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ABSTRACT: Artificial intelligence and machine learning have
become indispensable tools across various disciplines in the present
century. In that way, the role of artificial intelligence and machine
learning in energy storage devices was investigated. As a
preliminary study, the data derived from electrochemical studies
were used for the prediction. The prediction of current from cyclic
voltammetry (CV) studies was undertaken for bismuth ferrite
(BFO), substitution of zinc in BFO (BFZO), and substitution of
cobalt in BFO composite (BFCO). CV is a vital electrochemical
technique used for studying the electrochemical behavior of any
material. The electrochemical study provides insights into the
energy storage behavior of the material through the specific
capacitance. The machine learning models, such as Artificial Neural Network (ANN), Random Forest (RF), and XGBoost (XGB),
are trained and implemented to predict current at different scan rates. These models are trained and validated using the data
collected from a CHI 600E electrochemical workstation. Multiple trials of experiments were performed to build the most optimum
model for the material. The predicted values provide promising results and align well with the experimental data. The XGBoost,
ANN and RF models perform well for the CV data set with an average testing accuracy >97%. Also, a meta-model was created using
stacking of the above three machine learning models which further improved the predictive performance, achieving a slightly higher
average testing accuracy of over 97.73%. The outcomes from the models can promote the development of machine learning
applications in the field of electrochemistry and provide insights into optimizing supercapacitor performance and design through
data-driven approaches.

1. INTRODUCTION
Energy is one of the most important needs for the twenty-first
century and it is a part of human existence. The change in
climatic conditions and the depletion of fossil fuels drives us to
look for new energy harvesting and storage technology.
Renewable energy technology, such as solar, wind, tidal, and
geothermal, is an effective alternative due to its properties, such
as cost-effective, high performance, and ecological benign. The
harvested energy through renewable technology is stored in the
energy storage devices, such as batteries and supercapacitors
(SCs). Batteries have the properties of high energy density,
whereas SCs have the properties of high power density. So, the
present focus is on improving the energy density of SC devices.
SCs are used in commercial machinery, digital cameras, hybrid
electric cars, etc.1,2 Based on the mechanism, SCs are classified
into three types (i) electrical double layer capacitor (EDLC)�
the carbon-based material utilizing nonfaradaic physical
adsorption at the electrode−electrolyte interface, (ii) pseudo-
capacitor�the metal oxides and conducting polymer-based
material utilizing faradaic reaction or redox reaction on the

electrode and electrolyte interfaces, and (iii) hybrid
capacitor�the combination of EDLC and pseudocapacitor
electrodes.3,4 The transition-metal oxides, such as NiO, MnO2,
Co3O4, V2O5, ZnO, Fe3O4, etc, having high specific
capacitance, good redox reversibility, good cyclic stability,
low cost, and nontoxic material are used as electrode materials
for SCs.4 In the present study, bismuth ferrite (BFO) and
substitution of zinc/cobalt BFO are used as the electrode
material, which were subjected to electrochemical studies. The
data derived from the electrochemical studies were subjected
to the prediction of current through modeling. Artificial
intelligence (AI) has emerged as a transformative tool in the
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realm of SC technology. By utilizing AI methodologies, such as
machine learning (ML) and deep learning, researchers were
able to enhance the performance, efficiency, and reliability of
SCs. The SC performance and its cyclic voltammetry (CV)
behavior were modeled using an artificial neural network
(ANN) and random forest algorithm for the Co−CeO2/rGO
nanocomposite,5 which motivated us to expand the approach
to our own material composite. There have been numerous
studies focusing on the assessment of SC performance using
intelligent models like ANN.6 These investigations employ
ANN to analyze and predict the electrochemical behavior and
characteristics of SCs. Also, ML algorithms are utilized to
establish a correlation between intrinsic features and the cyclic
stability of SCs.7 The advancements and progress made in
applying ML techniques to predict the capacitance and
estimate the remaining useful life of SCs.8,9 Moreover, the
ML approach was implemented on various physicochemical
features to predict the specific capacitance of a material.10

