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Abstract
Enhancers have been described to evolve by permutation without changing function. This

has posed the problem of how to predict enhancer elements that are hidden from align-

ment-based approaches due to the loss of co-linearity. Alignment-free algorithms have

been proposed as one possible solution. However, this approach is hampered by several

problems inherent to its underlying working principle. Here we present a new approach,

which combines the power of alignment and alignment-free techniques into one algorithm. It

allows the prediction of enhancers based on the query and target sequence only, no matter

whether the regulatory logic is co-linear or reshuffled. To test our novel approach, we

employ it for the prediction of enhancers across the evolutionary distance of ~450Myr

between human and medaka. We demonstrate its efficacy by subsequent in vivo validation

resulting in 82% (9/11) of the predicted medaka regions showing reporter activity. These

include five candidates with partially co-linear and four with reshuffled motif patterns. Orthol-

ogy in flanking genes and conservation of the detected co-linear motifs indicates that those

candidates are likely functionally equivalent enhancers. In sum, our results demonstrate

that the proposed principle successfully predicts mutated as well as permuted enhancer

regions at an encouragingly high rate.

Introduction
To date, two main, more or less diametrically opposed structural models of enhancers exist.
The first model describes so-called enhanceosomes, regions of densely clustered transcription
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factor binding sites (TFBSs) that require a tightly coordinated series of binding events of par-
tially interacting transcription factors (TFs) [1]. Due to this rigid structure, such cis-regulatory
elements (CREs) tolerate only limited sequence changes without affecting their functionality.
Hence, this class of enhancers is likely to be detected by alignment-based sequence comparison
methods and further by methods assessing evolutionary constraint. Indeed, methods looking
for conserved non-coding sequences (CNS), often defined as regions of>70% sequence con-
servation across>100nt [2–5], have been applied for the task of enhancer prediction and in
many cases yielded elements capable of driving reporter gene expression in various spatiotem-
poral patterns in a variety of organisms. Nobrega et al. for example, scanned the human gene
desert around the DACH1 gene for regions conserved between human, mouse, frog, and zebra-
fish and found several elements recapitulating parts of the known DACH1 expression pattern
that are likely to be functional [4]. Pennacchio et al. expanded this approach on a genome-wide
scale following two different strategies [2]. They searched for elements which either are con-
served (70% identity,>100nt) across>450Myr of independent evolution between human and
fugu, or conserved between human, mouse, and rat. Due to the much smaller phylogenetic dis-
tance between the species in the latter approach, the authors employed a more stringent crite-
rion: 100% sequence identity over at least 200nt in all three species (“ultraconserved elements”
(UCEs)) [6]. Both approaches identified CREs at rates between 29% and 61%, providing fur-
ther support for the applicability of alignment-based strategies for enhancer prediction.
Although the significance of ultraconservation has been questioned since then [7,8], there is no
doubt that sequence conservation and evolutionary constraint are very useful tools for the
genome-wide prediction of regulatory elements. To date, thousands or CREs have been identi-
fied this way, most of them located next to transcription factor or developmental genes (“trans-
dev genes” [5]).

However, almost 30 years ago [9] the first hints were provided that evolution and diversifi-
cation of species might occur by changes on the regulatory rather than on the coding level, and
today an increasing body of evidence supports this hypothesis [9–15]. Hence, another class of
regulatory elements, with a higher level of sequence divergence, must play an important role in
the evolution of expression of these genes. Possible candidates are enhancers following the sec-
ond main structural model of CREs: the “billboard model”. These regions consist of flexible
arrangements of TFBS that, upon binding of the corresponding TFs, start to aggregate and
form the final active enhancer complex [16–18]. Contrary to the rather rigid structure of
enhanceosomes, such arrangements are more easily modified without leading to a complete
loss of function–a property that would allow regulators of crucial developmental genes to
evolve. Indeed, there is strong evidence that billboard enhancers are able to keep most of their
activity even in case of large structural rearrangements and strong binding site turnover
[19,20], allowing a gradual adaptation to a new/extended role without critically affecting the
organism as a whole. However, over time this inherently flexible nature is likely to render them
invisible for classical alignment-based approaches and hence prevents their detection. This
property can therefore be described as the intrinsic technical challenge of studying enhancer
evolution.

One early approach to tackle this problem was to focus on the functional elements of CREs:
the TFBS. Regulatory regions that retain their function even after structural rearrangements
sufficient to hide them from sequence alignments still need to provide interaction sites for the
TFs involved in activation of the enhancer. The same holds true for regions with modified
activity. Although the profile of involved TFs might change in this scenario, it is unlikely that
all sites for factors used previously are lost. Hence, looking for clusters of TFBS in a given
genome has the potential to reveal otherwise covert elements and several studies have used this
approach for enhancer prediction [21–24]. Some of the more sophisticated approaches among
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them use a combination of TFBS prediction and alignment algorithms to solve this problem.
For instance, He et al. developed a method that uses a probabilistic model of TFBS evolution to
align two regions in different species based on the predicted positions of corresponding binding
sites and applied this technique for the classification of known regulatory regions in Drosophila
melanogaster [25]. In a similar way, Taher et al. aligned putative regulatory regions to a known
enhancer based on predicted TFBS–profiles [26]. This allowed them to detect enhancers in
likely orthologous regions across the evolutionary distance between human and zebrafish.
While successful, both methods rely on prior knowledge of TFBSs for enhancer prediction and
hence cannot be applied in contexts where this information is not available. Sosinsky et al.
were able to overcome this necessity by developing a method that infers putative TFBS from
multiple sequence alignments of closely related species [27]. Applied on a set of known regula-
tory regions in D.melanogaster, they successfully predicted the putative corresponding enhanc-
ers in the vicinity of orthologous genes in multiple fly species. Unfortunately, this method
depends on the availability of identifiable orthologous regions in multiple closely related spe-
cies and therefore cannot be applied for genome-wide enhancer prediction, especially if the tar-
get is a single distantly related species.

Another attempt to handle the flexible nature of enhancers employs word profiles. This
class of algorithms is usually referred to as “alignment-free”, although TFBS clustering methods
in principle could also be summarized under that term. For simplicity, we will restrict the use
of this term to methods using the working mechanism described in the following section. The
common principle of these techniques is the base-wise dissection of two sequences into words
of a defined size k (also called “k-mers”), generating a word profile for each. This profile is then
used for sequence comparison. One of the first applications of this methodology on a biological
question was the search for similar candidates for a set of given genes in all available bacterial
GenBank sequences [28]. Later approaches successfully used the comparison of word profiles
for the reconstruction of phylogenetic trees based on protein sequences [29]. For a review of
the variety of alignment-free techniques and their use for sequence comparison see [30]. The
main difference between individual alignment-free methods is the metric used to compare the
generated profiles. While the aforementioned methods used weighted word counts or the angle
between two given word vectors for comparison, subsequent methods focused on expected
word frequencies for similarity assessment [31–33]. Each of these methods has since then been
applied to enhancer prediction in insects and vertebrates and successfully identified known or
novel regulatory regions [34,35]. However, in most of these studies [31,32,35] an initial training
set of enhancers of similar regulatory activity was necessary to extract the likely key features
needed for enhancer prediction. Furthermore, in only one study [35] a true genome-wide scan
for regulatory elements was performed, in insects in this case.

