods. Generally, we find exceptionally
high agreement across methods, with a few exceptions: (i) The
estimates of the boundary separation parameter a exhibit a slight
disagreement, yet not to be considered substantial. Especially
the CS method (code 8 in Figure 3; top left) yields somewhat
lower correlations compared to the other methods. (ii) The the
EZ estimates of TER (code 1 in Figure 3; bottom left) yield
lower correlations across all descriptive statistics. (iii) The EZ
estimates of the drift parameter ν show higher correlations
(in absolute value) with the proportion of upper boundary
crossings and (to a much lesser extent) with the two mean
response times.

Tables 3a–d in section 3 of the Supplementary Material

report the values used for Figure 3 and the respective values after
splitting by number of trials. However, no marked discrepancies
to the over-all results are to be observed, except for the variations
in the boundary separation a, which were more pronounced
when only using the 50 trials data sets and becoming increasingly
more homogeneous with growing number of trials.

3.4. Distributions of the Parameter
Estimates
Figures 2a–d in section 4 of the Supplementary Material show
the distributions of the estimates by method, trial number,
and parameter. For the boundary separation parameter a
(Supplementary Figure 2a) we find largely good parameter
recovery, except, maybe, for the EZ, the K-S, and the CS
method, especially, when only 50 trials are available. The
starting point z (Supplementary Figure 2b) also recovers fairly
well, again with slight deficiencies occurring with K-S and
CS for small samples. The recovery of the encoding and
response time TER (Supplementary Figure 2c) is exceptionally
good with all methods, and, interestingly, only shows a very
small increase of variability for small samples. However, there
is one irritating finding: Some of the TER estimates obtained
with EZ are negative, which is clearly a violation of the model
assumptions. Finally, the recovery of the drift parameter ν

(Supplementary Figure 2d) performs worst: All methods show
a comparably large variability (especially when looking at the EZ
method, top left plot). Interestingly, the Bayesian estimates (top
right plot in Supplementary Figure 2d) also exhibit a slight bias,
in that the extreme values (i.e., ν = ±1) seem to be slightly
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TABLE 4 | Frequencies and percentages of negative TER estimates by levels of all

parameters.

TER Freq. Pct. z Freq. Pct.

0.1 792 79.0 0.2 507 50.6

0.3 198 19.8 0.5 27 2.7

0.5 12 1.2 0.8 468 46.7

∑

1002 100.0
∑

1002 100.0

a Freq. Pct. ν Freq. Pct.

0.5 0 0.0 −1 144 14.4

1 63 6.3 −0.5 219 21.9

1.5 369 36.8 0 246 24.6

2 570 56.9 0.5 225 22.5

1 168 16.8

∑

1002 100.0
∑

1002 100.0

biased toward zero, a tendency that decreases with increasing
sample size.

3.4.1. Special Issue I: Invalid TER Estimates
The EZ method yielded 1,002 invalid estimates of TER < 0.
To find out, whether these are related to other parameters, we
counted their occurrences separately for the levels of a, z, TER,
and ν. Table 4 shows the resulting frequencies and percentages.
First of all, and hardly surprising, most of the invalid estimates
(79 %) occurred for small values of TER and decreased as
TER increased. Moreover, the frequencies of invalid estimates
also increased in cases, in which z departs from 0.5 (in both
directions) and in which a increased. The drift parameter ν seems
not to have a strong association, yet we find a peak around ν = 0
and decreasing frequencies with increasing distance from ν = 0.

3.5. Correlation Analysis
One way to approach parameter recovery is to look at
the correlation coefficients of true and estimated parameters,
which will be done in the following section. Thereafter, we
also assess the estimates’ correlation coefficients across the 8
estimation methods.

3.5.1. True and Estimated Parameters
Figure 4 shows the correlation coefficients of true and estimated
parameters for the 8 methods using the entire sample and
split by the number of trials (Table 4 in section 5.1 of the
Supplementary Material lists the values).

Generally, we find high correlation coefficients, with a few
exceptions. There are four major tendencies: (i) Unsurprisingly,
the coefficients increase with the number of trials across
all methods and parameters—most prominently for the drift
parameter ν. (ii) Notably, the TER parameter has been recovered
best, with almost all values above 0.99. Only the EZ method
yielded slightly inferior coefficients. (iii) The CS method of
fast-dm performed somewhat worse compared to the other

iterative methods for all parameters, yet to a varying degree:
With decreasing number of trials it decreased most for the
boundary separation a and drift rate ν, and least for starting point
z and encoding and response time TER. Also, the KS method
performed somewhat poorly for z, TER, and ν when 50 trials were
available. (iv)When disposing of 400 trials, all methods (but EZ)
showed correlation coefficients close to 1. (v) The Bayes estimates
performed exceptionally well for all parameters independent of
the number of trials.

The EZ method performed considerably poor in recovering
the drift parameter ν (r ∼ 0.44). This fact is discussed further
in section 3.6.5. A slight incursion (r = 0.74) appeared for the
boundary separation a with 50 trials when using the nlm()
function of R. However, the value is still satisfying, hence we
consider this a spurious result (the more, as in a replication of
the simulations, this incursion did not reappear).

