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Abstract

The electrocardiographic PR interval reflects atrial and atrioventricular nodal conduction, 

disturbances of which increase risk of atrial fibrillation (AF). To identify underlying common 

genetic variation, we meta-analyzed genome-wide association results for PR interval from seven 

community-based studies of European-ancestry individuals in the CHARGE consortium: AGES, 

ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N=28,517). Statistically significant 

loci (P<5×10-8) were tested for association with AF (N=5,741 cases). We identified nine loci 

associated with PR interval. At chromosome 3p22.2, we observed two independent associations in 

voltage gated sodium channel genes SCN10A and SCN5A, while six loci were near cardiac 

developmental genes CAV1/CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5/TBX3. 

Another signal was at ARHGAP24, a locus without known relevance to the heart. Five of the nine 

loci, SCN5A, SCN10A, NKX2-5, CAV1/CAV2, and SOX5, were also associated with AF 

(P<0.0056). Common genetic variation, particularly in ion channel and developmental genes, 

contributes significantly to atrial and atrioventricular conduction and to AF risk.
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In myocardial excitation, the delay between the excitation of the atria and ventricles is 

determined by the sum of atrial and atrioventricular nodal conduction. This delay, measured 

in milliseconds, is reflected on the standard 12-lead electrocardiogram (ECG) by the PR 

interval or PQ interval. The PR interval has a substantial heritable component, with 

heritability estimates ranging between 30 and 50% (1,2,3,4).

Atrial fibrillation (AF) is the most common sustained arrhythmia and is independently 

associated with increased risk of stroke, heart failure, dementia, and death (5). AF 

prevalence increases markedly with age, to nearly 9% in those 80-89 years of age, and is 

estimated to triple by the year 2050. (6). Common genetic risk factors for AF (7) include 

variants on chromosome 4q25 near the PITX2 gene (8), in 16q22.3 near the ZFHX3 

(ATBF1) gene (9), in 1q21 in the KCNN3 gene (10) and the K897T variant in the KCNH2 

gene on 7q36.1 (11).

The PR interval is an intermediate phenotype for AF, as alterations in atrial action potential 

duration and in atrioventricular conduction influence both PR interval and AF risk (12). 

Longitudinal data from the Framingham Heart Study (FHS) and the Atherosclerosis Risk in 

Communities Study (ARIC) demonstrate that PR interval prolongation is a predictor of 

increased AF risk (13, 14). In addition, PR interval prolongation has been shown in FHS to 

be an independent predictor in a multifactorial risk score for AF predisposition (15).

We undertook a meta-analysis of GWAS to investigate the genetic determinants of the PR 

interval and their relationship to AF risk. Our goal was to identify genes that can provide 

insights into atrial disease and lead to novel opportunities for AF prevention and therapy.

We studied individuals of European descent from seven community based studies: the Age, 

Gene/Environment Susceptibility-Reykjavik Study (AGES) (16), ARIC (17), the 

Cardiovascular Health Study (CHS) (18), FHS (19), the Kooperative Gesundheitsforschung 

in der Region Augsburg Study (KORA) (20), the Rotterdam Study (RS) (21), and the 

SardiNIA study (3) (Table 1 and Online Methods). Phenotypic data including resting 12-

lead electrocardiography, height, weight, systolic blood pressure, and medication use were 

collected using standardized protocols in all studies. Exclusion criteria and covariates are 

described in Supplementary Table 1.

Study participants were genotyped using a variety of genome-wide SNP arrays. To facilitate 

comparison of results across studies, we imputed to the 2.5 million HapMap SNPs (22). A 

recent review supports the validity of combining results across statistical and genotyping 

platforms (23). Genotyping details, SNP quality control filters, and imputation methods for 

each study are summarized in Supplementary Table 2.

After exclusions, 28,517 individuals were available for study. The association of each SNP 

with the PR interval was adjusted for age, sex, RR interval, height, body mass index (BMI), 

systolic blood pressure, and study site in studies with multiple recruitment sites. Studies 

adjusted for or excluded individuals using drugs known to alter the PR interval including 

beta-blockers, diuretics and non-dihydropyridine calcium antagonists.
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Due to restrictions imposed by Institutional Review Boards at several of the study sites on 

the sharing of individual genetic data, it was not possible to perform analyses based on 

combined individual-level data. Therefore, we conducted inverse variance-weighted fixed-

effects meta-analysis of the beta estimates from linear regression of PR interval. The 

coefficients, generated for each SNP, estimate the difference in PR interval per additional 

copy of the minor allele, adjusted for the covariates in the model. The genome-wide 

significance threshold was 5×10-8.