Realizing that alignment-free-based enhancer prediction so far has mainly been performed
in flies, we wondered what hinders their application on a genome-wide scale in the more com-
plex vertebrate genomes. We further sought to understand why most methods so far depend
on various types of additional information, especially when trying to predict enhancers across
large evolutionary distances, for instance between human and fish. We therefore analysed the
alignment-free principle for possible limitations in the concept itself in order to develop com-
pensation strategies that do not require additional information.

Here we propose a new principle of sequence similarity assessment that combines the ability
of alignment algorithms to extract the maximum signal contained in two sequences with the
ability of alignment-free techniques to cope with permutation. This principle was implemented
in an experimental algorithm and subsequently applied for enhancer prediction on a genome-
wide scale in the teleost medaka (Oryzias latipes). Using known and previously validated
human enhancers as template, we found and tested 11 medaka regions of which nine show
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clear enhancer activity. Interestingly, subsequent analysis of the structural organisation of the
validated predictions revealed that co-linear motif configurations as well as permuted arrange-
ments are almost equally likely to show enhancer activity.

Results

A composite principle for enhancer prediction
Alignment-free techniques have been suggested and applied for enhancer prediction due to
their theoretical ability to deal with permutation [30]. In practice, however, this ability is ham-
pered already by the initial generation of the word profile. Extracting k-mers of a fixed size in
an overlapping fashion greatly simplifies TFBSs as unambiguous sequences of equal length
independent of the TF binding to it. It further allows individual words to change independently
although every position in a word is overlapped by a series of others neighbouring it (see S1
File and S1 Fig). As previously mentioned, many methods published so far make use of addi-
tional information besides the given enhancer sequence in order to compensate the resulting
problems [25,26] [27,32]. Here, we present a different approach with the aim of using exclu-
sively the sequence of a known enhancer and a target genome. For this, we adapted a seeding
and match/mismatch extension step for profile generation that first looks for short, perfect
matching k-mers between two given sequences. Applying a mismatch tolerant scoring scheme,
similar to those used by many local aligners, these "seeds" are then extended. By doing so, we
can handle variable positions within putative TFBSs that otherwise would have led to different
k-mers. At the same time, it allows us to reduce the size of the final profile by focusing only on
extended seeds above a set threshold score. As regions extracted in this way are likely to be of
different size and variable match/mismatch rates like the TFBSs they represent, we will call
them “motifs” instead of “words”.

This seed extension approach is supported by previous studies which found that spacer
sequences between individual TFBSs in cis-regulatory modules (CRMs) evolve faster than the
functional regions they separate, slowing down gradually the closer a specific position is to a
functional site [36]. Hence, ancestrally related TFBSs are more likely to allow extension in both
directions than random occurrences of the same sites. In another paper, Swanson et al. [18]
have shown that whole clusters of TFBSs can rearrange in the same way as individual TFBSs
without violating the strict spacing and orientation requirements between the individual sites.
As a result, even full clusters might be detectable as a single motif after rearrangement given
that the TFBSs involved are close enough to each other and an initial seed can be placed.

Pattern detection
The higher evolutionary constraint within CRMs compared to the surrounding sequence has
consequences also on the CRE level. Like CRMs, which consist of a combination of TFBSs,
CREs can be composed of several CRMs, each of them responsible for a specific spatial and/or
temporal aspect of the full regulatory activity [16]. As the sequence between those modules
evolves at a higher rate than the modules themselves, it can become non-alignable by series of
mutations and indels while the CRMs are kept more or less conserved. This leads to a situation
in which a continuous CRE is separated into a series of CRM blocks, with the CRMs arranged
like beads on a chain. However, while the mutated sequence within CRMs can be bridged by
mismatches in the extension step, the larger distances between CRMs cannot. Even gapped
aligners are unlikely to handle this situation, as it would require the simultaneous introduction
of gaps in both sequences. Chaining/Netting algorithms on the other hand, e.g. those used by
the multiple aligner MultiZ [37], can identify these regions as a series of conserved blocks while
ignoring the sequence between them. However, these algorithms usually require multiple
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genomic sequences containing the same enhancer. Furthermore, the individual CRMs need to
be rather strongly conserved in all those genomes to be detectable.

In the light of these results, we developed a technique adapted from a gap detection mecha-
nism initially implemented in the CHAOS aligner [38]. In short, the modified principle works
by first defining a search space around a selected match in a given alignment and subsequently
scanning the search space for other matches that can be incorporated in a co-linear pattern (for
details see “Methods”). While this allows enhancing the similarity score using co-linear
arrangements, it does not interfere with the detection of sequence permutation as long as the
profile generation step is performed first. In fact we allow two types of predictions, one in
which the pattern detection is not considered (“PURE” score) and other in which this tech-
nique is included (“COMB” score).

Finally, we combined seed extension and pattern detection into a single composite algo-
rithm called NASCAR (“Non-linear Alignment SCoring AlgoRithm”), which can be used for
genome-wide sequence similarity searches. Like most alignment-free algorithms, it looks for
regions matching a given input sequence by sliding a window across the target genome. For
each window defined in this way, a motif profile is generated and used to assess similarity to
the input sequence (Fig 1).

NASCARs source code (written in PERL) is available upon request.

Selection of a test set of known enhancers
To further analyse the extent to which the principle described here can be used for the task of
enhancer prediction, we applied it to a dataset of known and validated human enhancers.
These regions were extracted from the VISTA Enhancer Browser [39] (http://enhancer.lbl.gov/
), perhaps the biggest collection of in vivo validated vertebrate enhancers similar to the RedFly
database [40]. For this study, we selected all human enhancers that were reported to have
enhancing activity at E11.5 in mouse and removed overlapping regulatory elements (see Meth-
ods). This resulted in 629 enhancers that were used for all subsequent analyses.

Most of these enhancers were initially predicted by deep sequence conservation, including
sequences from amphibians and partially even fish, and hence likely to align in the majority of
sequenced vertebrates. We therefore selected the teleost medaka (Oryzias latipes) as the target
species in this study, for which a reliable enhancer assay exists [41,42]. Like all teleosts, the
medaka genome shows clear signs of an additional whole genome duplication event (WGD)
when compared to tetrapods, which happened shortly after the teleost-tetrapod split ~350Myr
ago. The resulting redundancy on both the gene and the regulatory level is thought to have
allowed formerly conserved enhancers to evolve, provided at least one functional copy is
retained. A subsequent loss of one of the two instances, e.g. due to the chromosomal restructur-
ing events that followed the duplication, would re-establish the selective pressure on the
remaining enhancer and hence fix it in its current state. In some cases, this could have been the
faster evolving copy while the more conserved instance was lost, leaving no trace of a regulatory
element in the teleosts that is still conserved in tetrapods. Hence, trying to bridge the ~450Myr
of independent evolution of human and medaka represents a challenging task when consider-
ing that enhancers might have undergone permutation events to an extent that could render
them invisible to alignment algorithms. However, this type of CREs could be uncovered by
NASCAR.

To enrich our study set for CREs that could have undergone the scenario described above,
we first sorted out all enhancers that are still alignable across the evolutionary distance between
human and medaka. For this, we applied two local alignment algorithms, LastZ [43] and
BlastN [44], on the full dataset, resulting in alignments for 252 of the 629 (~40%) enhancers for
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LastZ and 303 (~48%) for BlastN. To test whether both algorithms identify similar subsets or
actually predict independent parts of the input set we overlapped the prediction results and
found overlapping alignment hits for 248 enhancers, meaning that BlastN is missing only four
(~2%) of the LastZ hits while making significant predictions for additional 55 enhancers. We
therefore decided to use the regions identified by BlastN as the aligning set for further
comparisons.