3.5.2. Correlations Among Parameter Estimates
Tables 5a–d in section 5.2 of the Supplementary Material show
the correlation coefficients across parameters and methods. The
large table is split into four sections, each holding the coefficients
of one parameter for all methods (5a: a vs. the rest; 5b: z vs. the
rest; 5c: TER vs. the rest; td: ν vs. the rest). The table represents the
full matrix, i.e., values are mirrored along the main diagonal. The
gray sections indicate correlation coefficients of estimates of the
same parameters across methods. Note that no correlation of the
EZ estimates of z can be obtained, because the EZ routine used
here fixes this parameter at a value of 0.5. An asterisk indicates the
respective entries in the table. Figures 3a–d in section 5.6 of the
Supplementary Material show the respective scatter plots with
colors indicating the number of trials.

First of all, we find predominantly high coefficients (0.9 and
above, many close to 1) in the diagonal blocks (i.e., a with
a, etc.; grayed cells) and close to zero coefficients in the off-
diagonal blocks (i.e., a with z, etc.; non-grayed cells). However,
there are some exceptions to this pattern, all associated with the
EZ method: (i) The EZ estimates of TER show a slight negative
correlation to the a estimates of all other methods (all in the
vicinity of 0.3). (ii) The EZ estimates of ν correlate highly with
the z estimates of all other methods (all in the vicinity of 0.76).
(iii) The EZ estimates of ν correlate only moderately with the ν

estimates of the other methods (all about 0.49).
Splitting the data according to the number of trials (see

Supplementary Material, sections 5.3–5.5, Tables 6a–d for 50
trials, 7a–d for 100 trials, and 8a–d for 400 trials), we find another
peculiarity: For the 50 trial data sets, the ν estimates of the
K-S and the CS method as applied in the fast-dm program
correlate slightly with the z estimates of the other methods
(except, of course, EZ, which does not allow for calculating
these coefficients).

In all cases, we observe that the tendencies (high correlations
within the parameter blocks, almost zero correlations for the
off-diagonal blocks) become more pronounced with increasing
number of trials. Apart from that, we find all anomalies reported
before, also (slightly) increasing in size with increasing number
of trials.
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FIGURE 4 | Correlation coefficients of true and estimated parameters by number of trials. red line/symbol “5”: 50 trials; blue line/symbol “1”: 100 trials; green

line/symbol “4”: 400 trials; for abbreviations see Figure 3.

3.6. Parameter Recovery Performance
Measures
The bias and the root mean squared error (RMSE) are
proper means to summarize parameter recovery, hence
we will focus on these two measures in this section.
Section 6 in the Supplementary Material provides a
detailed breakdown of measures, which we will refer to
where appropriate.

3.6.1. The Boundary Separation a

Figure 5 shows the bias (upper row) and the RMSE (lower row)
of the estimated a (Table 9 in the Supplementary Material details
all parameter combinations).

Generally, bias and RMSE are comparably small for almost
all methods. Only the bias of the CS estimates as provided by
fast-dm is somewhat increased compared to the others. For
increasing a, both bias and RMSE increase, however, even the
worst cases seem acceptable with one exception: The CS method
delivers estimates, which are considerably biased upwards (up
to almost half a unit for a = 2 when n = 50); this
could be considered questionable. In all cases, bias becomes
smaller with increasing number of trials. If bias is observable,
it is positive, i.e., the boundary separation parameter estimates
are larger than the true values (indicated by a0 in Figure 5).

Regarding RMSE, we find increasing values as a increases and
n decreases.

3.6.2. The Starting Point (Bias) z
Figure 6 shows the bias and the RMSE for the starting
point parameter z. Note that the values for the EZ method
have been omitted, as it fixes z = 0.5 (Table 10 in the
Supplementary Material details the values).

There is no substantial bias or increased RMSE observable.
The number of trials has hardly an influence, and if so, it
appears as expected, i.e., both measures decrease with increasing
n. Interestingly, the RMSE is (relatively) largest for z = 0.5.

3.6.3. The Encoding & Response/Non-decision Time

TER
Figure 7 shows the bias and the RMSE for TER (Table 11
in the Supplementary Material details the values). Again, we
find excellent values regarding bias and RMSE of TER, except
for the EZ method, which deviates to a comparatively large
extent. In section 3.6.5, we will take a closer look at this result.
No substantial effect of the number of trials is visible (but
nevertheless, in the lower row the lines pile as expected, yet
with hardly a displacement). The estimates obtained by the
CS method have minimally increased RMSE for TER = 0.3
and TER = 0.5.
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FIGURE 5 | Bias (upper row) and RMSE (lower row) of the boundary separation parameter a. red line/symbol “5”: 50 trials; blue line/symbol “1”: 100 trials; green

line/symbol “4”: 400 trials; for abbreviations see Figure 3.

FIGURE 6 | Bias (upper row) and RMSE (lower row) of the starting point parameter z. red line/symbol “5”: 50 trials; blue line/symbol “1”: 100 trials; green line/symbol

“4”: 400 trials; for abbreviations see Figure 3.

3.6.4. The Drift Parameter ν

Figure 8 shows the bias and the RMSE for ν (Table 12 in the
Supplementary Material details the values).