Traditionally, experimental techniques, such as CV tests, are
employed to characterize the electrochemical properties of
materials. It provides valuable information about the current−
voltage relationship and energy storage capability of the SC
electrode.2 However, conducting extensive experimental
studies can be a time-consuming and resource-intensive work.
To overcome these challenges, we propose the use of AI and

ML techniques to predict the current in CV curves for the
substitution of the zinc and cobalt BFO composite. ML
models, including RF, XGBoost, and ANN, have been trained
and implemented to learn the complex relationships between
the input parameters (scan rates) and predict the correspond-
ing output variable (current). The main objective of this study
is to assess the performance of these ML models in predicting
the electrochemical behavior of the zinc and cobalt in the BFO
composite. The accuracy of the predictions is assessed by
comparing the model’s results with experimental values.
Furthermore, the study aims to identify the most effective
ML model for accurately predicting the electrochemical
properties of the composite. The successful application of
ML in this field can have significant implications for the
development of SCs. By leveraging AI and ML techniques, we
can gain valuable insights into the relationships between the
material composition, electrode design, and electrochemical
performance. This data-driven approach can guide the
optimization of SC performance and facilitate the design of
more efficient energy storage devices.

2. METHODOLOGY
2.1. Electrode Preparation and Electrochemical

Measurements. The electrochemical measurements of
BFO, BFZO, and BFCO composites were performed in the
three electrode system using 3 M KOH as the electrolyte. The
active electrode materials were prepared as a paste by mixing
the active material (BFO, BFZO, and BFCO) in an 80:10:10
ratio with 10% PVDF as a binder and 10% acetylene black.
This mixture was thoroughly combined using NMP solvent
until it formed a fine paste. The mixture was coated on
graphite sheet substrate of 1 × 1 cm dimension. The substrate
underwent precleaning with acetone and deionized water, then
dried at 80 °C. The prepared paste was coated on the substrate
and dried at 60 °C for 12 h to remove the solvent. The
prepared active material acts as a working electrode, a platinum
wire acts as a counter electrode, and Ag/AgCl acts as the
reference and counter electrodes, respectively. Electrochemical

measurements, such as CV, galvanostatic charge−discharge
(GCD), and electrochemical impedance spectroscopy were
analyzed using a CH analyzer (Model: CHI 600E) (Figure 1).

The CV data of the SC material are collected using a three-
electrode system and an electrochemical workstation. Sub-
sequently, the collected data are sent to the computer for data
set creation. Eqs 1 and 2 were used to calculate the specific
capacitance (Csp) from the CV curve and the GCD curve,
respectively.

=C IdV V( )/2mvsp (1)

= × ×C I t m V( )/( ))sp (2)

In the equation, Csp stands for specific capacitance (F g−1),
∫ IdV for integrated area of total charge corresponding to
potential window, ν for scan rate (mV s−1), m for mass of
active material (g), V for potential window (V), I for discharge
current density (A g−1), and t′ for discharging time (s).2

The potential window of BFO and BFZO composites is
−0.5 to 0.5 and −0.7 to 0.5 V for BFCO composites in 3 M
KOH as a electrolyte solution. The CV curves of all the
composites were scanned at a scan rate of 10−50 mv s−1 and
the GCD curves were measured at 1−5 A g−1 of current
density. Due to the highly time-dependent nature of GCD
data, we exclusively used CV data for modeling.

2.2. Data Preprocessing. The open source software we
used to create ML models was Jupyter Notebook 6.5.2 with
the Python 3 programming language. Two different data sets
are created for the study. One data set includes current and
potential values for different scan rates at different concen-
trations (Data set 1). The other data set includes current and
potential values for one scan rate at a single concentration
(Data set 2). The data sets are converted to a structured
format having rows and columns. Further, based on the CV
graph, the redox curve is classified into oxidation and
reduction. The dummy variables are used to represent the
column “Oxidation” in the Data sets. One or 0 indicates
whether the curve is at oxidation or reduction, respectively.5

The one-hot encoding method was used to differentiate the
substitution of zinc and cobalt BFO data sets (Figure 2).

