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Abstract: The high mortality, the presence of an initial asymptomatic stage and the fact that di-
agnosis in early stages reduces mortality justify the implementation of screening programs in the
populations at risk of lung cancer. It is imperative to develop less aggressive methods that can
complement existing diagnosis technologies. In this study, we aimed to identify lung cancer protein
biomarkers and pathways affected in sputum samples, using the recently developed diaPASEF mass
spectrometry (MS) acquisition mode. The sputum proteome of lung cancer cases and controls was
analyzed through nano-HPLC–MS using the diaPASEF mode. For functional analysis, the results
from differential expression analysis were further analyzed in the STRING platform, and feature
selection was performed using sparse partial least squares discriminant analysis (sPLS-DA). Our
results showed an activation of inflammation, with an alteration of pathways and processes related to
acute-phase, complement, and immune responses. The resulting sPLS-DA model separated between
case and control groups with high levels of sensitivity and specificity. In conclusion, we showed
how new-generation proteomics can be used to detect potential biomarkers in sputum samples, and
ultimately to discriminate patients from controls and even to help to differentiate between different
cancer subtypes.

Keywords: lung cancer; sputum; proteomics; diaPASEF; adenocarcinoma

1. Introduction

Lung cancer is the neoplasm with the highest mortality rate worldwide [1]. Smoking
is the main risk factor for lung cancer, and due to the increase in female smokers in recent
years, the incidence of the disease is expected to rise [2]. Histologically, adenocarcinoma—
which originates in the glandular cells of the lungs—is the most common form of lung
cancer, whereas squamous, large- and small-cell carcinoma rates have been decreasing [2,3].
Although great advances in diagnosis, surgical techniques and pharmacological treatment
have been introduced in recent years, the average 5-year survival rate remains at 10–15% [1],
mainly because diagnosis usually occurs at an advanced stage of the disease. The survival
rate exceeds 70% in stage I patients, although in more than 60% of cases, the diagnosis is
made at advanced stages [1]. Therefore, the delay in diagnosis and tumor extension are
responsible for the high mortality rate in lung cancer. The high mortality, the presence of
an initial asymptomatic stage, and the fact that diagnosis in early stages reduces mortality
justify the implementation of screening programs in at-risk populations.

Several procedures are being used in the screening and diagnosis of lung cancer,
mainly chest X-ray, computed tomography (CT) and positron emission tomography (PET).
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Radiographic studies have the disadvantage of a high false negative rate due to occult
or small-cell lung cancer. In fact, the National Lung Screening Trial (NLST) study has
shown a 20% reduction in mortality from lung cancer in at-risk populations when low-
dose computed tomography (LDCT) is used instead of chest radiography [4]. In the
USA, the Preventive Services Task Force revised the guidelines on lung cancer screening
in 2013 [5]. It recommends annual screening with LDCT for high-risk smokers and ex-
smokers (age 55–80 years; cumulative consumption of 30 packs/year or ex-smokers who
have quit within the last 15 years). However, LDCT screening for lung cancer has a
low specificity: in the NLST study, of the 39% of participants in whom a lung lesion
was observed by LDCT, 95% showed false-positive results [6,7]. In the management
of indeterminate pulmonary nodules discovered by CT, two strategies are used: non-
invasive techniques based on radiological follow-up, and invasive techniques based on
biopsy to obtain material for cyto-histological study. The non-invasive approach has certain
drawbacks for the patient, such as the extra radiological exposure and the anxiety generated
by the procedure. Additionally, the large additional cost of CT monitoring of the entire
at-risk population (approximately 25% of the population; active smokers or ex-smokers
at risk) has an impact on the sustainability of public health systems. On the other hand,
biopsy is a more aggressive method that also carries certain risks, such as pneumothorax,
hemorrhage and false negatives. Therefore, it is imperative to develop less aggressive
methods that can complement LDCT for the diagnosis of lung cancer so that it can be
incorporated into the screening program, improving its cost-effectiveness.

In this sense, the use of omics disciplines, mainly proteomics and metabolomics, to
identify markers is one of the most promising lines of research [8]. Thus, the use of volatile
and non-volatile compounds in exhaled air with diagnostic or prognostic capabilities has
been extensively studied [9]. Our group is also a pioneer in the study of the applicability in
lung cancer of compounds present in sweat [10,11]. Recently, using proteomics, we studied
the mini bronchoalveolar lavage fluid (mini-BALF) obtained by bronchoaspirate [12]. Mini-
BALF is a minimally invasive endoscopic technique commonly performed in the study of
lung cancer. It collects fluid from alveolar and bronchial sections and is, therefore, very
close to the nodule or tumor. The soluble proteins present in BALF are plasma-derived
or secreted from bronchial epithelium and immune cells [13]. BALF proteins have been
reported as potential biomarkers in several lung diseases, such as idiopathic pulmonary
fibrosis [14], chronic obstructive pulmonary disease (COPD) [15], and hypersensitivity
pneumonitis [16]. In our BALF study, we report a panel of potentially biomarker proteins
to differentiate between lung adenocarcinoma patients and control subjects [12].