The bias (top row) shows an interesting pattern of symmetry:
The neutral drift, ν0 = 0 (upper row, plot in the middle), is

estimated virtually free of bias by all methods (except, maybe, the
CS method at n = 50). In contrast, the two extreme positions
(ν0 = −1/ + 1) show a characteristic pattern for n = 50 (red
lines), yet mirrored: ν0 = −1 is underestimated by K-S and CS
and (slightly) overestimated by Bayes. Analogously, ν0 = +1 is
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FIGURE 7 | Bias (upper row) and RMSE (lower row) of the encoding and response time TER. red line/symbol “5”: 50 trials; blue line/symbol “1”: 100 trials; green

line/symbol “4”: 400 trials; for abbreviations see Figure 3.

FIGURE 8 | Bias (upper row) and RMSE (lower row) of the drift parameter ν. red line/symbol “5”: 50 trials; blue line/symbol “1”: 100 trials; green line/symbol “4”: 400

trials; for abbreviations see Figure 3.

overestimated by CS and underestimated by Bayes. Interestingly,
the ML estimates of fast-dm (which applies the Nelder-Mead
search method, see section 2.1.2) have larger bias and RMSE than
the respective method applied by the R optimize() function.

The RMSE shows a clear deficiency of the EZ method
compared to the other ones (however, see section 3.6.5). It further
reveals a clear effect of the number of trials across all levels
of ν0.
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3.6.5. Special Issue II: EZ and the Constant z
The EZ method as implemented here does not allow for
estimating the z parameter, rather it assumes z = 0.5. This

conforms to its true value in one third of the designs, but is wrong
in all other cases. At this point, we want to evaluate, whether the
simulated violations of the EZ-assumption z = 0.5 causes bias in

FIGURE 9 | EZ-estimates of a, TER, and ν split by levels of z. The red horizontal lines indicate the respective true parameter values.
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the other estimated parameters. Figure 9 shows boxplots of the
distributions of a, TER, and ν side for the three levels of z (i.e.,
0.2, 0.5, and 0.8).

TABLE 5 | ANOVA of the RMSE of the boundary separation a by true value,

estimation method, and number of trials.

Sum Sq Df F value Pr (>F)

(Intercept) 0.09 1 5.63 0.0207

True 1.27 1 77.64 0.0000

Method 0.09 7 0.75 0.6316

Trials 0.02 1 1.08 0.3029

True:method 0.37 7 3.22 0.0055

True:trials 0.28 1 16.93 0.0001

Method:trials 0.05 7 0.41 0.8922

True:method:trials 0.12 7 1.00 0.4371

Residuals 1.05 64

For the boundary separation awe find a small tomoderate bias
upwards. In contrast, TER shows a marked downward bias in all
cases, in which z 6= 0.5. Finally, the drift rate ν exhibits a severe
bias following z, i.e., it is severely underestimated for z < 0.5 and
severely overestimated for z > 0.5.

3.7. Interaction Effects
Each of the analyses presented so far considered one factor
at a time. As we dispose of a complete crossing of all
factors (parameter levels, estimation method, and number of
trials), interaction effects can be determined as well. However,
this cannot be achieved by inspecting diagrams of all factor
levels combinations. Therefore, we used Analysis of Variance
(ANOVA) to systematically direct us to possibly interesting
interactions due to merely technical reasons. We chose the
RMSE as dependent variable, constituting a suitable measure
of performance. The critical limit for the type-I-error risk was

FIGURE 10 | The interaction plot of the RMSE of a by true value (horizontal axis) and number of trials (separate lines).

FIGURE 11 | The interaction plot of the RMSE of a by true value (horizontal axis) and methods (separate lines). The eight methods were reordered in the legend

according to the right-most position in the diagram.
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chosen at 0.05. Significant intercepts will not be considered for
they do not contribute to a substantive interpretation.

3.7.1. The Boundary Separation
Table 5 shows the ANOVA table of the RMSE by true value,
method, and the number of trials. We find a significant main
effect of the true values and two significant interaction effects,
trials by method and trials by true value. Figure 10 shows the
interaction plot of true value by number of trials. We find that
for smaller number of trials, the RMSE grows disproportionally,
the larger a.

Figure 11 shows the interaction plot of true value by
estimation method. Clearly, the RMSE of the CS method grows
disproportionally with a, and we observe a similar yet weaker
effect of the K-S (fast-dm) and the Nelder-Mead method of R.
The remaining methods exhibit a fairly linear ascent across the
levels of a.

3.7.2. The Starting Value/Bias
The ANOVA of the starting value z (see Table 6) shows
no significant result (apart from the intercept, not posing a
substantial interpretation in our design).

3.7.3. The Encoding and Response Time
Table 7 shows the ANOVA table of the RMSE of the non-decision
time TER by true value, method, and number of trials.

We find two significantmain effects for the estimationmethod
and the number of trials. In Figure 12 we find the reason for the
strong method effect, which is obviously due to the high RMSE
of the EZ method in contrast to all other estimation methods.
The trials effect is comparably small and appears mostly due to
the CS and the ML methods of fast-dm. These show a slightly
increased RMSE for the 50 trial designs.

