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Dear Editor,

Advanced systemic mastocytosis (advSM) often occurs with 
concurrent eosinophilia [1, 2]. Here, we report a case of 
advSM with associated eosinophilia and the generation of 
patient-specific induced pluripotent stem cells (iPS cells) 
as an attractive, personalized approach for compound iden-
tification to overcome unresponsiveness to anti-neoplastic 
treatment.

A 45-year-old male patient was diagnosed with mast 
cell leukemia (MCL) in February 2018 (Fig. 1A; month 
0) and referred to our center in April 2019. Bone mar-
row (BM) smears at presentation showed 80% mast cell 
infiltration. Blood counts revealed leukocytosis (white 

blood cells 19,000/µl) with eosinophilia (51.4%) and 
anemia (Hb = 8.1 g/dl) but normal platelet counts. Next 
generation sequencing analysis [3] detected KITS476I 
(c.1427G > T, 3.1%) and KRASG12V (c.35G > T, 7.3%) 
mutations. Fluorescent in situ hybridization (FISH) analy-
sis revealed a PDGFRß rearrangement (5q32) in 1% of 
the interphases, while cytogenetics showed a normal male 
karyotype (46,XY). Successive treatments with midos-
taurin, imatinib, and ripretinib from February 2018 to 
July 2019 (month 0–17) resulted only in brief periods of 
clinical improvement. From July to August 2019 (month 
17–19), he received 2 cycles of cladribine, resulting in 
partial remission according to IWG-MRT ECNM consen-
sus response criteria [4]. At this time, he was considered 
for allogeneic stem cell transplantation (allo-SCT) but 
avoided follow-up visits during the first SARS-CoV-2 
pandemic wave.

In May 2020 (month 27), he presented with progress-
ing MCL. Three cycles of cladribine failed to achieve any 
relevant clinical improvement. Lacking alternative options, 
allo-SCT from a haploidentical-related donor after condi-
tioning with fludarabine (50 mg/m2), thiotepa (5 mg/m2), 
and busulfan (0.66 mg/m2) was performed without acute 
complications. On day 50, post-allo-SCT BM biopsy showed 
78% mast cells, and the patient died within a few days due 
to multiorgan dysfunction.

In parallel to conventional therapy with the aim to 
identify compounds that would potentially be effective 
for the patient, we generated iPS cells from the patient´s 
BM mononuclear cells (Fig. 1A, B). Two iPS cell lines 
were further studied and displayed the characteristic 
pluripotent phenotype (Fig. 1C). Karyotype analysis 
showed no chromosomal abnormalities (Fig. 1D). The 
KIT S476I mutation was not detected in the iPS cell 
clones due to the low allele burden. Importantly, iPS 
cell-derived hematopoietic cells recapitulated the mast 
cell  (CD45+KIThigh) and granulocytic  (CD45+CD66b+) 
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bias of the disease (Fig.  1E–H). This allowed us to 
proceed with the screening of therapeutic compounds 
within only 2.5  months after iPS cell generation 
(Fig. 1I). Imatinib (1 µM) and midostaurin (1 µM) were 
essentially ineffective on  CD45+KIT+/high hematopoietic 
cells, in agreement with the patient’s clinical data. 
Unfortunately, the patient died before further compound 
screenings were finalized.

In summary, within 2.5  months, iPS cell-derived 
patient-specific drug response data were obtained. This 
highlights iPS cells as a powerful tool for personalized 
medicine in oncological hematology when anti-malignant 
treatment options are exhausted. In addition, we expect a 
library of patient-specific iPS cell lines with SM muta-
tions and automation of iPS cell production to further 
accelerate the identification of patient tailored therapies 
[7–9].
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Fig. 1  Advanced systemic mastocytosis (advSM) patient iPS cells 
and their differentiation for compound screening. A Overview of the 
clinical data of the advSM patient. X axis represents months after 
initial diagnosis (February 2018). The graph shows KIT allele bur-
den (black), the frequency of eosinophils (blue) and mast cells (red) 
throughout the patient’s disease history. BM biopsy was performed 
(one asterisk) and BM mononuclear cells were used for iPS cell gen-
eration, differentiation and compound testing (two asterisks) as indi-
cated. B Schematic overview of iPS cell generation. Bone marrow 
mononuclear cells (BM MNC) were cultured for 3  days with SCF, 
Flt3 ligand (Flt3L), TPO, and hyper-IL-6. Cells were then subjected 
to infection with Sendai virus (SeV) vectors with reprogramming fac-
tors and the formation of cell clusters was observed at day 6, indicat-
ing successful reprogramming. Cells were seeded on mouse embry-
onic fibroblasts (MEF) feeder and selected iPS cell colonies were 
manually picked at day 24 and further expanded for genotyping and 
establishment of stable iPS cell lines. Scale bars: 200 µm. C Repre-
sentative images of immunofluorescence staining for pluripotency 
markers OCT4, TRA-1–60, and SSEA-4. DAPI was used to stain 
nuclei. Merge represents overlay of pluripotency markers and DAPI. 
Scale bars: 50  µm. D Representative image of cytogenetic analysis 
for patient-derived iPS cell lines. Karyotyping of iPS cell lines shows 
normal male karyotype (46,XY) with no numeric or structural aberra-
tions. E Schematic representation of spin embryonic body (spin EB) 
protocol for hematopoietic differentiation. iPS cell lines were differ-
entiated towards hematopoietic progenitors using a protocol modi-
fied from Liu et al. [5]. Cell culture medium was sequentially supple-
mented with cytokines as shown. On day 14, cells were harvested for 
further analysis and expanded until day 21 in suspension culture with 
the indicated cytokine cocktail. On day 21, cells were harvested and 
analyzed. F Analysis of KIT population throughout the differentia-
tion. Representative flow cytometry plot (left) of  CD45+CD117+ and 
 CD45+KIThigh (promastocytes) populations on day 21. The frequency 
of both populations on days 14 and 21 for patient and healthy donor 
[6] iPS cell-derived cells are illustrated in graphs (right). Data dem-
onstrate the mean ± SD of the percentage of populations. Statistical 
significance using Welch’s t test was compared to the healthy donor 
iPS cell-derived cells. *:p ≤ 0.05, n = 7. G Analysis of granulocytic 
population throughout the differentiation. Representative flow cytom-
etry plot (left) of  CD45+CD117−CD66b+ populations on day 21. The 
frequency of populations on days 14 and 21 for patient and healthy 
donor iPS cell-derived cells are illustrated in graphs (right). Data 
demonstrate the mean ± SD of the percentage of populations (n = 8). 
H Representative images of myeloid cells upon differentiation. Cyto-
spin preparations of  CD45+CD117+ (left) and  CD45+CD117− (right) 
on day 21 of directed differentiation show promastocytes and eosino-
phils, respectively. Acidic blue staining was performed to stain  KIT+ 
cells and Diff-Quik staining was performed to stain  KIT− population. 
Scale bars: 30  µm. I Compound testing on iPS cell-derived hemat-
opoietic progenitors. Average drug response ± SD for  KIT+ (purple) 
and KIT.− (blue) of patient and healthy donor iPS cell-derived cells. 
Each dot represents one independent experiment. 1 µM imatinib and 
midostaurin and untreated controls (0  µM): patient lines 1 and 2, 
n = 3; healthy donor n = 2; 0.1 µM imatinib and midostaurin: patient 
lines 1 and 2, n = 2; healthy donor, n = 1; Concentrations are indicated 
in µM. Statistical significance using Welch’s t-test was compared to 
control (0 µM). *:p ≤ 0.05, **: p ≤ 0.01
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