On the other hand, sputum is a readily available fluid containing exfoliated lung
airway epithelial cells, and its cytological study can detect morphological alterations,
although with low sensitivity [17]. The use of omics technologies has started to be applied
to sputum, and the first biomarkers have been proposed. Thus, using metabolomics and
genomics techniques, it has been reported that the amount of certain lipids [18] and two
microRNAs [19] varies in the sputum of lung cancer patients compared to controls. Proteins
present in sputum have also been studied, using proteomics techniques, with the aim of
discovering possible biomarkers in COPD [20,21] and in lung cancer [22,23]. Yu et al. [22]
described a differential abundance of ENO1 in the sputum of patients with lung cancer
using ELISA, although with low sensitivity and specificity. Ali-Labib et al. [23] found an
increase in sputum protein MMP2 in lung cancer. Both studies are too small to generalize
the results, so they must be verified and validated.

Mass spectrometry (MS)-based proteomics has made a quantum leap in quality in
recent years due to a combination of advances in instrumentation, sample preparation
methodologies and computational analysis [24]. Thanks to these multiple advances, these
new technologies have come to be called next-generation proteomics, to reflect their ability
to characterize virtually complete proteomes [25]. Some of the most significant recent
advances are data-independent acquisition (DIA), ion mobility, and parallel accumulation-
serial fragmentation (PASEF) [26], which together allow the routine, reproducible and
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highly efficient quantification of proteomes at a much greater depth. DIA also allows the
rapid conversion of a small amount of tissue or body fluid into a unique, permanent digital
file representing the proteome of the sample [27]. These omics maps can then be further
analyzed, re-analyzed, compared and interrogated in silico to detect and quantify proteins
in multiple samples. DIA technology is already being applied in clinical research in cancer,
insulin resistance, cardiovascular disease and Alzheimer’s disease [28].

In this study, we aim to identify sputum proteins that can classify, within our cohort
of patients, individuals with lung cancer, and to build a classification model with potential
clinical utility based on the panel of proteins that identify lung cancer patients. From this
model, different analytical methods could be developed that can be implemented in clinical
biochemistry laboratories for the diagnosis and/or screening of at-risk subjects with a
higher probability of having lung cancer.

2. Results and Discussion

Seventy-two individuals were recruited, 47 cases and 25 controls. After studies using
the anatomical pathology department, the 47 lung cancer patients were divided into the
following subtypes: 17 adenocarcinoma, 11 squamous, 15 microcytic, and 4 carcinoma
NOS (not otherwise specified). After obtaining sputum samples from these individuals, a
proteomics study was performed for the massive quantification of the proteins detected in
these samples. This analysis was performed using nLC–MS-based shotgun proteomics with
diaPASEF acquisition. diaPASEF windows were optimized as described in the Material and
Methods section, making a total of 64 windows (Supplementary Table S1). To process the
diaPASEF runs, we used the directDIA workflow in Spectronaut software, which is based
on an initial spectrum-centric search of the DIA data, to make a sample-specific library that
was then used for a peptide-centric search of the data. Therefore, this workflow has the
advantage over a traditional DIA quantification workflow in that there is no need to build
an ad hoc library from the samples, thus avoiding the need for prior LC–MS DDA runs.

Our analysis resulted in the identification of a total of 552 protein groups, correspond-
ing to 914 proteins, and 527 protein groups quantified (Supplementary Table S2), with an
overall protein group FDR of 1%. Considering the 527 protein groups quantified, missing
data represented only 0.04% (15 data points out of a total number of measurements of
40,052), showing the high degree of completeness achieved by the workflow followed. As
an indicator of the quantitative accuracy of the workflow, the experimental CVs of the areas
quantified for each protein group were calculated for five technical replicates of one of
the samples. The median CV for all the protein groups quantified was 23.4%. This value
is higher than what is usually observed in benchmarking studies that use standards or
cell cultures as a sample source [29], but is in line with that obtained in biological fluids,
where the complexity of the sample in terms of dynamic range and composition causes the
quantification accuracy to be lower.