3.7.4. The Drift Parameter
The ANOVA of ν (Table 8) reveals three significant effects (plus
intercept, again irrelevant), which are the estimation method, the
number of trials and the interaction of these two.

In Figure 13 we find a similar situation as has been observed
for the TER parameter, yet with a more pronounced effect of small
number of trials (hence yielding a significant interaction effect as
well). Again, the EZ method has a disproportionately high RMSE
compared to the othermethods and all methods worsen the fewer
trials we dispose of. This worsening is most pronounced for the
CS and the ML method of fast-dm.

3.7.5. Special Issue III: A ν vs. a Interaction
Inspired by the effects reported in section 3.6.5, we further
assessed estimates and their deviations from the true value across
levels of other parameters, finding the deviation of ν to vary
across the levels of a. Figure 14 shows the deviation ν̂ − ν for
the chosen levels of ν split by the levels of a.

First of all, comparing the 8 methods, the EZ estimates of ν

show a strikingly larger variability than the others. Aside of this
observation (which has been already reported in section 3.4), we
find a clear interaction effect of the variability of the ν estimates
across the levels of a for all methods: the smaller a the larger the

TABLE 6 | ANOVA of the RMSE of the starting value/bias z by true value,

estimation method, and number of trials.

Sum Sq Df F value Pr (>F)

(Intercept) 0.03 1 6.41 0.0154

True 0.00 1 0.00 0.9913

Method 0.02 7 0.47 0.8488

Trials 0.00 1 0.45 0.5042

True:method 0.00 7 0.00 1.0000

True:trials 0.00 1 0.00 0.9976

Method:trials 0.00 7 0.03 1.0000

True:method:trials 0.00 7 0.00 1.0000

Residuals 0.19 40

TABLE 7 | ANOVA of the RMSE of the encoding and reaction time TER by true

value, estimation method, and number of trials.

Sum Sq Df F value Pr (>F)

(Intercept) 0.01 1 140.08 0.0000

True 0.00 1 2.27 0.1394

Method 0.01 7 27.13 0.0000

Trials 0.00 1 5.28 0.0269

True:method 0.00 7 1.18 0.3347

True:trials 0.00 1 1.58 0.2158

Method:trials 0.00 7 0.11 0.9971

True:method:trials 0.00 7 0.51 0.8244

Residuals 0.00 40

TABLE 8 | ANOVA of the RMSE of the drift parameter ν by true value, estimation

method, and number of trials.

Sum Sq Df F value Pr (>F)

(Intercept) 22.65 1 2221.17 0.0000

True 0.01 1 1.44 0.2340

Method 4.81 7 67.38 0.0000

Trials 2.31 1 226.51 0.0000

True:method 0.03 7 0.40 0.9002

True:trials 0.02 1 1.50 0.2241

Method:trials 0.46 7 6.44 0.0000

True:method:trials 0.01 7 0.13 0.9957

Residuals 0.90 88

variability of ν. Especially if a = 0.5 the variability is markedly
increased compared to the other levels of a.

3.8. Run-Time
Table 9 shows the means and standard deviations of the various
algorithms’ run-times (in seconds) split by number of trials.

Clearly, the EZ method is fastest, because it just calculates
the estimates in closed form rather than approaching them
iteratively. It is also not very surprising that the Bayes
method takes considerably longer, owed to its resampling
technique. Note that the present parametrization provided
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FIGURE 12 | The interaction plot of the RMSE of TER by number of trials (horizontal axis) and method (separate lines).

FIGURE 13 | The interaction plot of the RMSE of ν by number of trials (horizontal axis) and method (separate lines).

for 500 samples per chain, a value that should be chosen
larger in applications, given that real data usually will contain
contaminants/outliers and involve several experimental
conditions and more parameters. The average time consumption
was slightly <1 min for a run, a frequently chosen value
of 5,000 samples would therefore take 8–10 min per run,
which is still acceptable for applications. If one chose
to evaluate more than three chains, the run-time would
increase accordingly.

The four ML methods were comparably fast, independently
of their implementation (fast-dm and R). The K-S and
the CS method of fast-dm took somewhat more time
for a run, with the latter showing fairly equal durations,
independently of the number of trials. This observation
can be easily explained by the fact that the CS method
performs binning, so that the absolute frequencies per bin
increase with the number of trials, but not the number of
bins itself.

4. DISCUSSION

The present study compared eight open source based estimation
methods for the four main parameters of the Ratcliff Diffusion
Model. Using a total of 8,100 estimation runs for various
parameter level combinations, we found altogether satisfying
parameter recovery, with a few exceptions.

4.1. Parameter Recovery Across Methods
and Implementations
Generally, parameter recovery has turned out well for almost all
methods and programs. Some deficiencies occurred, especially
for the EZ method. However, this algorithm is not considered
an equivalent alternative to the other methods considered here.
Rather, it is preferred for quickly obtaining suitable starting
values for another method (especially the maximum likelihood
based methods). One issue must be pointed out critically: EZ
achieved negative estimates for TER in some instances, which
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FIGURE 14 | The deviation ν̂ − ν for the levels of ν (sections separated by vertical gray lines) and the levels of a (separate boxplots). To make the eight methods

comparable, the vertical axes were scaled uniformly to a range of −2 to 2. As a consequence, the EZ-boxplots outrange the plot limits.
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TABLE 9 | Descriptive statistics of the run-time (in seconds) by algorithm and

number of trials.