To ensure that this set is indeed a suitable reference we analysed the gene environment of all
contained alignment hits and found that for 279 of 303 (~92%) enhancers the hit is located
near human-medaka orthologs in medaka (S1 Table). In 160 cases (~53%), these alignments
are located in direct flanking position to a gene that is orthologous between human and
medaka, and we denoted these predictions as “single flanked”. Further 71 predictions (~23%)
are positioned between both orthologous flanking genes, labelled as “double flanked”. The

Fig 1. NASCARworkflow. (1) Seeds perfectly matching between query (i.e. enhancer) and target (e.g. genomic window) sequence (small black segments)
are extended up- and downstream (red segments) using a match/mismatch scoring scheme to generate a raw motif profile. Motifs that overlap the predefined
window boundaries are also taken into account and virtually extend the window (grey areas). (2) As a next step, overlapping regions of the extracted raw
motifs in the target sequence are determined (grey areas) and the smaller motif truncated whenever it overlaps a larger one (2 to 3). Motifs smaller than the
initial seed size after truncation are discarded in this step. (3) Same filtering procedure is repeated in the query sequence for the processed profile (3 to 4). (4)
Motifs below the noise threshold (bright blue segment) are discarded and the basic similarity (“PURE”) score calculated from the fully filtered motif profile
(dark blue). (5) In addition, a pattern detection method searches for co-linear arrangements in the profile (grey area). Panel shows the samemotif
composition as (4) but in a co-linear configuration. This time, the motif below the noise threshold (bright pink) is kept as it is contained in a pattern. The score
of the full pattern (all pink motifs) is subsequently added to the previously calculated basic score, resulting in the “COMB” score. For a given enhancer, the
whole process is repeated window by window until the last window in the target sequence is reached.

doi:10.1371/journal.pone.0141487.g001
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remaining 48 hits are near the medaka ortholog to a gene in the human locus (for the computa-
tion of orthologous gene sets see “Methods” and S4 Fig). However, even the 24 predictions that
seem to be in “deserted” locations (i.e. without any orthologous gene nearby) are partially next
to paralogs, which were not included in the analysis. Only a few predictions among those 24
seem to be completely remote. This suggests that the proximity of a pair of highly similar non-
coding sequences to genes orthologous between both species can be used as an indication for
the orthology of the found sequence match.

NASCAR identifies aligning enhancers
We then tested NASCAR on the aligning data set to assess its sensitivity on a collection of likely
true positive regions. For this, we first compared the highest scoring NASCAR predicted
regions against the full set of alignments found by BlastN and could recover hits for 275 of 303
enhancers (~91%), including weakly aligning (bit score between 50–80) and gap containing
regions. This shows that NASCAR is able to recover regions of overall low sequence similarity
(lowest scoring overlapping BlastN hit: 70nt (4% coverage) at 79.4% percentage identity, bit
score 51.8). Besides the highest scoring prediction per enhancer, NASCAR outputs additional
regions that could also contain CREs. However, in contrast to BlastN, there is so far no signifi-
cance threshold that could be used to expand the candidate set beyond the highest ranked
region. But as the BlastN results show (BlastN gives 480 regions for 303 independent enhancers
when applying a bit score cut-off of> = 50), many human enhancers have more than just one
likely corresponding candidate in medaka (e.g. due to the WGD or segmental duplications).
We therefore decided to consider the 25 highest NASCAR predictions as putative enhancer
candidates for this very first test of the implemented principles. Based on this cut-off, NASCAR
identifies BlastN hits for 283 (~93%) human enhancers. Interestingly, the fraction of BlastN
alignments reported by NASCAR is already noticeably higher than the one found by LastZ
(91% vs 83%) when using only the highest scoring NASCAR hit.

Novel predicted candidates show reporter activity
Next, we applied NASCAR on the non-aligning 52% (326/629) of the VISTA enhancer set and
analysed the reported predicted regions to identify putative enhancer candidates. Because of
the obvious lack of alignment hits for this set, we developed a different assessment scheme
based on the location of the hits relative to their flanking genes

In the aligning set, ~92% of all BlastN predictions in medaka are near to genes that are
orthologous between human and medaka. Furthermore, in ~76% (231 of 303) of these predic-
tions the hit in medaka is flanked by at least one gene orthologous to a gene flanking the
human enhancer. For predictions in the non-aligning set we hence used the stricter latter crite-
rion to select putative enhancer candidates among the 25 highest scoring NASCAR predictions
per enhancer. This resulted in 221 regions near orthologous genes, with 18 even in directly
flanking position. However, as we used an arbitrary cut-off of 25 for initial selection we decided
to remove candidates that theoretically could also have been found by alignment algorithms
following this procedure albeit at score levels not considered significant. Hence, we first
selected the 25 highest BlastN alignments per input enhancer irrespective of their bit score.
Afterwards, we filtered the set of non-aligning enhancers by removing all those with a selected
NASCAR prediction close to an orthologous medaka gene in case this predicted regions was
within 5kb of a BlastN hit. Of the remaining enhancers, 56 have a NASCAR prediction near
the ortholog of a human flanking gene, nine of them even in flanking position in medaka.
These nine are the highest confidence prediction set and were subsequently used for further
tests in vivo.
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As a first step, the human region of each of the nine predicted enhancer pairs was validated
using our reporter assay [41]. Of those, eight showed reporter gene activity in medaka (Table 1,
Fig 2, S5A Fig), indicating that the trans environment in our model system is able to activate
the regulatory potential encoded in the human sequences. Furthermore, the displayed activity

Table 1. Selected NASCAR candidates.

VISTA ID Human region Size Medaka region Flank status Rank

hs1344* hg19:3:193660817–193662478 1662 nt ol2:4:13569031–13570692 DF 2

hs865* hg19:6:50685244–50686237 994 nt ol2:24:19553675–19554668 DF 4

hs1535 hg19:2:60498057–60502013 3957 nt ol2:15:7226825–7230781 DF 7

hs848* hg19:16:51491799–51493025 1227 nt ol2:3:29251639–29252865 SF 1

hs1049* hg19:5:92314781–92316083 1303 nt ol2:9:15278121–15279423 SF 1

hs882* hg19:13:71533037–71534195 1159 nt ol2:21:9408987–9410145 SF 1

hs1831 hg19:7:95236622–95240458 3837 nt ol2:11:9757778–9761614 SF 3

hs590 hg19:18:34719386–34720720 1335 nt ol2:5:16698603–16699937 SF 9

hs394 hg19:2:59746377–59746992 616 nt ol2:15:7017013–7017628 DF 23

The first 8 entries correspond to the candidates that showed expression in medaka.