2.1. Proteome Changes in the Sputum Proteome of Lung Cancer Patients

The output from Spectronaut was further analyzed in the amica platform. Proteins
quantified coming from the contaminant fasta database were excluded from the DE test
(10 proteins in total). The output from amica is compiled in Supplementary Table S3. When
comparing cases vs. controls using the limma DE test, five proteins showed a significant
change in sputum levels, with an adjusted p-value below 0.05 and a fold change above 1.5 (in
either direction). These proteins were immunoglobulin heavy variable 3–49 (IGHV3-49), C-
reactive protein (CRP) and serpin family A member 1 (SERPINA1), which were upregulated
in the lung cancer group, and protein kinase cAMP-dependent type I regulatory subunit
Alpha (PRKAR1A) and lymphocyte specific protein 1 (LSP1), which were downregulated
(Figure 1a).
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ate their elimination by interacting with humoral and cellular effectors in the blood. Con-
sequently, the level of this protein in plasma increases greatly during acute phase re-
sponse to tissue injury, infection, or other inflammatory stimuli [30]. For instance, the el-
evated expression of CRP is associated with severe acute respiratory syndrome SARS-
CoV-2 pneumonia [31]. Additionally, it has recently shown to be associated with chronic 
inflammations [32]. In our findings, the increase in their levels (lung cancer to control fold 
change 2.9) could, therefore, be explained as a consequence of inflammation and/or lung 
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Figure 1. Differential abundance of selected proteins in the sputum proteomes of cases vs. control
groups. (a) Normalized abundance levels of IGHV3−49, SERPINA1, LSP1, PRKAR1A, CRP, and
ENO1. (b) Heatmap of the five proteins showing differential abundance in sputum. IGHV3−49,
immunoglobulin heavy variable 3−49; SERPINA1, serpin family A member 1; LSP1, lymphocyte
specific protein 1; PRKAR1A, protein kinase cAMP-dependent type I regulatory subunit Alpha; CRP,
C−reactive protein and protein kinase; ENO1, enolase 1.

Interestingly, four of these five proteins are related to inflammatory and immune pro-
cesses. CRP is engaged in complement activation and amplification. It has defense-related
functions based on its ability to recognize pathogens and damaged cells and initiate their
elimination by interacting with humoral and cellular effectors in the blood. Consequently,
the level of this protein in plasma increases greatly during acute phase response to tissue
injury, infection, or other inflammatory stimuli [30]. For instance, the elevated expression
of CRP is associated with severe acute respiratory syndrome SARS-CoV-2 pneumonia [31].
Additionally, it has recently shown to be associated with chronic inflammations [32]. In our
findings, the increase in their levels (lung cancer to control fold change 2.9) could, therefore,
be explained as a consequence of inflammation and/or lung damage caused by lung cancer.
SERPINA1 encodes alpha-1-antitrypsin (AAT), which is a serine protease whose targets
include elastase, plasmin, thrombin, and plasminogen activator. As CRP, AAT is an acute
phase protein. Defects in this protein are associated with chronic obstructive pulmonary
disease (COPD) and emphysema, and it has been described as playing an active role in the
pathogenesis of cancer (e.g., migration and apoptosis resistance) and the related inflamma-
tory reaction [33]. In this sense, higher serum AAT levels have been associated with worse
prognosis in lung cancer [34], and in our study, we found it to be more abundant in sputum
in the cases group (fold change 3.0), which reinforces the potential for its use as a marker in
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lung cancer. However, the mechanisms behind the regulation of AAT expression in lung
cancer are still unclear, so further research is needed to determine whether it can be used
as a diagnostic marker. IGHV3-49 is a region of the variable domain of Ig heavy chains
that participate in antigen recognition. We found it in sputum with levels 2.2-times higher
in lung cancer than in the control group. This could be an indication that the immune
response, phagocytosis, and the complement classical pathway are being activated [35].

LSP1 is an intracellular F-actin binding protein. This protein is expressed in lympho-
cytes, neutrophils, macrophages, and endothelium and may regulate neutrophil activation.
Although neutrophils have been described as crucial mediators in the development of some
tumors, the complete role of neutrophils in cancer biology is still contradictory [36]. On the
one hand, its pro-tumorigenic action has been demonstrated by promoting an inflammatory
environment that enhances tumor growth. On the other hand, several studies have demon-
strated its cytotoxic activity against different types of tumors, even reporting complete
tumor regression after neutrophil migration and activation in rats [37]. In contrast, our
results, lower LSP1 levels in the lung cancer group (fold change 0.47), could indicate a
decrease in neutrophil activation rather than an increase in either pro- or anti-inflammatory
activity. PRKAR1A is a regulatory subunit of protein kinase A, which is involved in cAMP
signaling in cells by the phosphorylation of different target proteins. It has been described
as a tumor-suppressor gene, showing inactivation and decreased expression in thyroid
cancer [38] and other endocrine and adrenocortical tumors [39]. For the first time, in this
study, it was found to be decreased in the sputum of lung cancer patients (fold change 0.57).
Although strongly significant in the limma test, the levels of these proteins alone do not
allow a clear separation of the samples of the two groups, cases vs. controls, as seen in the
heatmap clustering (Figure 1b).