Program Alg Trials n Mean SD

R EZ 50 2700 0.00 0.00

100 2700 0.00 0.00

400 2700 0.00 0.00

R Bayes 50 2685 6.37 0.29

100 2664 12.61 0.58

400 2589 49.71 1.79

R BFGS 50 2689 0.89 0.27

100 2686 1.75 0.37

400 2687 6.94 1.49

R NLM 50 2700 0.77 0.23

100 2700 1.51 0.33

400 2696 5.91 1.33

R N-M 50 2700 1.32 0.46

100 2699 2.60 0.88

400 2698 10.17 3.50

fast-dm ML 50 2700 0.30 0.50

100 2700 0.44 0.62

400 2700 0.69 0.74

fast-dm K-S 50 2700 6.05 4.11

100 2700 6.69 4.42

400 2700 8.00 5.09

fast-dm CS 50 2700 3.29 2.86

100 2700 3.50 2.60

400 2700 3.62 2.46

Entries 0.00 refer to values (remarkably) smaller than 0.01.

is clearly a model violation. These negative estimates could be
traced back to small true TER, large a, z differing considerably
from 0.5, and ν close to zero. Such values may be considered
extreme, hence the problem seems less important from a practical
point of view.

Moreover, we learn from Figure 9 that parameter estimates
become severely biased if one of the parameters involved is
fixed to an invalid value. This result is in line with Voss et al.
(2010), who also found omitted parameters to result in biased
estimates of the used parameters. This should raise our concerns
insofar, as fixing parameters is frequently applied to foster certain
model variants. For example, Arnold et al. (2015) recommend
fixing parameters (however, across conditions), if justifiable from
a substantive point of view, presuming that invalid restrictions
will show up in model fit measures (as was the case in their
experiments). Hence, our findings are not in line with van
Ravanzwaaij and Oberauer (2009).

The EZmethod may be more appropriate in settings, in which
the DM’s boundaries represent correct and incorrect responses
and respondents are unaware of which key is correct and which

not and therefore cannot be a priori biased. This might be the
case, e.g., in DM applications to the Implicit Association Test as
in Klauer et al. (2007). If, in contrast, responses reflect substantive
categories, such as “word” and “non-word” in a lexical decision
task (Wagenmakers et al., 2008a), or “shoot” and “not shoot” in
a first person shooter task (Correll et al., 2015), the presence of
a priori bias cannot be excluded. In such cases the EZ method
will likely produce highly misleading estimates for the other DM
parameters, which might become disadvantageous when using
the EZ method as a means to determine suitable starting values.
In contrast, in designs, in which the true z was indeed 0.5, EZ
performed reasonably well.

Aside of EZ, the K-S and the CS methods also showed slight
deficiencies in terms of bias and RMSE compared to the other
methods. But these were within an acceptable range, so that no
reservations against these algorithms seem indicated. As regards
run-time, CS even proved superior by not requiring more time
for more trials (as did all other routines), because although the
bin frequencies increase, the number of bins does not.

While most of the parameters showed sufficient recovery,
we found increased variability for the estimates of ν across
all methods, especially when only few trials were available (cf.
Figure 8, lower row). This finding is important for applications,
when the drift is a focus of the analysis: If one uses ν as an
indicator of an individual’s information processing speed of
perception (in the sense of Voss et al., 2004), a sufficient number
of trials should be provided for, otherwise conclusions could be
imprecise. From the present results we conclude that at least 100
trials might be a good choice, if justifiable.

Generally, the four ML estimators (two Nelder-Mead
implementations, the BFGS, and the nlm() routine) perform
altogether well and achieve fairly similar results with comparable
performance. Hence, the argument of Lerche et al. (2016)—
only methods of one program should be compared—seems to
apply only to a certain extent. Rather, we found differences
between algorithms to be more pronounced than between
implementations. This is good news for practitioners, as they
need not bother with which software to use, but only have to
select the estimation method, which is most appropriate for
their problem. Taking further into account that the algorithms
did not differ fundamentally either, the selection can be guided
by individual preferences (e.g., whether the whole project is
evaluated with R, or not).

The slightly increased bias and RMSE of a when estimated
with the CS method is likely due to the fact that this
method uses binning, thus causing a loss of information.
Especially for experiments with fewer trials (50) this effect
is visible. Therefore, it seems advisable to use a sufficient
number of trials when intending to use the CS method for
parameter estimation.

As explained in section 2.2.1, we had to limit ν to the
interval ±1 for technical reasons. This could be regarded a
limitation of our study, as larger values are observed in real-
data applications. However, important tendencies were found:
Figure 8 (upper row) reveals that the bias of ν shows a distinct
pattern across the eight estimation methods (especially, if the
number of trials is low)—it seems likely that this pattern
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becomes even more pronounced for larger (absolute) values
of ν.