2.2.1. Dataset. The datasets were created for BFO,
substitution of zinc in BFO, and substitution of cobalt in
BFO at three different concentrations of Zn(NO3)2·6H2O at
1.5 mmol (BFZO1), 2.5 mmol (BFZO2), 3.5 mmol (BFZO3),
1.5 mmol (BFCO1), 2.5 mmol (BFCO2), and 3.5 mmol
(BFCO3).

2.2.2. Dataset 1. CV data for BFO, BFZO1, BFZO2,
BFZO3, BFCO1, BFCO2, and BFCO3 are taken at different

Figure 1. (a) Three-electrode system and (b) experimental setup
used for collecting CV data from an electrochemical workstation.
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scan rates (10, 20, 30, 40, and 50 mV s−1). The size of the data
set is 216200 rows and 7 columns (216,200 × 7).2

2.2.3. Dataset 2. CV data for BFZO3 is taken at 60 mV s−1

scan rate to demonstrate a comparison of specific capacitance
(predicted vs experimental). The size of the data set is 2000
rows and 7 columns (2000 × 7)2

After preprocessing, the whole data set was divided into
training (80%) and validation part (20%). Here, the validation
part is addressed as the testing part and it is used to assess the
different model’s performance and tune hyperparameters. This
helps to ensure that the models generalize well to unseen data.
Data set 2 is the primary data set for testing the models on
real-world data. Based on the nature of the above data sets,
Deep learning and ensemble ML models were trained and used
to predict output current from Data set 1. Tensorflow and
Scikit-learn libraries from Python 3 were used to build these
models and evaluate them under different evaluating metrics.

3. ML MODELS
The CV profiles of BFO and substitution of zinc and cobalt
BFO composite are trained under different ML algorithms. A
deep learning model, such as ANN, and ensemble models,
such as RF and XGBoost, are trained and optimized for
accurate prediction. The choice of these algorithms over others
was based on their respective strengths and characteristics.
ANNs were employed to capture intricate patterns within the
data, RF was chosen for its robustness and its capacity to yield
insights into feature importance, while XGBoost (XGB) was
utilized due to its high performance and effectiveness in
managing structured data. Differences in the prediction
mechanisms arise among these models primarily because of
their distinct algorithms and methodologies. ANNs employ
interconnected layers of nodes to transform input features,
capturing intricate patterns through iterative training. RF
utilizes independently constructed decision trees, combining
their predictions through majority voting or averaging. In
contrast, XGBoost (XGB) employs a sequential ensemble
approach, building decision trees sequentially to correct errors,
optimizing a predefined loss function. The used evaluation
metrics for model validation are root mean square error, MSE,
and coefficient of determination/R-squared value.

= = yi y

n
RMSE

( )i
n

i1
2

(3)

=
=n

yi yMSE
1

( )2
i

n

i
1 (4)

Also, MSE = RMSE2

= i
k
jjj y

{
zzzR squared 1

SSR
SST (5)

where, n is the number of instances in the dataset, yi is the true
target value for instance i, and y̅i is the predicted value for
instance i, SSR (sum of squared residuals) quantifies the total
variability that remains unaccounted for by the regression
model, while SST (total sum of squares) measures the overall
variability present in the dependent variable.11,12

The inputs to the ML models are potential, oxidation/
reduction, Zn/Co concentration, scan rate, zinc (yes/no),
cobalt (yes/no), and the output is current. Figure 3 shows a
schematic diagram that shows the collection of input from the
electrodes, processes through models, and produces a
predicted output.

3.1. Artificial Neural Network. ANNs consist of a
network of interconnected artificial neurons organized into
layers, commonly referred to as nodes. The information passes
through the network in the forward direction, with each
neuron receiving inputs. After processing, the output of each
layer is transmitted to the next layer, where connections
between neurons carry information weighted according to their
respective strengths. This process allows ANNs to capture
intricate patterns and nonlinear relationships within the data,
enabling them to learn and adapt to complex information
structures. ANNs are typically organized into layers, which are
composed of multiple neurons. An ANN typically comprises
three primary layer types: the input layer, one or more hidden
layers, and the output layer.13,14 The ANN architecture
determines the model’s capacity to learn complex patterns
from the data. Parameters like the number of layers, the
number of neurons per layer, the type of activation functions,
and the connections between neurons profoundly impact the
network’s ability to generalize and perform well on unseen
data. A deeper architecture with more layers can capture
intricate relationships in the data but may also increase the risk
of overfitting. On the other hand, a shallow architecture might
not capture enough complexity to effectively learn the
underlying patterns. Thus, it is crucial to select the appropriate

Figure 2. Schematic representation of ML pipeline/steps involved in
model construction.