* = partial motif co-linearity, DF = “double flanked”, SF = “single flanked”

doi:10.1371/journal.pone.0141487.t001

Fig 2. Motif composition and reporter gene activity of selected human VISTA enhancers. For all
enhancers see S5 Fig. (A) Comparison of the known human enhancer sequence and the predicted enhancer
in medaka. The coloured boxes represent the motifs identified by NASCAR to assess the similarity of each
pair. Upper track always displays the motif positions in the human sequence (colour coded by position), lower
track shows the configuration in the medaka region. All Motifs are draw in size relative to the used window
size. Motif heights in the lower track represent the motif score, orientation (up/down) indicates the relative
orientation (forward/reverse) compared to the query sequence. (B) Expression pattern of the human (hg19) or
medaka (ol2-1) enhancers. Lens activity is part of the reporter construct and allows distinguishing between
successful and negative injections. All pictures are taken at 10 days post injection (10dpi). In all cases both
enhancers show strikingly similar pattern.

doi:10.1371/journal.pone.0141487.g002

Enhancer Prediction by a Novel Non-Linear Alignment Scoring Principle

PLOS ONE | DOI:10.1371/journal.pone.0141487 October 27, 2015 8 / 25



pattern of most of the tested elements largely resembles the pattern found in mouse (S5A Fig),
suggesting that not only the binding motifs for the factors involved but also the regulatory logic
(i.e. the spatiotemporal control of gene expression driven by this set of factors) remained
largely unchanged despite the large evolutionary distance between the species. Hence, we sub-
sequently tested the medaka regions predicted for those eight active human enhancers and
could confirm activity for six (75%) of them (S5A Fig). This rate of observed reporter activity is
already very encouraging by itself, especially when compared to what is achieved by randomly
selected regions (10%) [45], regions picked by clustering of Transfac motifs (54%) [2], or pre-
diction using chromatin feature-based computational genomic segmentation (59%) [42] It is
also higher than the 44% achieved by prediction based on deep sequence conservation [2].
More interesting, however, is the observation that the activity pattern driven by corresponding
pairs partially overlaps in domains in the fore- and midbrain. This strongly suggests that the
approach implemented in NASCAR detected components of the regulatory logic contained in
the human enhancer regions and used them for prediction of the validated candidates.

Predicted motifs show higher conservation than randommotifs in the
same region
We therefore subsequently analysed the motif profiles (Fig 2 and S5B Fig) of active human-
medaka pairs, seeking clues for a functional importance of the motifs involved in their predic-
tion. We furthermore wanted to find out why these medaka regions are detectable by our
method while being missed by the alignment algorithms used. This analysis revealed that
almost all active candidates show mainly co-linear motif arrangements in human and medaka
with additional rearranged motifs supporting the core signal. Interestingly, some of the motifs
provide enough sequence identity and length to result in direct alignment hits between the two
species. However, neither of these hits reaches a score level considered significant (i.e. a BlastN
bit score above 50) nor is strong enough to rank the corresponding region among the 25 high-
est in BlastN. Based on the found motif patterns and given the degree of sequence similarity
displayed by the motifs involved, we hypothesize that the identified medaka regions evolved
mainly by sequence turnover in the spacers regions resulting in a series of conserved–and puta-
tively still functional—motifs. We therefore tested whether the motifs were not only kept con-
served between the two species compared but indeed also under specific constraint within their
corresponding clades. For this we used clade-specific PhastCons scores [46] for placental mam-
mals and teleosts (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/
placentalMammals/, http://hgdownload.cse.ucsc.edu/goldenPath/oryLat2/phastCons5way/),
and calculated the average conservation of the human and medaka motifs. We then compared
these scores against randomly selected motif sets extracted from the same genomic region in
human or medaka, respectively. This revealed significant differences in conservation for co-lin-
ear NASCAR motifs in two human and three medaka regions (p< 0.05, Wilcoxon rank sum
test) (Fig 3, Table 2). As expected, none of the rearranged motifs shows such specific conserva-
tion when compared to randomly selected sets.

Taken together, these results suggest that each of the enhancer-candidate pairs containing
co-linear motif arrangements derived from a common ancestor predating the tetrapod-teleost
split. This is further supported by the fact that the genes directly flanking these pairs in human
and medaka are orthologous between both species. Different rates of sequence turnover within
the enhancer subsequently led to a degree of fragmentation that rendered the medaka CRE
invisible for alignment algorithms, thereby hiding their evolutionary relationship. In contrast,
score aggregation over constraint and permuted motifs allowed NASCAR to predict these likely
functionally equivalent regions despite the observed fragmentation.
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Methods based on TFBS-profiles cannot identify the enhancers found by
NASCAR
The previous result indicates that the motifs that NASCAR uses to pinpoint enhancer candi-
dates are under selective pressure and this could be because these motifs are functional tran-
scription factors binding sites. We then wanted to check if methods based on TFBS-profiles
could identify these regions as well. For this comparison we chose EEL (Enhancer Element
Locator) [24,47] because the software is still maintained and available and it is suitable for
search of candidates in vertebrate-sized genomes. For this analysis we use the collection of
TFBS motifs from the CORE Vertebrata database Jaspar version 5 [48].

Fig 3. Predicted candidates do not only differ in their motif configuration but also their conservation
levels.Hs1344 shows significant motif specific conservation among teleosts, hs1049 and hs882 also among
placental mammals. Together with the co-linear configuration and the orthologous gene(s) in flanking position
this indicates that the motifs shared between human and medaka are likely to be orthologous counterparts.
The randommotifs (light colours) show very diverse conservation levels, which are generally lower within
both clades.

doi:10.1371/journal.pone.0141487.g003
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We used EEL to scan the 24 chromosomes of the medaka genome and took the 25 regions
top scored for each human enhancer as query. In no case is the enhancer identified by NAS-
CAR in this top list. More than that, the score assigned by EEL to the validated enhancers is sig-
nificantly lower than the average score of the top 25 ranked regions by EEL (Fig 4).

However, the medaka enhancers validated here were selected from the list of prediction
based on its position near to an orthologous gene. We checked then if the predictions produced
by EEL also contain regions with this property. The result is that for none of the human
enhancers the 25 predictions are located near human-medaka orthologous genes. This further
shows that a TFBS-profile technique cannot perform at a level comparable to NASCAR.

The identified motifs are functionally relevant for enhancer activity
Conservation of motifs as well as sequence constraint are by themselves neither a prerequisite
for function (i.e. regions can diverge without losing function) nor do they necessarily indicate

Table 2. P-values for Wilcoxon rank-sum-test of motif conservation in placental mammals and
teleosts.

Enhancer-candidate pairs (hg19 vs ol2-1) p-value (Wilcoxon rank-sum test)

Placental mammals Teleost

hs1049 0.006** 0.007**

hs882 0.021* 0.004**

hs1344 0.072 0.002**

hs848 0.136 0.071

hs865 0.815 0.147

hs1535 0.343 0.512

One asterisk (*) denotes p-value � 0.05

two asterisks (**) means p-value � 0.01.

doi:10.1371/journal.pone.0141487.t002

Fig 4. TFBSmotif profile search (EEL) misses the enhancers found by NASCAR. Bar plot showing the
score assigned by EEL to the enhancer identified by NASCAR and the top 25 ranked regions genome wide
with respect to each human enhancer. Error bars show standard deviation.

doi:10.1371/journal.pone.0141487.g004
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function (i.e. regions might have lost their function although they have been kept largely con-
served) [49]. We therefore created deletion constructs lacking some of the identified motifs
and tested the effect on the displayed reporter activity. For this we selected two active medaka
regions containing motifs only identifiable by NASCAR and removed their conserved co-linear
cores (constructs hs1344:ol2-1delta, hs865:ol2-1delta). We subsequently injected these con-
structs into medaka one cell-stage eggs and analysed the resulting reporter gene activity during
development. For each of the constructs two scenarios were possible: if the deleted block acts as
an activator we would expect to lose part of the expression pattern, but if the deleted block con-
tains a repressive function its removal should lead to a gain of an expression domain. Interest-
ingly, we observe both scenarios (Fig 5). The first construct, hs1344:ol2-1delta, gained an
additional domain (highlighted with the two red arrowheads), indicating that the deleted block
represses activity in that domain. On the other hand, hs865:ol2-1delta shows a reduced or
absent expression in the central part of the optic tectum, pointing to an activator function of
the deleted block. These results hence provide further evidence that the motifs identified by
our approach are likely of functional relevance for the corresponding enhancer.