4.2. Parameter Correlations and
Interactions
The analysis of the correlations of the parameter estimates with
the true values and among each other yielded mainly results as
expected: Correlations with the true values were predominantly
close to 1, except for the CS and, in one case, for the K-S
method. However, these two did not fall below 0.6. Estimates of
parameters of the same kind were also high, again indicating the
good recovery properties of the estimators used in this study. But,
over and above that, correlations of different parameter estimates
were also observed. These were TER of EZ with all a estimates and
the ν of EZ with the z estimates of the other routines. In contrast,
the ν estimates of EZ correlated only moderately with the other
estimates of ν. Again, we attribute this observation to the bias of
EZ invoked by fixing z at 0.5 although response bias (i.e., z 6= 0.5)
is present in the data.

Using ANOVA for analysing the RMSE, we found some
interesting interaction effects: The RMSE of the boundary
separation a increases considerably the larger a and the fewer
trials are available. Moreover, the CS method showed the largest
RMSE for large a. Hence, experiments aiming at large values of
a, e.g., by involving a speed-accuracy trade-off, should provide
for a sufficient number of trials, especially in the accuracy
condition. Recently, Stafford et al. (2020) presented a detailed
power simulation – using the EZ routine – for detecting true
effects of the drift-parameter in the context of a speed-accuracy
trade-off design.

Furthermore, we found an interesting interaction of the
boundary separation a and the drift parameter ν: The smaller a
themore variability was observed for the estimates of ν. From this
finding we have to conclude that focussing on ν (e.g., by using
it for assessing an individual’s information processing speed)
is difficult to combine with a speed condition (thus lacking
accuracy), for estimates may be imprecise.

4.3. Run-Time
The fast-dm implementation of the various algorithms clearly
outperforms the R routines in terms of run-time. This is likely
due to two factors: (i) the program is written in the programming
language C, which delivers an optimized binary (the exe-file, in
contrast to the interpreter principle of R and the computationally
demanding resampling of the MCMC used in the Bayesian
context), and (ii) it employs the PDE method, which allows for
efficient calculation of the expected response time distributions
(which is required at each iteration loop). Thus, if a researcher
analyses a large data set, possibly involving many experimental
conditions, fast-dm may prove advantageous. Moreover, one

can easily switch between the K-S, the CS, and a maximum
likelihood method, thus comparing the resulting estimates with
respect to the respective (dis-)advantages of either algorithm
(e.g., the sensitivity of theMLmethod for response time outliers).

4.4. Conclusion and Outlook
Summarizing, we may state that regarding parameter recovery,
all methods performed comparably well except for the EZ
method, which showed some deficiencies. It may be applied to
generate starting values for an iterative method, but care has to
be taken if used for proper parameter estimation. The present
study has focussed exclusively on the recovery of the four main
parameters a, z, TER, and ν, following a recommendation of
Lerche and Voss (2016).

The following steps would be interesting to take next: (a)
considering the variability parameters as well, (b) response
time outliers and contaminants, (c) statistical properties of the
estimators, or (d) accuracy of the standard errors. Moreover,
an important branch of research would be the sensitivity of the
methods considered here to misspecified models.

A distinguishing feature of the present study compared to
similar ones is the restriction to open source software, thus
fostering reproducible research (Fomel and Claerbout, 2009;
The Yale Law School Round Table on Data and Core Sharing,
2010).
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redeïňĄned: a diffusion model approach. Front. Psychol. 6:1955.
doi: 10.3389/fpsyg.2015.01955

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using

Likelihood. Oxford: Clarendon.
Plummer, M. (2003). “JAGS: a program for analysis of Bayesian graphical models

using Gibbs sampling,” in Proceedings of the 3rd International Workshop on

Distributed Statistical Computing (DSC 2003), eds K. Hornik, F. Leisch, and A.
Zeileis (Vienna: Technische Universität Wien), 1–8.

Plummer, M. (2019). rjags: Bayesian Graphical Models using MCMC. R package
version 4-10. Available online at: https://CRAN.R-project.org/package=rjags.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). Coda: convergence
diagnosis and output analysis for MCMC. R. News 6, 7–11.

R Core Team (2019). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev. 85, 59–108.
doi: 10.1037/0033-295X.85.2.59

Ratcliff, R. (2008). The EZ diffusion method: Too EZ Psychon. Bull. Rev. 15,
1218–1228. doi: 10.3758/PBR.15.6.1218

Ratcliff, R. (2013). “Response time: data and theory,” in Progress in Cognitive

Science: From Cellular Mechanisms to Computational Theories, ed L. Zhong-lin
(Peking: Peking University Press), 31–62.

Ratcliff, R., and Childers, R. (2015). Individual differences and fitting methods
for the two-choice diffusion model of decision making. Decision 2, 237–279.
doi: 10.1037/dec0000030

Ratcliff, R., Smith, P. L., Brown, S. D., and McKoon, G. (2016). Diffusion
decision model: current issues and history. Trends Cogn. Sci. 20, 260–281.
doi: 10.1016/j.tics.2016.01.007

Ratcliff, R., and Tuerlinckx, F. (2002). Estimating parameters of the diffusion
model: approaches to dealing with contaminant reaction times and
parameter variability. Psychon. Bull. Rev. 9, 438–481. doi: 10.3758/BF031
96302

Rouder, J. N., Sun, D., Speckman, P. L., Lu, J., and Zhou, D. (2003). A hierarchical
Bayesian statistical framework for response time distributions. Psychometrika

68, 589–606. doi: 10.1007/BF02295614
Royall, R. M. (2000). Statistical Evidence. A Likelihood Paradigm. Boca Raton, FL:

Chapman & Hall/CRC.
Schubert, A.-L., Hagemann, D., Lffler, C., and Frischkorn, G. T. (2019).