Figure 3. Input, process, and output diagram for current prediction.
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ANN architecture based on a balance between model
complexity and the complexity of the underlying data
patterns.25,26 The neural network architecture used for current
prediction is given in Figure 4.27

By applying the S̀tandardScaler ̀ from scikit-learn Python
library, the input data is scaled in such a way that each feature
has zero mean and unit variance.15

=Standardized feature
(feature value mean)

standard deviation (6)

We used TensorFlow (a ML framework for developing
neural networks) for building ANN. In TensorFlow, a linear
transformation is commonly implemented using a dense layer
or fully connected layer. When provided with an input vector
“x”, a bias vector “B”, and a weight matrix “W”, the output “y”
can be computed as follows

= +y Wx B (7)

The activation function applied to the hidden layers in this
work is called the rectified linear unit (ReLU) activation
function, which is given as

=x xReLU( ) (0, ) (8)

where “x” is the input value to the activation function.16,17

The ReLU function operates by returning the input value if
it is greater than or equal to zero and returning zero for any
negative input value

= > =
<

x x x

x

ReLU( ) , if 0

0, if 0 (9)

The output layer uses a linear activation function for
regression.16 The computational intensity of ANNs is a
drawback, particularly evident during the training of deep
architectures.

3.2. RF Algorithm. RF is a predictive modeling technique
that utilizes an ensemble of decision trees to generate accurate
predictions. The concept underlying ensemble learning is that
by combining the predictions of multiple models, it is possible
to enhance the overall performance and generalization ability
of the ensemble model compared to using a single model. In
RF, an ensemble of decision trees is trained on different
subsets of the data, and their individual predictions are
aggregated to make the final prediction. RF builds an ensemble
of decision trees using a technique called bagging (bootstrap
aggregating), where each decision tree in the ensemble is
trained on a randomly sampled subset of the training data, with
replacement (bootstrapping) allowing them to learn from
diverse data subsets. Bagging used all predictor variables to
create random splits in the bootstrapping process which
created highly correlated trees. So, we used RF, which creates
subsets of predictor variables to split different trees for each
model. In this way, we reduced the high variance after
aggregation. During tree construction, each split in a decision
tree is chosen from a random subset of features.14 M out of P
total predictor variables, which helps to introduce randomness
and reduce correlation among trees. The number of predictor
variables ‘M’ utilized to construct various trees from a total of
‘P’ variables is

=M P/3 (10)

The ultimate prediction of the RF is derived by taking the
average of predictions made by each individual tree within the
ensemble. That is

= + + + n
n

aggregated prediction
(prediction 1 prediction 2 ... prediction )

(11)

where prediction 1, prediction 2, ..., prediction n represents the
predictions done by each individual decision tree in the RF and

Figure 4. Neural network architecture for CV behavior of the composite.
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the variable “n” denotes the total count of decision trees within
the ensemble.18 An advantage of RF is that it reduces
overfitting by combining the predictions of multiple trees
trained on different subsets of the data, thereby improving the
model’s generalization performance, a drawback of RF is that
interpreting individual trees within the ensemble can be
challenging, limiting its transparency and interpretability
(Figure 5).

3.3. XGBOOST. Extreme gradient boost regression is
commonly abbreviated as “XGBoost” regression.19 XGBoost
belongs to the family of gradient-boosting algorithms. Gradient
boosting sequentially combines multiple weak learners into an
ensemble method. Each new model is trained to correct the
errors of the previous models, leading to a robust and accurate
predictive model.20 XGBoost uses the gradient and Hessian of
the loss function to optimize the model during training. The
gradient represents the derivative of the loss function with
respect to the predicted values, while the Hessian represents
the second derivative. These values are used to update the
model parameters in each boosting iteration.20,21

= +Objective function loss function regularization term
(12)

XGBoost incorporates regularization components into the
objective function to manage model complexity effectively and
prevent overfitting. The regularization terms can be either L1
regularization (Lasso) or L2 regularization (Ridge).