To determine if there was an association between the PR-associated loci and AF risk, we 

meta-analyzed results from 4 studies of AF in subjects of European descent. The first was a 

meta-analytic study of 896 prevalent AF cases and 15,768 referents from the CHARGE 

cohorts (9). The second was a meta-analytic study of 2,517 incident AF cases and 21,337 

referents from the CHARGE cohorts. The third and fourth were independent case-control 

studies of prevalent AF: the German Competence Network on Atrial Fibrillation (AFNET, 

2,145 cases and 4,073 controls) (10); and the Cleveland Clinic AF study (CCAF, 183 cases 

and 164 controls) (24) (Table 3 and Online Methods). We performed an inverse-variance 

weighted meta-analysis of the logistic-regression results from the prevalent AF studies and 

the proportional hazards results from the incident AF study. The Bonferroni adjusted 

significance threshold was P = 0.05/9 = 0.0056.

The study was performed in accordance with the Helsinki declarations and was approved by 

the local medical ethics and institutional review boards. All participants gave signed 

informed consent to use their DNA for genetic analyses.

The distribution of results from the meta-analysis of PR GWAS is summarized in Figure 1. 

The Q-Q plot in Figure 2 shows a clear excess of extreme p-values. Overall, nine loci 

showed independent association signals with P<5×10-8. We determined the genomic control 

factor (λ) for the linear regression analysis of PR interval to be 1.076 and report overall 

analysis results unadjusted for this λ value (25). We did not observe evidence of 

heterogeneity in effect sizes for any of the nine loci (I2-statistic, all p>0.05, Table 2).

The strongest genome-wide association signal for PR interval was in chromosomal region 

3p22.2. In this region we detected two association signals, one covering SCN10A 

(rs6800541, P = 2.1×10-74) and the other SCN5A (rs11708996, P = 6.0×10-26) (Figure 2 and 

Table 2). These variants are in low LD (r2 = 0.031). In a meta-analysis of linear regression 

results from models including both SNPs, these SNPs remained independently associated 

with PR interval (rs6800541, P= 9.7×10-82; rs11708996, P = 1.1×10-33), suggesting they 

represent independent association signals.

SCN10A encodes the voltage gated sodium channel Nav1.8, essential for cold perception in 

afferent nociceptive fibers of sensory dorsal root ganglia (26). Nav1.8 is expressed in the 

peripheral sensory nervous system but has not been identified in the heart (27). In SCN10A, 

two common nonsynonymous SNPs are in high to moderate linkage disequilibrium with the 

sentinel SNP: rs6795970 (V1073A, r2=0.933) and rs12632942 (L1092P, r2=0.220) making 

both SNPs good candidates to mechanistically explain the strongest PR interval association 

identified in the human genome.
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The neighboring SCN5A gene encodes Nav1.5, the major cardiac sodium channel, with 

mutations resulting in Brugada Syndrome, long-QT Syndrome, dilated cardiomyopathy, 

cardiac conduction disease, idiopathic ventricular fibrillation and AF (28). SCN5A sentinel 

SNP rs11708996 is in weak LD with rs1805124 (H558R, r2=0.034) as well as with two non-

coding variants, rs12053903 (r2=0.030) and rs11129795 (r2=0.058), recently reported to be 

associated with QT interval (29, 30). This suggests that the PR interval and QT interval 

modifying effects are distinct.

Six PR interval associations were identified in or near genes involved in human cardiac 

development (Figure 2 and Table 2). NKX2-5 (rs251253 P= 9.5×10-13) is the homolog of the 

Drosophila tinman gene and encodes the cardiac specific homeobox transcription factor 

Nkx2.5 (Csx). Mutations can cause atrium septum defect (ASD) with conduction defects 

(OMIM #108900), tetralogy of Fallot (OMIM #187500), and high degree AV block (31). In 

the NKX2-5 gene region the association extends over 200Kb and includes three other genes 

BNIP1, C5orf41, and ATP6V0E1. The signal at the TBX5/TBX3 locus is 230kb downstream 

of the paralog TBX5 and TBX3 genes (rs1896312, P= 3.1×10-17). Both encode T-box 

containing transcription factors important for cardiac conduction system formation in the 

developing heart (32). TBX5 is required for the patterning and maturation of the murine 

atrioventricular and bundle branch conduction system (33). Deletion of TBX5 results in 

longer PR intervals in mice (34). Mutations are seen in Holt-Oram syndrome (OMIM 

#142900) with atrial and ventricular septal defects, conduction disease, and occasionally AF 

(35). TBX3 controls formation of the sinus node and imposes pacemaker function on atrial 

cells (36). Mutations cause ulnar-mammary syndrome (OMIM #181450) with limb, 

mammary, tooth, genital and cardiac abnormalities (37).