Additional candidates with reshuffled motif configuration show reporter
activity complementary to the initial enhancer
Most of the predicted enhancers tested so far utilize a co-linear motif configuration and hence
provide little support for our ability to predict putative CREs based on rearranged motif pat-
terns. We therefore searched the top 25 candidates per active enhancer pair for regions that
show highest possible motif overlap in the human sequence with those of the initial prediction,
this time with a reshuffled motif arrangement in medaka. We identified two additional regions
for the enhancers hs1344 and hs865 (hs1344:ol2-2, hs865:ol2-2) that not only contain some of
the original motifs in a reshuffled configuration, but are also located far away from any gene
orthologous to those in the human locus. Hence, the selected regions are neither related by
motif configuration nor by common ancestry but only by the used prediction method and the
motifs contained. Nonetheless, both regions show strong activity in neuronal areas in the

Fig 5. Deletion of conservedmotifs (grey area) from the predicted fish regions results in change of enhancer activity in both tested constructs.
Schematic on the right shows the motif configuration in the human andmedaka locus for hs1344 and hs865, respectively. The full grey area is
deleted from themedaka enhancer and the remaining sequence tested for reporter expression. Images on the left show the reporter activity of the
medaka constructs prior to and after the deletion.Hs1344 ol2-1delta gains two symmetrical domains in the midbrain (red arrowheads), while hs865 ol2-
1delta shows a loss of expression in the central part of the original domain.

doi:10.1371/journal.pone.0141487.g005
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reporter assay (Fig 6A and 6B) like the initially tested candidates for these enhancers. Interest-
ingly, in the case of hs865, the composite expression domain of both medaka enhancers over-
laps the domain of the human sequence assayed in mouse, indicating a complementary
function of both enhancers.

Besides the additional candidates selected for hs1344 and hs865 in the second round, we
also found a second region for one of the other enhancers, hs882, in our initial candidate selec-
tion phase. Hs882:ol2-2 is just 4kb away from hs882:ol2-1 and hence shares the same associ-
ated flanking gene. However, as its score is lower than that of hs822:ol2-1 it was not tested in
the first round. Furthermore, apart from the fact that they share the same gene environment,
both predictions are very different. Not only do they have almost none of their motifs in

Fig 6. Secondary constructs also show enhancer activity. For each enhancer, the two motif tracks in the
middle show the motifs in the human sequence used for prediction of either of the two medaka regions. Grey
bars between the tracks are motif projections to the other sequence, black bars indicate motifs shared
between both predictions. (A) The secondary construct for hs1344 shows additional expression in more
posterior regions of the brain but partially overlaps the domains of the primary construct. (B) The secondary
construct for hs865 does not show significant overlap with the primary construct but the combined expression
domain of both resembles much better the reported expression domain in mouse (see S5 Fig). (C) For hs882,
one additional candidate was found in close proximity to the initial prediction but sharing almost no motifs.
Nonetheless, hs882:ol2-2 shows enhancer activity in the brain like hs882:ol2-1.

doi:10.1371/journal.pone.0141487.g006
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common but they also have very different configurations: while the motifs for hs882:ol2-1 are
almost strictly co-linear, hs882:ol2-2 uses a highly reshuffled arrangement. But despite those
differences, both predicted regions show strong reporter activity in the midbrain (Fig 6C).
While looking for an explanation of why two very different regions sharing almost no motif
similarity drive reporter gene expression in the same anatomical structure, we found that
hs882:ol2-2 is located in a region matching another element in the VISTA enhancer browser
(hs431) that was not included in our test set for two reasons: the human sequence for this
human-medaka conserved region showed no enhancer activity in the initial mouse screen [39]
and it still aligns strongly to the medaka region containing hs882:ol2-2. By contrast, hs882:ol2-
1 seems to have mutated to an extent that left no significant similarity to hs882. It is interesting
that two enhancers located that close to each other and driving overlapping reporter activity
seem to be under such different levels of evolutionary constraint in the teleosts while both are
under strong constraint from human to chicken. It is further remarkable that almost none of
the motifs conserved between hs882 and hs882:ol2-1 are also used in hs882:ol2-2. Hence,
hs882:ol2-2 might use a very different logic to generate a very similar outcome. Nonetheless,
both medaka regions are not only found by NASCAR but also are included in the 25 highest-
scoring predictions (rank 1 for hs882:ol2-1 and 12 for hs882:ol2-2, respectively), despite the
fact that two very distinct subsets of sequence from just one human enhancer were used.

Discussion
Since the discovery of the first gene regulatory mechanisms it has been repeatedly suggested
that changes in the regulatory landscape, and not genes, might have played–and still play—an
important role in phenotypic diversification and perhaps even speciation [9–15]. Unfortu-
nately, our understanding of how specific changes in the DNA sequence impinge on gene regu-
lation is still rather limited. So far, two main diametrically opposed structural models of
enhancers, the enhanceosome and the billboard model, exist, both backed up by thorough anal-
ysis and validation [1,16–18]. But while the number of known enhanceosomes will likely
increase in the coming years (e.g. due to decreasing costs for high throughput sequencing
methods and hence a higher number of fully sequenced, high quality genomes available for
multiple sequence alignments), the gain of knowledge about billboard enhancers is uncertain.
Unfortunately, this class of enhancers is by far more interesting for the investigation of regula-
tory as well as morphological evolution. While enhanceosomes are likely to be identifiable in
many species due to their very rigid structure and the little amount of mutations tolerated, they
are at the same time unlikely to contribute largely to morphological diversification. Billboard
enhancers on the other hand are described as very flexible and only slightly conserved in their
sequence and configuration [17] and are therefore more promising to contribute to changes
between species. But this inherent flexibility also makes them more difficult to detect by classi-
cal means of sequence comparison like pair-wise or multiple alignments.

We hence looked for a new method of sequence comparison capable of detecting all types of
CREs no matter whether they evolve by mutation and/or permutation and at sequence conser-
vation levels too low for classical local alignment algorithms. The principle we present and
apply in this study can be seen as one step towards a possible solution as it integrates alignment
and alignment-free techniques. Unlike other previously published methods, our concept does
not depend on any information other than a given enhancer sequence and the target genome
of interest for prediction of putative enhancer regions. It therefore can be applied for all kinds
of analyses, from genome-wide scans to local searches. NASCAR can be used either as a pre-
screening tool for subsequent more detailed procedures like position weight matrix (PWM)
searches or conservation analysis within the target clade, or applied in cases in which no
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knowledge about the logic of a given enhancer exists. Even if this knowledge is available, NAS-
CAR provides a less biased approach for enhancer prediction, capable of finding additional
regions that do not fully fulfil the requirements of an a priori defined regulatory logic and
would be ignored otherwise. The fact that we are able to not only detect enhancer regions
missed by alignment algorithms despite the presence of co-linear motif arrangements, but also
find additional regions utilizing partially strongly reshuffled motif configurations, clearly
shows the usefulness of our approach. The regions found outside of any orthologous context
perhaps demonstrate the latter ability best. These regions show strong activity in neuronal
structures in the same way as the putative functionally equivalent candidates, clearly indicating
that NASCAR is equally able to predict regulatory regions based on motif profiles that do not
derive from residual sequence conservation.