= × | |
=

L w1 regularization term
i

n

1 (13)

= × ×
=

L w2 regularization term 0.5
i

n

1

2

(14)

where λ serves as the penalty factor that controls the strength
of the regularization and w represents the model parame-
ters.22,23

XGBoost employs the Taylor expansion to approximate the
loss function and compute the gradient and Hessian efficiently.
The Taylor expansion approximates the loss function as a
second-order polynomial around a specific point. This
approximation simplifies the computation of the gradient and
Hessian.24 An advantage of XGBoost (XGB) over other
models is its built-in mechanisms for handling missing values
and efficiently managing large data sets. However, like RF,
interpreting XGB models can be challenging, especially when

Figure 5. Decision trees in the RF model for CV behavior of the composite.

Figure 6. First tree in the XGBoost model for CV behavior of BFO composite.
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dealing with a large number of trees in the ensemble (Figure
6).

3.4. Meta-Model. A meta-model is a higher-level model
that learns to integrate predictions from multiple base models
(ANN, RF, and XGB) to make final predictions. It is a second-
level model trained on the outputs (predictions) of other
models (Figure 7).

A meta-model was created using stacking of 3 machine-
learning models. In the stacking ensemble method, base
models, such as ANN, RF and XGB (level-0 models), are
trained independently on the data set, with each model
generating predictions. These predictions serve as input
features for the meta-model (level-1 model), which learns to
combine them to produce the final prediction. Stacking offers
considerable flexibility in selecting both the base models and
the meta-model, allowing for the exploration of different
configurations to optimize performance.28 Here, we used
RidgeCV as the final estimator. RidgeCV (ridge cross-
validation) is a regression algorithm that combines the ridge
regression technique with cross-validation to automate the
selection of the optimal regularization parameter. Additionally,
it effectively mitigates overfitting by shrinking coefficient values
toward zero, promoting simpler and more interpretable
models.29

4. RESULTS AND DISCUSSION
4.1. Current Prediction Model. The output current is

predicted for CV behavior of BFO and BFO substitution with
zinc using features, such as potential, redox nature, substitution
concentration, and scan rate, as the input.
4.1.1. ANN Model. The CV profile data set for different scan

rates were divided into training and testing sets, with a
distribution of 80% for training and 20% for testing
(validation). The selection of training and testing data sets
was random and unbiased. Our ANN model has 1 input layer,
2 hidden layers, and 1 output layer. The number of nodes in
each hidden layer is 100 and 80. The ANN architecture was
chosen after multiple experimentation and iterative refine-
ments.

Table 1 shows the variation of R-squared and RMSE values
for different ANN layers at a constant learning rate of 0.001.
Here, we have chosen 10,080 as the first and second hidden
layer neurons as the R-squared accuracy and RMSE values of
test and train data sets are very close, which indicates that the
architecture strikes a balance between model complexity and
generalization ability for unseen data. The nodes of the hidden
layers were also selected based on multiple trails. The
parameters of the ANN model is shown in Table 2.

Hyperparameter tuning is the process of systematically
searching for the optimal hyperparameters for a machine-
learning model, and it involves selecting the best combination
of hyperparameters to maximize the model’s performance on
the data set. The goal of hyperparameter tuning is to strike a
balance between model complexity and its ability to generalize.

Each chosen hyperparameter such as no of hidden layers, no
of nodes/neurons, type of activation function, learning rate,
batch size, and no of epochs plays a critical role in determining
the performance and behavior of an ANN model. These
hyperparameters are tuned using testing data (20% of Data set
1) until we get a similar test and train accuracy and error
values. A lower learning rate of 0.001 and smaller batch sizes of
32 in our deep learning model were chosen to facilitate
smoother convergence, better generalization, and efficient
exploration of the solution space while reducing the risk of
overfitting and memory requirements. The reduction in the
loss function curve was observed for both training and testing
data. The model training was stopped immediately after
observing an increase in test loss. Model training was also
stopped if no improvement was found in reducing error or
increment in accuracy.6

Figure 8 shows that the decrease in the error of the test and
train set occurs with an increase in the number of epochs. The
model training was stopped after 100 epochs. After various
hyperparameter tuning, the best parameters for the model are
noted (Table 2). The predicted test samples are validated

Figure 7. Meta-model (StackingRegressor) structure.