In previous studies in sputum, enolase 1 (ENO1) and matrix metalloproteinase
2 (MMP2) proteins have been reported as possible lung cancer markers. Yu et al. [21]
found higher levels of ENO1 in the sputum of patients compared to cancer-free individuals,
as measured using Western blotting. They evaluated diagnostic performance with ELISA
in a set of 35 cases and 36 controls, reporting a sensitivity of 58% for a specificity of 80%,
with an AUC value to separate the two groups of 0.71. In our study, ENO1 was one of the
proteins quantified, but did not result in a significant change in abundance (fold change
0.88, p-value 0.42) (Figure 1a). Ali-Labib et al. [23], using a commercial ELISA kit, described
an increase in serum and sputum levels of MMP2 in lung cancer (n = 32) in comparison
with the benign pulmonary diseases group (n = 20) and a healthy group (n = 38). They
reported high sensitivity and specificity values. In our study, we were unable to quantify
or detect MMP2 in our sputum samples. We were able to quantify other matrix metal-
loproteinases, which resulted in no statistically significant change in abundance: MMP8
(fold change 0.67, p-value 0.12), MMP9 (fold change 0.64, p-value 0.11), and MMP10 (fold
change 0.91, p-value 0.70).

2.2. Functional Analysis

As mentioned above, four of these five proteins are related to inflammatory and
immune processes. However, to explore the changes at the biological level overall, we
performed functional analysis of the quantitative results with STRING and iPathwayGuide
platforms, including pathway analysis, gene-ontology analysis and network analysis. We
used as input all the protein groups quantified in our analysis, selecting a less stringent
threshold, fold change above 1.5 (in either direction) and p-value < 0.01. This resulted in
33 DE genes, 6% (thus between the 5% and 10% recommended by iPathwayGuide) of the
number of genes in the reference set (considering all the proteins measured as background).
In our dataset, this corresponded to an FDR of 0.15, i.e., 15% of genes resulting in DE simply
by chance, although we are more confident that we did not exclude proteins presenting real
sputum abundance changes. When filtering with these thresholds, 16 proteins were more
abundant in lung cancer patients, and 17 proteins in non-lung cancer controls (the five
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proteins listed above in 2.1 showed the most significant/extreme changes) (Supplementary
Table S3).

The results of the functional analysis in STRING, for different categories (GO Process,
Go Component, STRING Clusters, KEGG, WikiPathways and UniProtKeywords), are
shown in Figure 2a and Supplementary Table S4. We found enrichment of terms (FDR
stringency high, 0.01) related to acute-phase response, inflammatory response, complement
and coagulation cascades. Figure 2b shows the interaction network for the selected proteins
(fold change > 1.5 and p-value < 0.01). The over-representation of proteins related to
immune response processes could be observed, as well as five proteins of the complement
and coagulation cascades pathway occupying a central position in terms of evidence
of interactions.
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enriched terms (FDR < 0.01) for different categories (GO Process, Go Component, STRING clusters,
KEGG, WikiPathways and UniProt Keywords). (b) STRING interaction network for the mapped
differentially abundance proteins. Nodes represent proteins, edges represent protein–protein interac-
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complement and coagulation cascades (KEGG pathway hsa04610) in red; immune response (GO
Biological Process GO:0006955) in green.
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iPathwayGuide implements a different approach, based on systems biology, to identify
significantly impacted pathways. In this case, in addition to the number of DE genes
(i.e., overrepresentation analysis), it takes into account other key features, such as the
magnitude of the change in the level of each protein and the topological information
(position, direction, role and relationships of each gene/protein in a pathway) [40]. With
this tool, three pathways were observed to be significantly affected at the pathway level
(Supplementary Table S5): complement and coagulation cascades (KEGG: 04610, p-value
0.006), coronavirus disease—COVID-19 (KEGG: 05171, p-value 0.017), and vascular smooth
muscle contraction (KEGG: 04270, p-value 0.020). The complement system is a proteolytic
cascade in blood plasma and a mediator of innate immunity through the recruitment
of inflammatory and immunocompetent cells. The complement upregulation observed
in the sputum samples of the lung cancer patient group may confirm a potential link
with inflammatory processes and also in cell lysis through the membrane attack complex
(Figure 3). This complex is formed by the proteins C5, C6, C7, C8A-B-G and C9, and in
our data, in addition to significantly overexpressed C8G and C9, we found C5, C6, C7 and
C8B with fold changes showing overexpression in the lung cancer group, although with
non-significant p-values. The observed effect on the complement and coagulation cascades
is in agreement with what we found in our previous study in BALF [12], where we also
found a significant impact on this pathway, with seven proteins affected, namely, FG, A2M,
PLG, HF1, C5, CQ and C4BP, in higher abundance in BALF in the group of lung cancer
patients. In this study, we also found that A2M and PLG had a higher abundance in lung
cancer, but this time in sputum. Therefore, the impairment of this pathway could be used
as an indicator of lung cancer in both BALF and sputum, which warrants a more detailed
and targeted study.
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In the coronavirus disease–COVID-19 pathway (p-value 0.017), two proteins are overex-
pressed, C8G and C9. Although this was found to be significant in our analysis, the impact
is actually on the complement cascade area of this pathway (Supplementary Figure S1),
again evidencing complement activation and inflammation in the group of lung cancer
patients. Indeed, the diagram of this pathway shows a possible perturbation of macrophage
activation and cytokine release (starting with IL-6), and cell damage through the activation
of the membrane attack complex, which again leads to the enhancement of the inflamma-
tory response. In the same vein, IL6 activation would be an upstream regulator of three
proteins found to be overexpressed in our data and related to complement cascade and
inflammation (A2M, SERPINA1 and CRP) (Supplementary Figure S2). IL6 is produced at
sites of acute and chronic inflammation, where it is secreted into the serum and induces a
transcriptional inflammatory response, although we have no IL6 data in the sputum dataset
to confirm that this mechanism occurs in lung cancer patients.