Among all successfully validated predictions, hs1344:ol2-1 might be the best example how
each of the implemented principles contributes to the prediction process. This region, directly
flanked on both sides by genes orthologous to the flanking genes in human, has a strong and a
weak rearranged motif supporting a clearly co-linear motif core displaying very significant
motif-specific conservation among the teleosts (p< 0.01, Wilcoxon rank sum test). Among
placental mammals however the conservation is not motif-specific (p = 0.07, Wilcoxon rank
sum test). Instead, almost the full central region of the enhancer, including motifs and spacer
regions, is conserved. This indicates that a relaxation of the selective pressure in the teleosts
allowed the spacer regions to mutate, ultimately splitting the enhancer in a cluster of conserved
segments, each on its own too small to be picked up even as an insignificant alignment hit
(BlastN bit score<50). Similarly, the combined score of all motifs together is too low to posi-
tion the regions high enough among the NASCAR predictions. However, with support by the
implemented pattern detection technique recognizing the co-linear configuration, this
enhancer can be ranked high enough to be detected. Hence, all the implemented principles
together are necessary to detect this likely functionally equivalent enhancer that is undetectable
by standard alignment algorithms.

The fact that many of our likely functionally equivalent predictions contain conserved co-
linear configurations can be explained by the chosen input set. For this proof of principle study
we needed a collection of validated enhancers that was likely to still exist in medaka, yet
diverged enough to contain candidates not predictable by alignment algorithms. We therefore
chose the VISTA enhancer set, which mainly contains enhancers under strong evolutionary
constraint. Such regulatory elements are usually considered to be of crucial importance [2] and
hence should also be present in medaka. However, enhancers that are alignable across mam-
mals and most vertebrates, including birds and amphibians, are inherently structurally rigid
and by that unlikely to have rearranged in medaka. Furthermore, we selected predictions in
close proximity to orthologous genes to prioritize likely active regions for this proof of principle
study. As this criterion derived from the analysis of aligning enhancers we might have indi-
rectly chosen regions that are less likely to rearrange. Nonetheless, the majority of enhancers
with a co-linear core (3/5) shows at least one reshuffled motif with a higher score than one or
more of the co-linear ones. In addition, 4 of 9 (~44%) successfully validated predictions actu-
ally use rearranged motif configurations–like the vast majority of predictions scoring among
the top 25 per enhancer. The observation that most rearranged configurations also occur in
regions of the medaka genome far from any ortholog to a gene in the human locus is by itself
no evidence for a false positive prediction. This is shown not only by two successfully validated
rearranged candidates found in regions lacking any obvious ancestral relationship, but also by
some very strong alignments in remote locations that were found for enhancers in the aligning
set. One of these remote enhancer candidates (hs208) aligns to a locus on chromosome 4
(chr4:4794327–4794857) in medaka with a BlastN bit score of ~700. Strangely, no ortholog (or
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at least paralog) for a gene in the vicinity of the human enhancer can be found on that chromo-
some. In contrast, clusters of orthologs are found on chromosomes 20, 21 and 22. While future
improvements of the medaka genome and gene annotation might be able to provide an expla-
nation for these findings, it shows that candidate selection by orthologous genes in flanking
positions is likely to underestimate the amount of active candidates in our predictions.

Our analysis of two deletion candidates shows that the motifs extracted by NASCAR are
indeed of functional relevance for the predicted enhancers. Some of these motifs are also under
strong selective pressure that kept them almost identical throughout the ~450Myr of indepen-
dent evolution between human and medaka. This motif specific constraint however is over-
shadowed by a high rate of sequence turnover in the surrounding regions that makes the
enhancers non-alignable and seemingly non-conserved. Given the results presented here it
might be necessary to reconsider the criteria used to define whether or not an enhancer is con-
served. Five predicted regions with co-linear motif profiles showed activity in our assay, as well
as four with reshuffled arrangements. Furthermore, six constructs drive expression in overlap-
ping tissues compared to the human counterpart, three of them even result in similar patterns.
This is in the range of the 30% reported for putative orthologous enhancers conserved between
human and zebrafish [50] and clearly indicates that partially co-linear and/or even fully rear-
ranged enhancers might still fulfil the same vital role for organisms in one clade as the fully
conserved regions for the species in another. Hence, the current definition of enhancer conser-
vation is more a reflection of the detection methods available than of the actual function of the
enhancer itself. Future extensions of the principles presented here will hopefully contribute to
the development of a new definition and broaden our understanding of enhancer function.

Methods

Fish maintenance
Medaka (Oryzias latipes) stocks were maintained as previously described [51]. In this study
only the medaka wild-type Cab line was used. Stock animals were kept in accordance with the
German national guidelines (Tierschutzgesetz). Only embryos were treated and always prior to
hatching implying that no animal experiments were performed.

VISTA Enhancer sets
We used the VISTA Enhancer browser [39] (state 2010-12-07) to generate a set of validated
human enhancers. For this, we applied its internal search routine to extract all human regions
(hg19) that show enhancer activity at stage E11.5 in mouse. If enhancers selected this way are
closer than 250nt (distance between enhancer boundaries) to one another, these were consid-
ered to be “overlapping” and all of them were discarded. The reasoning behind that decision is
that the cloning procedure of the enhancer assay used requires ~300nt flanking sequence up-
and downstream of each element which would lead to mixed elements of different enhancers
that could confound our results. On the other hand, selecting the union of the overlapping
regions would result in sequences too long to be cloned. Following these selection and filtering
steps we obtained a final set of 629 fully independent human enhancers.

Sequence alignments
We retrieved the repeat-masked sequences of all human enhancers as well as the full medaka
genome (ol2) from Ensembl using the Ensembl API (v63) and subsequently aligned them
using either LastZ [43] (command-line parameters:—noytrim,—inner = 2000,—masking = 40,
—chain,—hspthresh = 2200,—ydrop = 3400,—gappedthresh = 6000) or BlastN (NCBI-Blast

Enhancer Prediction by a Novel Non-Linear Alignment Scoring Principle

PLOS ONE | DOI:10.1371/journal.pone.0141487 October 27, 2015 16 / 25



+ Suite v2.2.25) [44] (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.25/) (BlastN com-
mand-line parameters: -reward 2, -penalty -3, -gapopen 5, -gapextend 2, -word_size 7, -dust
"20 64 1", -soft_masking TRUE). As BlastN, in contrast to LastZ, only reports the highest scor-
ing alignment hit, we used different E-value filters to produce more extensive hit lists for
BlastN. These were subsequently filtered to form sets containing either only significantly align-
ing hits (bit score> = 50) or 25 hits with the highest bit score per enhancer. Ties amongst
these 25 were resolved by sorting hits first by the length of the hit in decreasing order and sec-
ond by chromosomal coordinates in ascending order (alphanumeric sorting for
chromosomes).

Orthologous gene sets
To perform the assignment of orthologous genes to enhancer-candidate pairs we first selected
all protein coding genes in the human and medaka genome according to the Ensembl gene
build (v63). Based on their transcription start site (TSS), we then assigned all the genes in a
window of 1.5Mb up- and down-stream of its boundaries to a given human enhancer. Each of
the gene sets generated in this way had to contain at least five genes on each side of its assigned
enhancer. In cases where this criterion was not met, we extended the margin on either side to
reach the minimum number of genes. Using Ensembl Compara (v63) we then checked for
each gene in a given human gene set whether it is orthologous to a gene in the gene set gener-
ated for the predicted corresponding medaka region. Paralogs were not considered. Each pre-
dicted medaka region was then categorized based on the existence of and the relative position
to an orthologous gene. We called a candidate “double flanked” if orthologs of both flanking
genes in human also flank the medaka predicted regions, “single flanked” (just one of the flank-
ing genes still in flanking position), “near flank” (an ortholog of a flanking gene in human is
still within the set distance and gene cuttoffs in medaka but not directly flanking the predic-
tion), “not flanked” (orthologous gene within the cutoff but not flanking in human), and “not
orthologous” (not a single orthologous gene near).

