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ABSTRACT

BioBayesNet is a new web application that
allows the easy modeling and classification of
biological data using Bayesian networks. To learn
Bayesian networks the user can either upload a
set of annotated FASTA sequences or a set of
pre-computed feature vectors. In case of FASTA
sequences, the server is able to generate a wide
range of sequence and structural features from
the sequences. These features are used to learn
Bayesian networks. An automatic feature selection
procedure assists in selecting discriminative fea-
tures, providing an (locally) optimal set of features.
The output includes several quality measures of the
overall network and individual features as well as a
graphical representation of the network structure,
which allows to explore dependencies between
features. Finally, the learned Bayesian network or
another uploaded network can be used to classify
new data. BioBayesNet facilitates the use of
Bayesian networks in biological sequences analysis
and is flexible to support modeling and classifica-
tion applications in various scientific fields. The
BioBayesNet server is available at http://biwwwa3.
informatik.uni-freiburg.de:8080/BioBayesNet/.

INTRODUCTION

Researchers in many biological fields are often confronted
with classification problems concerning biological
sequences. For example, analyzing promoter sequences
often requires the classification in transcription factor

binding sites and background sequence parts (1,2). For
a given set of exons or splice sites one might be interested
in predicting which of these are alternatively spliced (3,4).

State-of-the-art machine-learning approaches extract
various features from these sequences and perform
classification on the feature vectors instead of the original
sequences. Bayesian networks (BN) have recently attracted
considerable attention for data modeling and classification
(5,6) since they can cope with features of various value
ranges and can learn dependencies between features.
BNs have been successfully used for modeling of gene
expression to derive genetic regulatory networks (7-9), for
discovering pathogenic SNPs (10), for identifying missing
enzymes in metabolic pathways (11), for protein folding
(12), genetics and phylogeny analysis (5), as well as for
predicting the effect of missense mutations (13). Another
large and rather new application area of BNs are
biological sequence data (2,14-17). Compared to profile
hidden Markov models (HMMs) (18), which are often
used to model conserved sequence families such as protein
domains as in the PFAM database (19), they allow for
more modeling flexibility w.r.t. the following points.
First, they allow a more flexible scheme of dependencies
between variables. In profile HMMs, the variables are
sorted ‘chronologically’, and dependencies are restricted
to the previous variable(s). In contrast, multiple depen-
dencies are allowed in BNs, and there is no fixed ordering
of the variables. This has been shown to be especially
important to model regulatory like TF binding sites (14).
Second, Bayesian network allow to integrate arbitrary
features, which is not possible for HMMs. This has been
shown to be important to integrate structural properties in
the recognition of regulatory sequence (2,20). And third,
the network structure (i.e. the set of all dependencies
to be considered) must be given as an input to profile
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HMMs, whereas they are automatically learned in the BN
approach.

To the best of our knowledge, there is no web-based
application of BN modeling that is tailored to the analysis
of biological sequences. To facilitate the use of BNs in
this context, we have developed a new web application
BioBayesNet. This web application allows to perform
a wide spectrum of analysis from automatic feature
generation and selection, to BN learning and application
of the learned model to new input data and for
probabilistic inference. Furthermore, BioBayesNet accepts
any user-defined features as input, which extends its
application range to various scientific areas.

METHODS

In this section, we briefly describe the methods applied
by BioBayesNet in the order in which they occur in the
processing chain. We first are concerned with features
and their generation from uploaded input sequences.
A feature is a measurable property of a single input data
sample (e.g. an input sequence). Each feature has its
own set of possible values which we denote as the feature
range. For each feature, there is a well-defined feature
value for each single input data sample. Given that
a class label is assigned to each input sample, BioBayesNet
tries to detect exactly that feature subset which is
optimal in predicting the class label of so far unseen
samples.

The typical usage of BioBayesNet assumes that the user
defines a large bunch of features which might be useful for
characterizing sequences of the different classes. For each
sequence the value of every feature is calculated leading to
a feature vector for each sequence. All further processing
of the user input only requires the feature vectors, not the
sequences.

The next step is the search of a subset among all defined
features which is optimal with respect to its ability to
discriminate between feature vectors of different classes.
For this purpose we apply the sequential feature subset
selection algorithm (SFFS) (21) which searches the space
of feature subsets with respect to a special quality
measure. Starting from an initially empty subset, this
algorithm successively adds that feature which best
improves the quality measure. After each insertion step
the algorithm deletes previously added features as long as
this does not worsen the quality measure. These deletion
steps are necessary for avoiding the search path being
trapped in local optima since the whole set of defined
features can contain redundant features. For instance,
a single feature which has been added in the last step
could perform better together with another selected
feature and make a formerly selected third feature
dispensable. The algorithm stops if neither insertion
of another feature nor the deletion of features can
improve the quality measure. In order to calculate
the quality of a particular feature subset we perform
a 10-fold cross validation. Successively, 90% of the
feature vectors are used to learn a Bayesian network
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classifier. For the remaining 10% of the samples
the information loss

= Z log P(class(f)| )

feature vectors f°

is calculated. This value expresses the strength of evidence
given by a feature vector for predicting its own class.
Finally, we obtain the quality measure value by summing
up the information loss for the 10 runs of the cross
validation.