Regarding the vascular smooth muscle contraction pathway, we found a decrease
in lung cancer patients of calmodulin (calmodulin 1, CALM1) and myosin (myosin light
chain 6, MYL6, and myosin heavy chain 9, MYH9) subunits (Supplementary Figure S3).
Calmodulin is involved in phosphorylation-based signaling pathways, and has been de-
scribed as playing a role in tumor cell migration, invasiveness and metastasis [41]. More-
over, in the complement and coagulation cascades pathway (Figure 3), a negative perturba-
tion of Proteinase-activated receptor 1 (PAR1) was observed, as a result of the inhibition of
vitamin K-dependent protein C (PC). This could be a possible link between the complement
and coagulation cascades and the impairment observed in the vascular smooth muscle
contraction pathway. Thus, a strong increase in A1AT and A2M expression, observed in
our data, would inhibit PC, which exerts a protective effect on the endothelial cell barrier
function [42]. Lowering PC would decrease PAR1 activation, which is key in platelet activa-
tion [43]. By negatively regulating platelet activation, it would affect the anti-inflammatory
response, vasodilation, and endothelial permeability.

2.3. Feature Selection

When selecting informative variables (e.g., feature selection), i.e., selecting a panel of
proteins from the dataset that allows us to discriminate/classify between different groups,
and/or predict the outcome status of a patient, it is important to detect correlated variables,
in order to reduce the high dimensionality inherent to high-throughput biological data.
Although statistical tests (e.g., t-test and limma) are commonly used to identify differentially
expressed genes or proteins, they are often sensitive to highly correlated variables, which
might be neglected in the variable selection process. Additionally, machine learning
algorithms (e.g., support vector machines and random forest) are also frequently applied
for predictive purposes. A third option, especially useful in the case of multiple highly
correlated variables, is to use multivariate exploratory approaches, such as partial least
squares regression (PLS), linear discriminant analysis (LDA), or the more recent sSPLS-DA.
PLS-DA is a linear, multivariate model which seeks components that best separate the
sample groups, while sSPLS-DA performs variable selection and classification in a single
step. It has been shown to work well for informative variable selection, classification
and prediction in a multi-class classification scheme [44]. Here, we use sPLS-DA in the R
package mixOmics, specifically designed for the analysis of large biological datasets.