Table 1. Model Performance Summary Table for Various ANN Architectures

no of hidden layers RMSE test R square test RMSE train R square train learning rate

120,60,30 0.0010773947784315 0.9786377990772107 0.001063727760395827 0.9790838149660833 0.001
60,30,10 0.0011061341722161722 0.9774829298207669 0.0010870158009392782 0.9781579597694783 0.001
120,60 0.0011574612210172692 0.9753447641225788 0.0011422561867760876 0.9758815981701627 0.001
100,80 0.001129789056085967 0.9765095687547274 0.0011254247366706952 0.9765871435774782 0.001
60,20 0.0011373289763688778 0.976194984379553 0.0011155516759022465 0.9769961315947602 0.001
120 0.0012768575041076568 0.969995863742859 0.0012714935816441153 0.9701152358286212 0.001
50 0.0013625685636169773 0.9658325165642594 0.0013509776980902821 0.9662621154254316 0.001

Table 2. Hyperparameter Table for ANN Model

ANN parameters number/type

input layer nodes 6
output layer nodes 1
no of hidden layers 2
hidden layer 1 nodes 100
hidden layer 2 nodes 80
hidden layer activation function ReLU
output layer activation function linear activation function
learning rate 0.001
batch size 32
no of epochs 100
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using a 4-fold cross-validation technique for credibility. Cross-
validation R-squared scores are 0.977508, 0.977669, 0.976918,
and 0.977271.
The experimental and predicted target values for current

were compared for analyzing the model performance, Figure 9
shows the actual vs predicted current graph for train and test
data. The closer the points toward the fit line in the ANN
model is indicative of accurate prediction.
4.1.2. RF Model. The RF algorithm was trained and tested

using Data set 1. To gain insights into the impact of different
features on the model’s performance, we noted the feature
importance for ensemble learning models. Figure 10 shows the
percentage of feature importance in the final RF model. The
potential (53.1%) and oxidation (32.5%) features contribute
majorly to model prediction in the RF model. After train and
test split, the model was trained under different number of
trees. Then, the predicted values are examined and studied
under different hyperparameters. The optimal model was
achieved through fine-tuning various hyperparameters asso-
ciated with it.
Table 3 shows the hyperparameters associated with the RF

model, such as n_estimators, max_depth, min_samples_split,
and min_samples_leaf, which are tuned to optimize the
performance of RF model. From the graphs (Figures 11 and
12), it was observed, that the model’s predictive accuracy
improved a lot after hyperparameter tuning from defaults.
Here, the obtained optimum values may not necessarily
correspond to the global minimum of the optimization space
but rather to a local minimum where the model achieves
satisfactory performance. Reaching the global minima of the
optimization space is challenging and often not guaranteed,
especially in complex and high-dimensional optimization
problems. So, our ML models strive to achieve a satisfactory

performance rather than reaching the absolute global
minimum. Here, the lower values of min_samples_split and
min_samples_leaf are used so that the trees get more flexible
and can potentially capture more complex patterns in the data.

In Figure 11, as the number of trees increases, the accuracy
improves consistently for both the test and train data and
becomes constant after a certain number of trees. Additionally,
the root-mean-square (RMSE) shows a decreasing trend as the
number of trees increases, eventually stabilizing after reaching
40 trees. Figure 12 shows how the model accuracy varies with
test and train data for different max_depth values. As we
observe this graph, the testing accuracy starts to drop after a
certain max_depth value, whereas the training accuracy keeps
increasing. This indicates that after certain max_depth values,
the trees are prone to overfit on the data set. So, the optimum
chosen max_depth value for the RF model is 11. The
minimum RMSE was 0.001155. The maximum testing R-
squared obtained was 0.9754. The actual vs predicted plots for
the RF model are given in Figure 13. The proximity of data
points to the fitted line is indicative of the RF model’s accuracy
in making predictions. Also, the model was validated using 10-
fold validation techniques to avoid overfitting of the model.
Cross-validation R-squared scores are 0.97551536 0.97461391,
0.97474077, 0.97540098, 0.97756644, 0.97750095,
0.97519813, 0.97645132, 0.97316205, and 0.97561293.