The core of BioBayesNet is the probabilistic modeling
of the resulting feature subset in Bayesian classifiers (BCs)
(22) which is a special class of BNs. In general, a BN is a
graphical representation of the joint probability distribu-
tion over a set of random variables. Each feature F is
represented by a discrete random variable which defines
a probability distribution over the feature range of F.

Formally, a BN is a pair B=(G, P). Its first component
G is an annotated directed acyclic graph whose vertices
correspond to random variables F;, F», ..., F,; and whose
edges determine direct dependencies between connected
variables. The second component P is a parameter set
which quantifies the network. It contains probability
parameters pyr, = Pp(F; = fi|lll; = my;) for each possible
value f; of random variable F; and each configuration IIf;
of the set of parent variables IIf;. Thus, a BN B defines a
unique joint probability distribution over all concerned
random variables F={F), F>,..., F,} given by

d
Py(fi.far o fa) = [ | P(filmy)
i=1

Beside random variables for the features, a BC also
contains an additional variable, the class variable C, which
is parent of every feature variable. Obviously, the range
of this class variable is the set of the different class labels
c1,...,cx. For a given feature vector f=f,...,fy
(i.e. observations of values for all considered features),
a BC classifies with respect to the conditional probabilities
of having a sample of class ¢,. Thus, class ¢’ is predicted
so that

¢ = argmax, P(clf = f1,....[a)

We further restrict the structure (i.e. the edges) of the
BN in allowing at the most one parent feature variable for
each feature. These specially structured networks are
called tree-augmented networks (TAN) (21). The restriction
is done due to the higher robustness of the learning
procedure when confronted with small data sets and the
existence of efficient structure learning algorithms for
this subclass of BNs.

Learning a Bayesian classifier from a set of feature
vectors comprises two steps: (i) the structure learning and
(i1) the probability parameter estimation. For structure
learning, we apply the algorithm Chow and Liu (23) which
reduces that problem to the finding of a minimal spanning
tree using the conditional mutual information content
(MIC) between the distributions of two features as edge
weights. To avoid the insertion of edges between features
which only show weak correlation we slightly have
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modified this procedure by setting up a MIC threshold
and only including edges with weights above this thresh-
old. Once the structure of the network is determined,
the (conditional) probability distributions over the feature
values of each feature given the class label and optionally
the value of the parent feature are estimated straight-
forward from count statistics derived from learning data.
Since the usage of BNs requires that there do not occur
zero probabilities, we use Dirichlet priors for smoothing
the probability distributions.

The conditional probability in the previously illustrated
BC-decision rule is an instance of what is called Bayesian
inference, the querying of probabilities for some variable
value in presence of observed values for other (not
necessarily all) variables. It is one advantage of BNs that
such queries (marginalizations) can be approximately
calculated by efficient algorithms. In BioBayesNet, we
apply the technique of variable elimination (24).

SERVER USAGE

The general workflow of the server is illustrated in
Figure 1. The first step comprises the input of data.
There are two different kinds of input data.

The first possibility is to input sequences in FASTA
format (Step 1.1). Each sequence must be associated to a
class label. Optionally, one may specify a subsequence
(for example, a protein binding site within an entire
promoter sequence) which allows to use relative positions
in the next step. To generate the features from these
sequences, the user is redirected to Step 1.2, where the
server allows the selection of a wide range of features.
There are five main groups of features:

(1) Nucleotides at particular positions: features of this
group all have the same range, namely the four
different nucleotides. A nucleotide feature for
position i is the analogue of the ith column of a
position weight matrix (PWM).

(1) DNA  structural — parameters ~ which  express
the sequence-dependent local variation of geome-
trical or physiochemical DNA properties at

Step 1.1 Step 1.2 Step 2

Input fasta - Feature

a subsequence. Examples are the average helical
twist between two base pairs, the DNA bendability
or the average melting temperature of the subse-
quence. A feature value for a subsequence is
calculated as the mean of all dinucleotide steps in
this subsequence. Values for dinucleotides were
given in literature (25,26). We provide 38 different
DNA properties that can be calculated from a user-
defined subsequence.

(i) RNA single-strandedness measures the probability
for a given RNA subsequence to be completely
single-stranded (i.e. not part of a secondary struc-
ture). For that we use RNAup from the Vienna
RNA package (27).

(iv) Subsequence nucleotide contents: These features
measure the fraction a subset of nucleotides in
a user-defined subsequence. An example is the
fraction of pyrimidines in the subsequence from
position 10 to 20.

(v) Consensus matches: features of this group decide
whether there is a match of a given subsequence to a
given consensus sequence. These features can take
values true or false.

Features of all groups can be restricted to particular
subsequences or positions in the sequences. If a subse-
quence is specified the positions refer to a location relative
to the subsequence. For example, position -5 refers to the
5 nucleotides upstream of the start of the specified
subsequence.