First, we created a model for the lung cancer case vs. control comparison. The
R script used is available in the Supplementary Materials (Supplementary Script S1).
Principal component analysis (PCA) was first applied to assess the potential improvement
that sPLS-DA could enable. PCA showed no separation between the case and control
samples (Figure 4a). Then, we built the sPLS-DA model. The number of components and
features per component to use in the sPLS-DA model was tuned by mixOmics using a
ten-fold, cross-validation procedure repeated 50 times, following the mixOmics guidelines.
Performance was measured via the Balanced Error Rate (BER). The BER is appropriate
in the case of an unbalanced number of samples per class as it calculates the average
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proportion of incorrectly classified samples in each class, weighted by the number of
samples in each class. Therefore, the BER is less biased towards majority classes during the
performance assessment [45]. The centroids distance metric was used, since it provided the
best classification accuracy. The tuning process resulted in a model with two components
and a molecular profile comprising 30 and 20 features selected for the first two components
(Supplementary Table S6). Figure 4b shows the sample plot for those first two components,
depicting the prediction background generated by the samples. Although there is some
overlap, it can be seen that the model is able to separate the two groups of individuals with
good accuracy, outperforming PCA. Furthermore, ROC analysis (Figure 4c) suggested that
the optimized sPLS-DA model can discriminate lung cancer patients from controls with a
high rate of true positives and a low rate of false positives (AUC of 0.97).
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A new sPLS-DA model was created to differentiate patients from the three main cancer
groups, adenocarcinoma, squamous and microcytic, using a subset of the respective sam-
ples. In this case, when compared to the PCA (Figure 4d), an sPLS-DA model including the
first two components improved the separation of the microcytic cases, although squamous
and adenocarcinoma samples still overlapped (Figure 4e). The ROC curves and AUC of
the final sPLS-DA model were also calculated using one-vs-all comparisons (Figure 4f).
The model including the first two components led to a remarkable classification accuracy
for the microcytic cancer patients (AUC of 0.99), while the model was less well suited to
distinguish subjects in the epidermoid and adenocarcinoma groups (AUC of 0.78 for both).

2.4. Targeted Analysis of SERPINA1

Using Skyline software, we developed a targeted assay for six peptides from the
protein SERPINA1, which we had previously found to be upregulated in the sputum of
the cancer group and which showed the higher fold change of the significant reported
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proteins (lung cancer to control fold change 3.0). We used also Skyline to load and process
the targeted runs from 24 samples, and to obtain the quantitative info for the transitions
monitored (the six top transitions per targeted peptide). The final list with the peptides,
precursors and transitions used for protein quantification is shown in Supplementary
Table S7. Chromatograms were manually curated for all precursors in every sample.
Retention times and relative intensities of the transitions within a precursor were verified
for each precursor. Variability for retention times was low (ranging from 0.62 to 2.14%
coefficient of variation) and the transition relative intensities were homogenous, showing
the reproducibility of the assay. This exploratory data analysis in Skyline is shown in
Supplementary Figure S4.

The adjusted (Benjamini–Hochberg) p-values for the group comparison (cancer vs.
controls) verified that the protein and all the six peptides were significantly more abundant
in the cancer than in the control group. Supplementary Table S8 shows the fold changes
and adjusted p-values as reported by Skyline. The targeted analysis for SERPINA1 showed
a fold change of 4.53 (lung cancer to control), and an adjusted p-value of 0.0017. This fold
change is even higher than that previously reported in the discovery analysis (fold change
of 3.0).

3. Material and Methods

The proteomics workflow followed is summarized in Figure 5 and detailed in the
following sections.
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3.1. Patients and Sputum Sample Collection

The individuals included in the study were recruited from the patients of the Pneu-
mology Department of the Reina Sofía University Hospital (Córdoba, Spain). For the group
of patients with lung cancer, patients diagnosed by PET or PET-CT and who were less
than 75 years old were included. The lung cancer diagnosis included clinical tests based
on fine needle biopsy, bronchoscopy, video-assisted thoracoscopy and subsequent cyto-
histology confirmation. The anatomical pathology service performed the cytohistological
tests to determine the histological type. The present accepted guidelines for pathological
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and staging diagnosis of lung cancer were used [46]. For the control group of non-lung
cancer patients, we included individuals aged 55–75 years; smokers or ex-smokers within
the last 15 years with a cumulative consumption of >30 packs/year; and the absence of
symptoms suggestive of malignancy, including hemoptotic expectoration, change in cough
characteristics or constitutional syndrome, as well as the absence of findings suggestive of
malignancy upon chest CT. Subjects who were older than 75 years and those in whom it
was not possible to establish the diagnosis of malignancy or coexistence of extrapulmonary
neoplasia in the last 5 years were excluded. Patients with significant comorbidity, such as
severe organ disease with a negative impact on prognosis or preventing the application of
the study protocol, were also excluded. All the patients provided informed consent. The
study was performed according to the principles of the Declaration of Helsinki, aligning
with the European Union regulation 2016/679, and was approved by the Research Ethics
Committee of Cadiz.