Motif filtering
To reduce the amount of “noise” signal generated by small and abundant motifs, we deter-
mined the threshold for arbitrary matches by scanning a set of variably sized enhancers against
the target genome and assessed the relative occurrence of perfect-matching words for all
extracted windows. Our analysis shows that words shorter than 12nt not only occur in more
than 50% of all windows but also accumulate per window with increasing enhancer size (S2
Fig). Motifs with a score below that of a 12-mer were hence excluded for similarity assessment.

Profile generation
NASCAR generates motif profiles by first dissecting query (i.e. enhancer) and target sequence
into words of variable size that match perfectly between the two sequences. Each word then
serves as “seed” for subsequent mismatch extension. Extension is performed independently in
both directions (upstream/downstream) using a simple additive match-mismatch scoring
function until the motif score drops below 0 (i.e. accumulated mismatches score higher than all
matching nucleotides). Both extensions are then truncated to the shortest, highest scoring
region starting at the seed and merged to form the final motif. Each motif is thereby regarded
as a mismatch-containing word similar to perfect matching words in alignment-free algo-
rithms. The same procedure is repeated for the reverse complement target sequence and both
generated profiles are merged. This profile is then filtered to remove motifs overlapping in
either the query or the target sequence. Starting with the target sequence, motifs are first ranked
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by their score and then mapped to the target, starting with the highest scoring. The score of
each motif is determined by

mScore
i ¼ ðpi � sp þ qi � sqÞ �mLength

i ð1Þ

with M = {m1,m2, . . .,mw}, M = all motifs in target window, pi, qi = matching/mismatching
nucleotides inmi; sp, sq = scores for matching/mismatching nucleotides. Overlapping motifs
are truncated to their next matching nucleotide and rescored as long as they still contain a per-
fect matching region of at least minimum seed size (k = 8nt by default). The only exceptions
are motifs of equal score, which are allowed to overlap. This filtered motif set forms the final
target profile.

Score calculation
The NASCAR score is calculated for every window sliding along the given target sequence as
done for alignment-free algorithms (default: window size = enhancer length, stepping 25%).
For this, all motifs in the target profile that are either contained in the window area or overlap
its boundaries are selected. The extracted profile is then filtered for word overlap in the query
sequence identical to the target filtering procedure, resulting in the fully filtered profile. All
words above or equals the minimal score cutoff (default: score of a perfect matching 12-mer)
are then used to calculate the final similarity score for the target window (“ScorePURE”,MValid =
all motifs above threshold after filtering):

ScorePURE ¼
X

mi2MValid

mScore
i ð2Þ

Pattern detection
In a parallel approach, clusters of co-linear motifs within a certain distance and query-target
shift (default:MaxDistance = 200nt,MaxShift = 25nt) are traced in the fully filtered profile. For
this, all motifs above the score threshold are ranked again in decreasing order. Then, starting at
the strongest motif, two elliptical motif-spaces along the current motif diagonal and overlap-
ping in one focus are computed, with the motif placed in the overlapping focus (S3 Fig). The
distance between the two foci in query or target corresponds thereby to the enhancer length.
This allows detection of patterns spanning the full window size. All motifs located with their
centre within these motif spaces and an inter-motif distance (i.e. distance between end of one
motif and start of the subsequent one) smaller or equalsMaxDistance are combined into a motif
pattern. Once a motif is assigned to a pattern it is removed from the motif list and cannot be
used for any other pattern. All patterns of three or more motifs containing at least two words
scoring at or above the threshold level are valid. This allows inclusion of motifs even below
threshold as long as the previous requirement is met. For each motif pattern consisting of m
motifs the mean motif distance and the pattern shift (i.e. the weighted midline of the pattern)
are calculated:

Mp ¼ fm1;m2; � � � ;mng ð3Þ
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MeanDistance ¼

XjMp j�1

i¼1

ðmStart
iþ1 �mEnd

i Þ

jMpj � 1
ð4Þ

PatternShift ¼

X

mi2Mp

ðmLength
i �mShift

i Þ
X

mi2Mp

mLength
i

ð5Þ

Then, two correction factors are calculated and used to assign a weight to each motif in the
pattern:

FactorDistance ¼ 1�MeanDistance

MaxDistance
ð6Þ

FactoriShift ¼ 1� jmShift
i � PatternShiftj
2 �MaxShift

ð7Þ

mWeight
i ¼ meanðFactorDistance; FactoriShiftÞ ð8Þ

The final pattern score, i.e. the weighted sum of all contained motifs, is then added to the
previously computed “ScorePURE” to form the final score (“ScoreCOMB”):

PatternScore ¼
XjMp j

i¼1

mScore
i �mWeight

i ð9Þ

ScoreCOMB ¼ ScorePURE þ PatternScore ð10Þ

Definition of predicted regions
All regions that have a NASCAR score above a set threshold were considered as predictions.
These regions are continuous intervals in the target sequence starting at the first window scor-
ing above the threshold and ending as soon as the score drops below this limit. Default thresh-
old is three times the median absolute deviation (MAD) above the median NASCAR score for
all windows assessed for the corresponding enhancer. Regions were called individually for the
basic (“PURE”) score and the score including patterns (“COMB”).

Randommotif sets
We generated random motif sets by randomly extracting sequence segments of the same size as
the real motifs from the given enhancer/candidate region in either human or medaka. Individ-
ual segments were thereby not allowed to overlap. This way, 10 independent random sets for
each of the validated enhancer-candidate pairs were generated.
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Evolutionary conservation
We analysed the conservation of NASCAR motifs by averaging across the compiled conserva-
tion information of all nucleotides forming a motif. The conservation data (PhastCons scores)
for placental mammals (mammal sub set of the 46-way MultiZ vertebrate alignment) and tele-
osts (5-way MultiZ alignment) was obtained from the UCSC Genome Browser (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/placentalMammals/, http://
hgdownload.cse.ucsc.edu/goldenPath/oryLat2/phastCons5way/).

Prediction of enhancers with EEL
We downloaded EEL (Enhancer Element Locator) from its GitHub repository (https://github.
com/kpalin/EEL) as of 27th of January 2015. As TFBS motifs we used the CORE Vertebrata
database from Jaspar version 5. We used EEL in its command line mode with the following
command structure:
eel -as <humanSeq> -as <medakaSeq> -am <MotifsFolder> -getTFBS -align -sa
-no-gui -savealign <outputFile>

In all cases the input sequences are repeat-masked and obtained as mentioned above. We
run EEL independently for each medaka chromosome and included the parameter–more 10 to
allow more predictions per run. Then, for each query human enhancer we sorted all the
reported predictions and selected the top 25 with highest score.