4.1.3. XGBoost Model. The boosting process iterates
sequentially, with each subsequent model aimed at
rectifying the errors of its predecessors. Similar to ANN
and RF, XGBoost model also trained with 80% training and

Figure 8. Variation of training and testing loss curves for different
number of epochs for the neural network model.

Figure 9. Comparison of actual vs predicted current values (a) train data and (b) test data for the ANN model.

Figure 10. Feature importance (%) of independent variables in
prediction for the RF Model.

Table 3. Hyperparameter Table for the RF Model

RF parameters number/type

N_estimators (no of trees) 40
Max_depth 11
Min_samples_split 2
Min_samples_leaf 1
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tested with 20% over CV profile data. The predicted current
values are validated using RMSE, MSE, and R-squared metrics.
Figure 14 shows the percentage of feature importance in the
final XGB model. Unlike RF, in XGB model the oxidation
(35.6%) feature contributes more than other features followed
by the potential (24.9%), zinc (or) cobalt concentration
(13.1%), scan rate (10.5%), etc. The various adjusted
hyperparameters for the XGB model are.
Table 4, shows the three major hyperparameters (n_esti-

mators, max_depth and eta) which are adjusted to obtain
optimum model performance. A lower eta of 0.1 makes the
algorithm more robust to variations and noise in the training
data and allows the model to make smaller adjustments to the
model weights during each boosting iteration.
Figure 15 shows a gradual decrease in error and increase in

accuracy for an increase in number of boosting rounds. The
test and train curves are almost similar indicating an absence of
overfit. Also, the maximum depth hyperparameter has
contributed a significant improvement to the model perform-

ance. The variation of R-squared with increasing maximum
depth is shown in Figure 16. To find the optimum depth of
trees, the curve between accuracy and maximum depth was
studied. The maximum depth of 6 and the number of boosting
rounds as 100 yields us the best performance model for the
given data set. The testing accuracy of the model was 97.71,
with a root-mean-square error of 0.001114. Figure 17 shows
the actual vs predicted current graph for XGB. The closeness
of data points to the fitted line serves as an indicator of the
XGBoost model’s good accuracy in making predictions.

The XGBoost model was validated using a 10-fold cross-
validation technique, the cross-validation scores are 0.97709,
0.976916, 0.977619, 0.976612, 0.977568, 0.976897, 0.977224

Figure 11. (a) R-Squared and (b) RMSE values for different number of trees for the RF model.

Figure 12. Variation in R-squared values for testing and training of
CV profile for different maximum depths of RF trees.

Figure 13. Comparison of actual vs predicted current values (a) train data and (b) test data for the RF model.

Figure 14. Feature importance (%) of independent variables in
prediction for the XGB Model.

Table 4. Hyperparameters Table for the XGB Model

XGB parameters number/type

N_estimators (no of boosting rounds) 100
Max_depth 6
learning rate (eta) 0.1
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0.978407, 0.978286, and 0.977863, which is approximately
equal to the obtained test and train r-scores.
4.1.4. Stacked Model. Figure 18 shows actual vs predicted

current values for the meta-model. The meta-model’s test
accuracy was 97.73% and train accuracy was 97.95%. This
similarity suggests that the model is performing consistently
well on both the training and validation data sets. Here, the
final estimator (RidgeCV) internally performs cross-validation
to select the optimal value of alpha and helps in finding the
right balance between bias and variance, ensuring that the
meta-model does not overfit.