After washing with physiological saline aerosol and gargling with water, coughing
was induced in each patient to produce sputum, which was collected in a container and
chilled. To 2 mL of sputum, 8 mL of phosphate-buffered saline, 200 µL of protease inhibitor
cocktail, and 200 µL of 100 mM DTT were added. After incubation at 37 ◦C for 10 min,
samples were shaken for 10 min, and centrifuged for 10 min to separate the cell debris. The
supernatant was collected and filtered over 1.5 mL tubes, centrifuged for 10 min, and the
supernatant was aliquoted and stored at −80 ◦C until processing and analysis.

3.2. Sample Preparation

One aliquot of each sample was subjected to protein precipitation with cold acetone.
Protein pellets were resuspended in 50 µL of 0.2% RapiGest (Waters, Milford, MA, USA) in
50 mM ammonium bicarbonate. The protein content was measured in a Qubit fluorimeter
(Thermo Fisher Scientific, Waltham, MA, USA) using the Qubit Protein Assay kit (Thermo
Fisher Scientific), and 40 µg of each sample was digested with trypsin as in Ortea et al.,
2018 [47]. In brief, after incubation with 5 mM DTT (30 min, 60 ◦C) and iodoacetamide
(30 min, room temperature), protein samples were digested in two steps (1:40 trypsin-to-
protein ratio, 2 h plus 15 h incubation at 37 ◦C). RapiGest was precipitated by incubation
with 0.5% TFA (1 h, 37 ◦C) and centrifugation. Peptide digests were then diluted with 0.2%
TFA to 100 ng/µL of equivalent protein content.

3.3. Nano-Liquid Chromatography—Mass Spectrometry (nLC-MS) Acquisition

Samples (2 µL, 200 ng protein digest on column) were analyzed on a timsTOF Pro
(Bruker, Billerica, MA, USA) Q-TOF mass spectrometer coupled to a nanoElute (Bruker) liq-
uid chromatography (LC) system. A C18 Aurora Series UHPLC emitter column
(250 mm × 75 µm id, 1.6 µm, 120 Å pore size) (IonOpticks, Fitzroy, Australia) was used
for all the analyses, using a trap-elute configuration with an Acclaim PepMap C18 (5 mm,
300 µm id, 5 µm particle diameter, 100 Å pore size) trap cartridge (Thermo Fisher Scientific).
The gradient and LC parameters were the same for all the analyses: peptides were eluted
at a 45 min gradient from 5 to 30% B (from 5 to 25% B in 40 min; from 25 to 30% B in
5 min), plus 5 min to increase B from 30% to 80% and 7 min of column cleaning (80%
B), with A denoting water and B denoting ACN, both with 0.1% FA. The chromatogra-
phy flow rate was 300 nL/min, and the column oven was set to 50 ◦C. As the peptides
eluted from the chromatography to the mass spectrometer, they were ionized in a Captive
nano-electrospray source (Bruker) at 1500 V.

Samples were run using a diaPASEF acquisition method consisting of 12 cycles includ-
ing a total of 32 mass width windows (27.2 Da width, from 380 to 1250 Da) with 2 mobility
windows each, making a total of 64 windows covering the ion mobility range (1/K0) from
0.61 to 1.50 V s/cm2. These windows were optimized by applying the Window Editor
utility from the instrument control software (timsControl, Bruker) using a DDA-PASEF run
previously acquired from a pool of the analyzed samples. In brief, this utility loaded the
run and represented its ion density in the m/z and ion mobility ranges (i.e., the mobility
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heatmap), so the diaPASEF window coverage could be adjusted to ensure optimum cover-
age, and the window settings were calculated. The collision energy was programmed as a
function of ion mobility, following a straight line from 20 eV for 1/K0 of 0.6 V s/cm2 to
59 eV for 1/K0 of 1.6 V s/cm2. The TIMS elution voltage was linearly calibrated to obtain
1/K0 ratios using three ions from the ESI-L Tuning Mix (Agilent, Santa Clara, CA, USA)
(m/z 622, 922, 1222) before each run, by applying the ‘Automatic calibration’ utility in the
control software (timsControl, Bruker).