Disentangling the effects of processing speed on the association between age
differences and fluid intelligence. J. Intell. 8:1. doi: 10.3390/jintelligence8010001

Frontiers in Psychology | www.frontiersin.org 21 September 2020 | Volume 11 | Article 484737

https://doi.org/10.1037/neu0000222
https://doi.org/10.2307/2289131
https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1080/01621459.1987.10478396
https://doi.org/10.1037/pspa0000015
https://doi.org/10.3390/jintelligence5020012
https://doi.org/10.3758/s13423-017-1417-2
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1109/MCSE.2009.14
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1016/j.jmp.2009.01.006
https://doi.org/10.3758/BF03196299
https://doi.org/10.1037/0022-3514.93.3.353
https://doi.org/10.1007/978-1-4612-4380-9_10
https://doi.org/10.3389/fpsyg.2016.01324
https://doi.org/10.3758/s13428-016-0740-2
https://doi.org/10.1002/sim.3680
https://doi.org/10.1521/soco.2019.37.6.571
https://doi.org/10.1016/j.biopsych.2010.07.031
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.3389/fpsyg.2015.01955
https://CRAN.R-project.org/package=rjags
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.3758/PBR.15.6.1218
https://doi.org/10.1037/dec0000030
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.3758/BF03196302
https://doi.org/10.1007/BF02295614
https://doi.org/10.3390/jintelligence8010001
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Alexandrowicz and Gula Diffusion Model Parameter Estimation Methods

Schuch, S. (2016). Task inhibition and response inhibition in older vs.
younger adults: a diffusion model analysis. Front. Psychol. 7:1722.
doi: 10.3389/fpsyg.2016.01722

Shanno, D. F. (1970). Conditioning of quasi-newton methods
for function minimization. Math. Comput. 24, 347–656.
doi: 10.1090/S0025-5718-1970-0274029-X

Singmann, H., Brown, S., Gretton, M., and Heathcote, A. (2020). rtdists: Response
Time Distributions. R package version 0.9.0. https://CRAN.R-project.org/
package=rtdists.

Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical
curves of distributions for two independent samples. Bull. Math. L’Univ.

Moscow 2, 3–11.
Stafford, T., Pirrone, A., Croucher, M., and Krystalli, A. (2020). Quantifying the

benefits of using decision models with response time and accuracy data. Behav.
Res. Methods. doi: 10.3758/s13428-020-01372-w. [Epub ahead of print].

Stephens, M. A. (1992). “Introduction to Kolmogorov (1933) on the empirical
determination of a distribution,” in Breakthroughs in Statistics. Volume II:

Methodology and Distribution, eds S. Kotz and N. L. Johnson (New York, NY:
Springer), 93–105. doi: 10.1007/978-1-4612-4380-9_9

The Yale Law School Round Table on Data and Core Sharing (2010).
Reproducible research. Comput. Sci. Eng. 12, 8–12. doi: 10.1109/MCSE.20
10.113

Tuerlinckx, F., Maris, E., Ratcliff, R., and de Boeck, P. (2001). A
comparison of four methods for simulating the diffusion process.
Behav. Res. Methods Instr. Comput. 33, 443–456. doi: 10.3758/BF031
95402

van Ravanzwaaij, D., and Oberauer, K. (2009). How to use the diffusion model:
parameter recovery of threemethods: EZ, fast-dm, andDMAT. J. Math. Psychol.
53, 463–473. doi: 10.1016/j.jmp.2009.09.004

Voss, A., Nagler, M., and Lerche, V. (2013). Diffusion models in experimental
psychology: a practical introduction. Exp. Psychol. 60, 385–402.
doi: 10.1027/1618-3169/a000218

Voss, A., Rothermund, K., and Voss, J. (2004). Interpreting the parameters
of the diffusion model: an empirical validation. Mem Cogn. 32, 1206–1220.
doi: 10.3758/BF03196893

Voss, A., and Voss, J. (2007). Fast-dm: a free program for efficient diffusion
model analysis. Behav. Res. Methods 39, 767–775. doi: 10.3758/BF031
92967

Voss, A., Voss, J., and Klauer, K. C. (2010). Separating response-execution bias
from decision bias: arguments for an additional parameter in Ratcliff ’s diffusion

model. Br. J. Mathe. Stat. Psychol. 63, 539–555. doi: 10.1348/000711009X4
77581

Voss, A., Voss, J., and Lerche, V. (2015). Assessing cognitive processes with
diffusion model analyses: a tutorial based on fast-dm-30. Front. Psychol. 6:336.
doi: 10.3389/fpsyg.2015.00336

Wabersich, D. (2013). RWiener: Wiener Process Distribution Functions. R package
version 1.2-0. https://CRAN.R-project.org/package=RWiener.