4.2. Specific Capacitance Comparison. The area under
the CV curves was found and used for specific capacitance
calculations, the actual capacitance with a CV curve area
(0.00727468) for BFZO3 (m = 3.5 g) at 60 mV s−1 scan rate
and potential window of 1 V was 0.01732 F g−1. The XGBoost
model was taken to predict the current for BFZO3 at 60 mV
s−1, and the CV curve was plotted. From the predicted CV

curve, area under the curve was calculated (0.00755503) to get
the predicted specific capacitance. From eq 1, the predicted
capacitance was found to be 0.01798 F g−1. The predicted
specific capacitance was approximately similar to the
experimental value, indicating the good performance of these
machine-learning models for out-of-sample data sets (Figure
19).

4.3. Evaluated Metric Values for the ML Models. From
Table 5, the comparison graphs were plotted to compare the
R-squared and RMSE values for the above three predictive
models. Also train and test errors and model accuracies for
each individual model are approximately the same, which
indicates good fit with absence of overfitting.

The plot (Figure 20) compares the performance of different
models using validation metrics such as R-squared and RMSE.
In Figure 21, the test accuracy and RMSE values are compared
between the average of three models (ANN, RF, and XGB)
and the meta-model. These models exhibit a high level of
prediction accuracy for the given data sets, benefiting from
their ability to correct errors made in previous steps. This
results in robust and accurate predictive models.

5. CONCLUSIONS
A comprehensive study on the application of ML models to
predict current from CV curves for substitution of zinc BFO
composite at different scan rates were presented. The
generalizability and interpretability performances of three
different ML models are studied under different parameters.
All three ML models performed well in predicting current from
other CV curve parameters with an average accuracy of
97.65%. A stacked meta-model was developed, demonstrating
a slight improvement over the aggregate performance of three
individual ML models. The specific capacitance was

Figure 15. (a) R-Squared values and (b) RMSE values for testing and training CV data sets for different number of boosting rounds.

Figure 16. Variation in R-squared values for testing and training of
CV profile for different maximum depths of XGB trees.

Figure 17. Comparison of actual vs predicted current values (a) train data and (b) test data for the XGB model.
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determined for the out-of-sample data set (Data set 2),
yielding a predicted value of 0.01798 F g−1. This closely aligns
with the experimental specific capacitance of 0.01732 F g−1,
providing compelling evidence for the model’s accuracy and

reliability. By utilizing these ML models to predict specific
capacitance from CV data, researchers can rapidly screen a
wide range of electrode materials without the need for
extensive experimental testing which can accelerate the
material discovery process and save both time and resources
associated with the experiment. Once these ML models are
trained, they can be deployed to make real-time predictions on
new CV data. They can predict current and specific
capacitance at different concentration doping and scan rates
for a material with different dopants. They can also predict
current for some more CV cycles at a fixed scan rate for a
material, provided we must consider the temporal dynamics in
the input data before being fed to the model. Combining the
predictions from three algorithms leads to more accurate and
generalizable predictions compared to using a single algorithm
which assists in the design and fabrication of SC electrodes
with specific capacitance targets in mind. Further integrating

Figure 18. Comparison of actual vs predicted current values (a) train data and (b) test data for meta-model.

Figure 19. Comparison of CV plots for data set 2 (a) actual CV plot and (b) predicted CV plot by the XGB model for BFZO3 taken at 60 mV s−1

scan rate.

Table 5. Comparison Table Representing RMSE and R-
Squared Values for Different ML Models

MODEL TEST/TRAIN RMSE R2

ANN TEST 0.001111 0.97725
ANN TRAIN 0.001098 0.97768
RF TEST 0.001155 0.97541
RF TRAIN 0.001073 0.97871
XGB TEST 0.001114 0.97714
XGB TRAIN 0.001079 0.97847
meta/stacked TEST 0.001108 0.97737
meta/stacked TRAIN 0.001052 0.97953

Figure 20. Comparison plots for test and train data against coefficient of determination/R-squared values for three different ML models.
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these ML models into the experimental setup or data
acquisition system can enable seamless prediction of CV data
in real time. We can also implement a feedback loop in the
future to continuously update and refine these ML models
based on new data and feedback from real-time predictions.
Regular model evaluation and retraining ensure that these
models remain accurate and reliable as the underlying system
evolves. By harnessing the power of these models, we can
advance the understanding and optimization of SC electrodes,
ultimately enabling the advancement of more effective and eco-
friendly energy storage solutions.
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