Cloning
We used an Hsp70 basal promoter driving eGFP in a cassette flanked by ISceI restriction sites
for efficient integration into the genome at early stages of embryonic development[41]. We
amplified all fragments from human or medaka genomic DNA by PCR using Phusion DNA
Polymerase and the primers specified in S2 Table. For detection of their putative enhancer
activity we ligated the fragments containing putative regulatory elements (or control
sequences) upstream of the HSP70 promoter. Resulting constructs were tested by restriction
digest and injection grade DNA was prepared following the MidiPrep protocol of the QIAGEN
Plasmid Purification kit.

Microinjection
Injections were performed following the meganuclease approach as described previously
[52,53]. The efficiency of the meganuclease mediated transgenesis in medaka results in uniform
expression patterns and a low degree of mosaicism already in the injected generation. This
facilitates the effective detection of enhancer activity even if active only in few cells. In brief,
medaka embryos were microinjected into the cytoplasm at the one cell stage. The concentra-
tion of the reporter construct was at 10 ng/μl. DNA was diluted in 1x ISceI buffer, containing
ISceI enzyme (NEB) at a concentration of 1U/μl. The DNA/enzyme mix was kept on ice prior
to microinjection. For each construct at least 50 surviving embryos were scored.

To score successful injection we monitored baseline activity of the HSP70 promoter in the
lens as injection control allowing to discriminate between inactive putative enhancer elements
and failed injections. An enhancer was considered to be active if at least 35% (average 64%) of
all lens positive fish showed a consistent expression pattern. Images of injected embryos were
taken on an OLYMPUS MVX10 binocular at 4x magnification using a LEICA DFC500 camera.
See S3 Table for a summary of the injection experiments.
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Deletion constructs
We generated deletion constructs by following the procedure described in [54]. In short, we
used additional primers directed away from the deletion site together with the original primers
for the constructs. Each of the deletion primers thereby also contains a 13-15nt fragment 5’ of
its start position in the construct, which is complementary to the sequence on the other flank
of the deletion site. Using always one standard and one deletion primer led to amplification of
just the flanking regions in the construct. After purification of the fragments, both were used in
one reaction together with the standard primers leading to a fusion construct lacking the tar-
geted deletion site.

Ethics Statement
All fish are maintained in closed stocks at Heidelberg University. In this study only the medaka
(Oryzias latipes) wild-type Cab line was used. Stock animals are kept according to local animal
welfare standards (Tierschutzgesetz §11, Abs. 1, Nr. 1, husbandry permit number 35–9185.64/
BHWittbrodt) and in accordance with European Union animal welfare guidelines. Only
embryos were treated and always prior to hatching implying that no animal experiments were
performed. The fish facility is under the supervision of the Interfacultary Biomedical Faculty
(IBF) of the University of Heidelberg.

Supporting Information
S1 Fig. Illustration of problems of motif-based sequence comparison. Best case-scenario of
an enhancer consisting only of directly adjacent functional motifs (uni-coloured boxes). Motifs
are extracted independently from query and target sequence in an overlapping fashion with
each motif being shifted by one nucleotide compared to the previous. (A) In case both
sequences are identical, the resulting profiles are maximally overlapping as each motif in one
sequence has a corresponding match in the other. (B) Single nucleotide changes in one of the
two sequences (positions marked by white “x” on black background) however remove all
motifs overlapping this event from the matching profile (empty boxes). Each point mutation
can thereby delete up to k (k = motif size) motifs (B, upper panel). Scattered mutations across
the entire sequence can hence lead to a strong reduction of matching motifs and thereby hide
all existing similarity. This is clearly different to alignment algorithms, which remain mostly
unaffected as long as at least one continuous matching region (“seed”) exists that allows exten-
sion across the contained mutations (B, lower panel). (C) Permutation of individual motifs can
have a very similar effect on the matching profile, as all motifs overlapping the boundary will
not exist anymore after the position change. The strength of a permutation event thereby
depends on the context (C, upper vs. lower panel). The main problem however is that the
majority of motifs are context dependent (A to C, mixed coloured motifs). By that, the maxi-
mum signal intensity can be only reached if co-linearity is kept which is contrary to the idea of
using alignment-free methods for the detection of rearranged regions. (D) Furthermore, the
alignment-free principle by itself cannot discriminate between important and unimportant
motifs. As a result, an arbitrary sequence can generate as many matching motifs as a permuted
one that has kept its functionality (D, upper vs. lower panel). But as more context dependent
than functional motifs exist within billboard enhancers, permuted arrangements of non-func-
tional motifs are much more likely to happen.
(TIF)

S2 Fig. Determination of “noisy” words. Enhancers of several sizes were used to scan the full
medaka genome and determine the size and type of motifs occurring per window depending
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on the size. (A) Perfect matching motifs smaller or equals 11nt (vertical blue line) occur in
more than 50% of all windows in the medaka genome (horizontal red line). (B) Additionally,
matching motifs up to that size accumulate per window with increasing window size, indicat-
ing that they are likely arbitrary matches between both sequences.
(TIF)

S3 Fig. Pattern detection. For each motif above threshold (grey bars) two elliptic spaces
(upstream ellipse drawn only dotted; a,b,e are standard values of ellipses) are computed with
the motif being located in the overlapping focus point (FC). All motifs within those spaces that
are also within the set inter-motif distance form a pattern even if they are below the score
threshold (orange bar). At least three motifs have to be combined in that way, two of them
above score threshold.
(TIF)

S4 Fig. Definition of the gene environment per enhancer/prediction. For each enhancer/
prediction (filled triangles) a region 1.5Mb up- and downstream was selected (correspondingly
coloured arcs). In case the up- or downstream region contained less than five genes (upper
sequence, left side), additional genes in the same direction were included to reach a minimum
of five. Genes orthologous between the human and medaka set (black rectangles, flanking
genes in purple) are connected with dashed lines (non-orthologous genes in grey) Following
the colour gradient from dark blue to light blue, predictions are: “double flanked”, “single
flanked”, “near the ortholog of a former flanking gene”, “near an orthologous (formerly not
flanking) gene”.
(TIF)

S5 Fig. Selected enhancer elements. Eight selected human VISTA enhancers show activity in
the medaka reporter assay (column “Human in Medaka” in A), indicating that the “trans” envi-
ronment is still capable of activating these enhancers despite the ~450Myr of independent evo-
lution. Six of eight predicted medaka regions also show enhancer activity (column “Medaka in
Medaka” in A). Activity is visible in most cases in the brain and other neuronal structures.
Interestingly, in most of the cases the reported expression pattern of the human enhancer in
mouse (column “Human in Mouse” in A) resembles the expression pattern of the human or
medaka sequences in medaka. Lens activity is part of the reporter construct and allows to dis-
tinguish between successful and negative injections. All pictures are taken at 10 days post injec-
tion (10dpi). Mouse pictures were downloaded from http://enhancer.lbl.gov/. (B) Comparison
of the known human enhancer sequence and the predicted enhancer in medaka. The coloured
boxes represent the motifs identified by NASCAR to assess the similarity of each pair. Upper
track always displays the motif positions in the human sequence (colour coded by position),
lower track shows the configuration in the medaka region. All Motifs are draw in size relative
to the used window size. Motif heights in the lower track represent the motif score, orientation
(up/down) indicates the relative orientation (forward/reverse) compared to the query
sequence.
(TIF)

S1 Table. Alignment hits. BlastN alignment hit for the human enhancer on the medaka
genome. DF = “double flanked”, SF = “single flanked”, NF = “no flanked”.
(XLSX)

S2 Table. List of cloning primers.
(XLSX)
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S3 Table. Summary of the injection experiments.
(XLSX)

S1 File. Supplementary methods.
(DOCX)
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