Features of groups 2, 3 and 4 describe continuous
properties of sequences. In order to derive a finite feature
range, the continuous ranges are discretized using the
entropy-based, supervized discretization algorithm by
Fayyad and Irani (28). This procedure finds a partition
of the continuous range which best separates the different
classes.

The second possibility is to input user-given feature
vectors for each data sample in C4.5 format (29).
This allows full flexibility as the user can input any
prior computed feature. For example, one might input
pre-computed features about protein sequences and/or
structures to analyze protein data. The user has to upload

sequences " | generation
Feature

Step 3 Step 4
Upload
' data
-t BN use learned BN 4 Data
- learning classification

/ selection
Input feature

vectors

Figure 1. The general workflow of the BioBayesNet web-server.
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two files. The first file contains the class labels and feature
names with possible feature values, whereas the second
file contains the data samples (Table 1).

Learning BNs

After the data input, the user can select which features are
used to learn the BN (Step 2). Apart from manual
selection, this process is assisted by an automatic feature

Table 1. An example of user-given feature vectors describing poten-
tially discriminative features of alternatively and constitutively
spliced exons

File 1: Class labels and
feature names

File 2: Data samples

alternative, constitutive.

donor_splice_site_score:
continuous.

exon_length: continuous.

fanking_intron_conservation:
high, medium, low.

length_divisible_by_3: yes, no.

3.4, 100, high, yes, alternative.
—5.7, 67, medium, no, alternative.

7.4, 167, high, yes, alternative.
13, 231, low, no, constitutive.

9.5, 189, medium, yes, constitutive.
7.8, 345, low,no, constitutive.

The first line of the first file has to contain the class labels (alternative
and constitutive). The next lines of this file specify feature names and
their value ranges. Each line of the second file contains one data
sample. The features are given in the order of the first file and the class
label is given at the end of each line.
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selection method (see ‘Methods’ section), which selects the
most discriminative features from all generated or user-
given features. This step also provides an overview of the
value ranges and the empirical probability distribution.

The selected features are used in the next step (Step 3)
to learn a Bayesian classifier with TAN structure.
After learning, the BN classification quality is evaluated.
This includes two quality measures (information loss
function and the average posterior probability for the
correct class) and the final classification of the input data.
Furthermore, the power of the individual features is
estimated by computing the loss of quality if this feature
is omitted during learning. The server also produces
a graphical representation of the network structure, which
allows the exploration of learned dependencies between
the features (Figure 2).

Besides this graphical overview, an interesting informa-
tion is the distribution of a single feature, given particular
values for some of the other features (variables). To this
end, our tool allows to set some variables to particular
values and query the a posteriori probability distribution
of another variable given this setting. Furthermore, one
can view the feature values for each data sample and
how these samples were classified by the BN. The final BN
can be downloaded as a file in the Bayesian Interchange
Format (BIF) to use it for further data classification
or to use it in Bayesian Network Software such as
JavaBayes (30).

BioBayesNet: Feature Extraction and Bayesian Network Modeling of Biological Sequences

Home

Learning a
Bayesian network

Classify data /"‘.
-

Demo

References

Links B 3

Contact

Marginalized probability distribution of a variable

given observations of some other variables

1. class value: | notobserved

2. Select the desired feature for distribution

I sequence_position_3

Bayesian Network Inference

N Feature name Possive
status

0 sequence position 3 lm
1 sequence position 4 lm]
2 sequence position § lm
3 sequence position 11 lm
4 dna structure feature bdnaRISE -5-1 m
5 dna structure feature bdnaTWIST 1-6 lm

6 dna structure feature bdnaPROB TOBE CONTACTED WITH NUC CORE 5-10 | notobser 'I

7 dna_structure feature bdnaRISE 10-15 not obser v’
8 consensus feature ggg 1-10 not obser vl

3. Select the observed values of other features in field "Observe status”

of the table

4. Click submit: = Submit

Figure 2. Graphical overview of a BN and the dependencies between feature variables.
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Data classification

In the next optional step (Step 4), the user can classify new
input data using the learned BN. If a BN has been learned
in advance, the server also allows classification after the
upload of the BN in BIF format. In each case, the user has
to upload new input data (either FASTA sequences or
feature vectors).

SERVER IMPLEMENTATION

BioBayesNet is a Java-based three-tier web application.
The user interacts with this application via HTML pages
which are dynamically generated using Java server pages
(JSP). Input given by the user is directed to Java Servlets
which validate the input and generate objects which are
conducted to the algorithmic layer of the application.
The servlets further take the result objects of the
algorithmic layer and redirect it to Java server pages
which again produce HTML output for the user. As a
Java-based web application, BioBayesNet runs in a
TOMCAT environment. For handling the biological
input of the user, we employ the BioJava API (31).
The implementation of the BNs and related algorithms
partly rely on third-party APIs, namely JavaBayes (30)
and jBNC (32). BioBayesNet runs on a dedicated web
compute server with two dual cores.

FUTURE DIRECTIONS

We have developed the web server BioBayesNet that
enables an easy use of Bayesian Network models for the
analysis of biological sequence data. We are working on
extending the set of automatically generated features,
especially to include protein-related features and a greater
variety of RNA structural features.
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