3.4. Data Analysis

The directDIA workflow in Spectronaut version 15.5 (Biognosys, Schlieren, Switzer-
land) was used to process the diaPASEF LC–MS runs with no need to build a previous
library from DDA runs. In brief, this processing consisted of two sequential steps, a
database search using Pulsar Spectronaut’s search engine, and DIA analysis. A SwissProt
human protein reference database (UP000005640 isoform fasta database, downloaded on
8 July 2021, containing 42,351 sequences) was used for the search in Pulsar, together with
a fasta file containing 112 common contaminant sequences. The default factory settings
were used for the Pulsar search and library generation, including Trypsin/P as the enzyme;
specific digest type; a 7–52 peptide length range; up to two missed cleavages allowed; the
oxidation of Met and acetylation of Protein N-t as variable modifications; carbamidomethyl
of Cys as fixed modification, and 1% FDR for PSM, peptide and protein group identifica-
tion. The generated spectral library was then used by Spectronaut for DIA analysis, that
is, extracting the quantitative information from the diaPASEF runs. The default factory
settings were used, except for the calibration MS1 and MS2 mass tolerances, which were
set to 20 ppm; proteotypicity filter was set to ‘only protein group specific’. An automatic
cross-run normalization strategy (e.g., local normalization) was followed, and the MaxLFQ
method was used for protein quantification. The quantity was determined at the MS2 level
using the area of extracted chromatogram traces.

For differential expression (DE) analysis, the output from Spectronaut was further
analyzed in the amica platform [48]. LFQ intensities of quantified proteins were log2-
transformed and quantile normalized, and missing values were imputed from a normal
distribution downshifted 1.8 standard deviations from the mean with a width of 0.3 stan-
dard deviations (default parameters). Differential expression analysis was performed using
limma [49]. For functional analysis, the result from differential expression analysis was
further analyzed in STRING version 11.5 (https://string-db.org/ (accessed on 15 April
2022)) [50] and iPathwayGuide version 2201 (Advaita Corporation, Plymouth, MI, USA).
STRING was used for interaction network analysis and for analyzing the functional enrich-
ments in the network. iPathwayGuide was used for analyzing the significantly impacted
pathways, in the context of pathways obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (Release 100.0+/11-12, 21 November). Feature selection was
performed by sparse partial least squares discriminant analysis (sPLS-DA) using mixOmics
R package version 6.1.1 [45].

3.5. Targeted Analysis of SERPINA1

For verification of the followed discovery approach and results, Skyline (version
21.2.0.568) [51] was used to build up a targeted method for monitoring one of the proteins
previously found as changing in abundance (protein SERPINA1). Only precursor m/z’s
from tryptic theoretical peptides were included in the assay. Peptide settings excluded
peptides with missed cleavages, peptides below 7 or above 26 amino acid length, and
peptides containing methionine or cysteine. Initial set of transitions were filtered from
ion 3 to last ion, y and b ion types, and precursor charge 2+. A total of 24 samples were
run for performing these targeted analyses, using the same high-resolution Q-TOF and LC
gradient (45 min) as specified above. MS1 filtering was set to 3 centroided TOF MS peaks,
with mass accuracy of 20 ppm, and instrument minimum and maximum m/z was set to
50 and 1800, respectively.

https://string-db.org/
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Subsequently, the LC-MS runs for the 24 samples for targeting protein SERPINA1,
monitoring six peptides, were loaded into Skyline, and the area under the curve for the
selected transitions from each peptide was calculated. For those precursors with more than
six transitions, only the six highest intensity transitions were selected for quantification.
Measures were normalized to the total ion current, and the sum of transition areas was
selected as the summary method. Skyline was also used for performing the statistical
group comparison, calculating fold changes and performing a t-test at both protein and
peptide levels, and adjusting p-values for multiple hypothesis testing with the Benjamini–
Hochberg correction.

4. Conclusions

In the present study, we showed how LC–MS working in the recently developed dia-
PASEF mode can be used to detect protein changes that may represent potential biomarkers
in sputum samples and, ultimately, discriminate patients from controls and even help to
differentiate between different cancer subtypes. We detected in the sputum proteome of
the lung cancer group an activation of inflammation, observed from the alteration of path-
ways and processes related to acute-phase, complement cascade, and immune response.
Furthermore, by applying feature selection, we demonstrated how a correct selection of
components and features in an sPLS-DA model allows us to separate the samples studied
according to the group of origin with high levels of sensitivity and specificity.

A number of potential markers with the ability to differentiate between lung cancer
patients and healthy controls are, therefore, proposed, which, after validation in further
studies, could be incorporated into the diagnostic algorithm in the at-risk population.
Although the panel of potential biomarkers presented needs further validation, the prioriti-
zation that the feature selection process has provided could help speed up the biomarker
development process by focusing on which proteins to target in a larger number of individu-
als. In addition, obtaining digital proteome maps of sputum samples, obtained through MS
with diaPASEF acquisition, and comparing them with chemometric tools, such as sPLS-DA,
constitutes a useful approach in the classification of individuals. Implementing a tool of low
invasiveness that informs us about which patients have a higher probability of developing
lung cancer, and can, therefore, be incorporated into screening and/or diagnostic programs,
represents an advance applicable to the healthcare system and with obvious repercussions
for current clinical practice guidelines.
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