Wabersich, D., andVandekerckhove, J. (2014). The RWiener package: an R package
providing distribution functions for the wiener diffusion model. R J. 6, 49–56.
doi: 10.32614/RJ-2014-005

Wabersich, D., and Vanderkerckhove, J. (2014). Extending JAGS: a tutorial on
adding custom distributions to JAGS (with a diffusion model example). Behav.
Res. Methods 46, 15–28. doi: 10.3758/s13428-013-0369-3

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., and McKoon, G. (2008a). A diffusion
model account of criterion shifts in the lexical decision task. J. Mem. Lang. 58,
140–159. doi: 10.1016/j.jml.2007.04.006

Wagenmakers, E.-J., van der Maas, H. L. J., Dolan, C. V., and Grasman, R. P. P. P.
(2008b). EZ does it! Extensions of the EZ-diffusion model. Psychon. Bull. Rev.
15, 1229–1235. doi: 10.3758/PBR.15.6.1229

Wagenmakers, E.-J., van derMaas, H. L. J., and Grasman, R. P. P. P. (2007). An EZ-
diffusion model for response time and accuracy. Psychon. Bull. Rev. 14, 3–22.
doi: 10.3758/BF03194023

Wiecki, T. V., Sofer, I., and Frank, M. J. (2013). HDDM: hierarchical Bayesian
estimation of the drift-diffusion model in Python. Front. Neuroinform. 7:14.
doi: 10.3389/fninf.2013.00014

Yap, M. J., Sibley, D. E., Balota, D. A., Ratcliff, R., and Rueckl, J. (2015).
Responding to nonwords in the lexical decision task: insights from the
English Lexicon project. J. Exp. Psychol. Learn. Mem. Cogn. 41, 597–613.
doi: 10.1037/xlm0000064

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Alexandrowicz and Gula. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 22 September 2020 | Volume 11 | Article 484737

https://doi.org/10.3389/fpsyg.2016.01722
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://CRAN.R-project.org/package=rtdists
https://CRAN.R-project.org/package=rtdists
https://doi.org/10.3758/s13428-020-01372-w
https://doi.org/10.1007/978-1-4612-4380-9_9
https://doi.org/10.1109/MCSE.2010.113
https://doi.org/10.3758/BF03195402
https://doi.org/10.1016/j.jmp.2009.09.004
https://doi.org/10.1027/1618-3169/a000218
https://doi.org/10.3758/BF03196893
https://doi.org/10.3758/BF03192967
https://doi.org/10.1348/000711009X477581
https://doi.org/10.3389/fpsyg.2015.00336
https://CRAN.R-project.org/package=RWiener
https://doi.org/10.32614/RJ-2014-005
https://doi.org/10.3758/s13428-013-0369-3
https://doi.org/10.1016/j.jml.2007.04.006
https://doi.org/10.3758/PBR.15.6.1229
https://doi.org/10.3758/BF03194023
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.1037/xlm0000064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Comparing Eight Parameter Estimation Methods for the Ratcliff Diffusion Model Using Free Software
	1. Introduction
	1.1. Parameter Estimation Methods
	1.1.1. A Closed Form Expression and Its Enhanced Version
	1.1.2. Comparing Observed and Expected Frequencies Using the χ2 Statistic
	1.1.3. Comparing Observed and Expected Cumulative Distribution Functions of the Response Times Using the Kolmogorov-Smirnov Statistic
	1.1.4. Maximum Likelihood Estimation
	1.1.5. The (Hierarchical) Bayesian Approach
	1.1.6. Further Estimation Principles

	1.2. Previous Studies Comparing Estimation Methods
	1.3. Research Questions

	2. Study Design and Methods
	2.1. Programs and Algorithms
	2.1.1. The EZ Method
	2.1.2. The Fast-DM Program
	2.1.3. The RWiener Package
	2.1.4. The RJAGS Package and the Wiener Patch

	2.2. The Simulation Routine
	2.2.1. Preparative Steps: Starting Values, Multiple Maxima, and Instable Estimates
	2.2.2. Simulation Parameters and Analysis Settings


	3. Results
	3.1. Sample Statistics
	3.2. Checking Bayes: Estimation Failures and Convergence
	3.3. Sample Statistics and Parameter Estimates
	3.4. Distributions of the Parameter Estimates 
	3.4.1. Special Issue I: Invalid TER Estimates

	3.5. Correlation Analysis
	3.5.1. True and Estimated Parameters
	3.5.2. Correlations Among Parameter Estimates

	3.6. Parameter Recovery Performance Measures
	3.6.1. The Boundary Separation a
	3.6.2. The Starting Point (Bias) z
	3.6.3. The Encoding & Response/Non-decision Time TER
	3.6.4. The Drift Parameter ν
	3.6.5. Special Issue II: EZ and the Constant z

	3.7. Interaction Effects
	3.7.1. The Boundary Separation
	3.7.2. The Starting Value/Bias
	3.7.3. The Encoding and Response Time
	3.7.4. The Drift Parameter
	3.7.5. Special Issue III: A ν vs. a Interaction

	3.8. Run-Time

	4. Discussion
	4.1. Parameter Recovery Across Methods and Implementations
	4.2. Parameter Correlations and Interactions
	4.3. Run-Time
	4.4. Conclusion and Outlook

	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