The CAV1 and CAV2 genes (rs3807989, P = 3.7×10-28) encode caveolins necessary for the 

development of caveolae involved in signal transduction (38). CAV1 is expressed in atrial 

myocytes. Mice deficient in Cav1 develop dilated cardiomyopathy and pulmonary 

hypertension (39). SOX5 (rs11047543, P = 3.3×10-13) and the nearby C12orf67 encode 

transcription factors. SOX5 knockout mice die with heart failure marked by hepatic 

congestion and peripheral edema (40). MEIS1 (rs11897119, P = 4.6×10-11) encodes a 

homeobox transcription factor implicated in cardiac, hematopoietic and neural development. 

MEIS1 deficient mice have malformed cardiac outflow tracts with overriding aorta and 

ventricular septal defect (41).

WNT11 (rs4944092, P = 3.2×10-8) encodes a signaling protein inducing cardiogenesis in 

Xenopus and in mice by noncanonical WNT signaling (42). The nearest gene to a signal on 

chromosome 4 (rs7692808, P = 6.0×10-20) is ARHGAP24, which encodes a Rho-GTPase-

activating protein and key angiogenic regulator involved in cell polarity, cell morphology, 

and cytoskeletal organisation (43), but without known relevance to the heart.

Of the nine identified PR loci, five were associated with AF risk (p<0.0056). These were at 

SCN10A (rs6800541, P=1.5 × 10-4) and SCN5A (rs11708996, P=7.0 × 10-4), as well as at 

three regions harboring developmental genes, NKX2-5 (P=2.3 × 10-3), CAV1/CAV2 (P=2.2 × 

10-5), and SOX5 (P=2.1 × 10-4). In all instances the minor alleles were associated with a 
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decrease in AF risk, irrespective of the direction of their association with PR interval (Table 

4). Protective ratios against AF were between 0.93 and 0.88 for the minor alleles.

The observation that SNPs associated with both PR interval and AF risk did not exhibit 

consistent directions of effect may initially seem counterintuitive. However, PR interval is 

an amalgamated measure of atrial and atrioventricular nodal conduction, which 

independently affect AF risk. PR intervals at both high and low extremes may be associated 

with an increase in AF risk. Indeed, existing data from humans and animal models suggest 

that the effects of genetic variants on atrial repolarization and action potential duration, and 

their relationship with atrial arrhythmias, are complex (11). In analogy to the QT interval 

duration, where both long and short QT intervals are associated with increased ventricular 

tachycardia risk, assuming a linear association model for AF with PR interval and its 

underlying genetic variants may not capture the complexity of these relations.

Our study was subject to a number of potential limitations. False positive associations from 

multiple testing is a limitation of any GWAS, so we used a well-accepted genome-wide 

association significance threshold equivalent to a Bonferroni correction for 1 million 

independent tests to reduce false positive findings (44). Population stratification is also a 

concern, so we only included study subjects of European descent. The low genomic control 

inflation factor suggested there was no strong influence of population stratification on our 

results.

Our study also did not examine patterns of haplotype association. Thus complex haplotype 

associations may not have been captured. However, genome-wide meta-analysis of 

haplotypes is currently not feasible, and, in common with other GWAS, our use of 

imputation to the HapMap leverages available linkage disequilibrium information.

The identification of SCN10A was unexpected, as Nav1.8 was previously not thought to play 

a role in cardiac electrophysiology. In addition, SCN10A was the only locus where two 

common nonsynonymous variants were in high LD with a sentinel SNP and thus are likely 

causal candidates. The second key finding was that the majority of association signals we 

identified were in cardiac developmental genes including two, NKX2-5 and TBX5, in which 

mutations are known to cause well-defined cardiac malformations involving the atrial 

septum and the atrioventricular junction. The biological mechanisms by which the identified 

variants influence PR interval and AF remain speculative, and detailed functional 

investigation will be required to determine the potential contribution of each genomic 

region.
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Figure 1. 
Manhattan Plot of genome-wide association analyses. Genome-wide association results were 

combined across all studies by inverse variance weighting. The blue line marks the threshold 

for genome-wide significance (P= 5×10-8). Coordinates are given in NCBI build 36.
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Figure 2. 
Association results at each significant locus. Associated loci are displayed in genomic order 

from left to right: MEIS1, SCN5A/SCN10A region, ARHGAP24, NKX2-5 region, CAV1/

CAV2 region, WNT11, SOX5 region and TBX5/TBX3 region. Each panel spans ±500 kb 

around each SNP and has known gene transcripts annotated at the bottom. The SNPs are 

colored according to their degree of linkage disequilibrium (r2) with the leading variant 

highlighted with a blue square and displayed by name and achieved significance level in the 

meta-analysis. The lower right panel shows the QQ plot of the meta-analysis findings with a 

genomic control factor (λ) of 1.076.
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