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Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a
significant global health problem. The clinical applicability of traditional surgery and other
locoregional therapies is limited, and these therapeutic strategies are far from satisfactory
in improving the outcomes of advanced HCC. In the past decade, targeted therapy had
made a ground-breaking progress in advanced HCC. Those targeted therapies exert
antitumor effects through specific signals, including anti-angiogenesis or cell cycle
progression. As a standard systemic therapy option, it tremendously improves the
survival of this devastating disease. Moreover, the combination of targeted therapy with
immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and
becomes the hot topic in clinical studies. The combining medications bring about a
paradigm shift in the treatment of advanced HCC. In this review, we presented all
approved targeted agents for advanced HCC with an emphasis on their clinical
efficacy, summarized the advances of multi-target drugs in research for HCC and
potential therapeutic targets for drug development. We also discussed the exciting
results of the combination between targeted therapy and ICI.

Keywords: hepatocellular carcinoma, targeted therapy, tyrosine kinase inhibitors, immune checkpoint inhibitors,
clinical trials
INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for approximately 75%-85% of all primary liver cancer
(1). Several risk factors such as chronic hepatitis B virus (HBV) and hepatitis C virus (HCV)
infections, autoimmune hepatitis, alcohol abuse, diabetes, obesity induce liver injury and produce
an inflammatory environment, which lead to hepatocyte necrosis, repeated regeneration and
chromosomal instability (2, 3). The gradual accumulation of genetic and epigenetic abnormalities
in this background plays an essential role in hepatocarcinogenesis (4). As curative treatments,
surgical resection, radiofrequency ablation (RFA), transarterial chemoembolization (TACE) and
liver transplant (LT) prolong the survival of HCC patients at early-or intermediate-stages (5–7).
However, the high incidence of recurrence indicates poor survival prospects (8–11). Besides, most of
HCCs are diagnosed at an advanced stage due to its insidious onset and rapid progression (7).
Palliative treatments are therefore crucial in the management of advanced HCC. The efficacy of
systemic chemotherapy for advanced HCC is disappointing (12).
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In recent years, molecular biology techniques are rapidly
developing, such as whole exome sequencing, copy number
analyses, mRNA-seq, miRNA-seq, methylomics and
proteomics (13–15). Multiplex molecular profiling of HCC
deepens on the understanding of aberrant molecular events
and pivotal signaling pathways associated with the
development of HCC, especially tyrosine kinase-related
signaling (14). In general, tyrosine kinases can be classified as
receptor tyrosine kinases (RTKs) and non-receptor tyrosine
kinases (nRTKs) (16). RTKs transmit extracellular signals and
nRTKs mediate intracellular communications (16). RTKs are
Frontiers in Oncology | www.frontiersin.org 2
receptors of a variety of subfamilies, including vascular
endothelial growth factor receptor (VEGFR), platelet-derived
growth factor receptor (PDGFR), epidermal growth factor
receptor (EGFR), fibroblast growth factor receptor (FGFR),
hepatocyte growth factor receptor (HGFR), Tie-2 and RET
(Figure 1) (17–20). RTK consists of an extracellular domain
that binds specific ligand, a transmembrane domain and an
intracellular domain with tyrosine kinase activity (21). The
binding of RTK to its ligand phosphorylates tyrosine residues
of target protein and regulates a series of biochemical processes
through corresponding downstream signaling pathways (17, 18).
FIGURE 1 | Main molecules of targeted therapy for hepatocellular carcinoma (HCC). The major targets include vascular endothelial growth factor receptor (VEGFR),
platelet-derived growth factor receptor (PDGFR), FGF receptor (FGFR), epidermal growth factor receptor (EGFR), insulin-like growth factor receptor (IGFR), c-Kit,
hepatocyte growth factor receptor (c-Met), Tie-2, FLT3, RET, RAF, MEK, STAT, and mTOR. The key mechanisms are to inhibit the activity of tyrosine kinase in the
intracellular domain of the receptor tyrosine kinase or directly block the transduction of downstream signals involved in cell survival, proliferation, differentiation,
migration and angiogenesis.
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Functional mutations, genomic amplification, chromosomal
rearrangements and/or autocrine activation lead to oncogenic
activation of RTK, ultimately leading to carcinogenesis, invasion,
metastasis, and angiogenesis (17, 22, 23). The emergence of
tyrosine kinase inhibitors (TKIs) has become a promising
targeted therapeutic strategy (24, 25). TKIs can enter cells and
interact with the intracellular domain of multiple receptors and
other intracellular signaling molecules, blocking the
phosphorylation of tyrosine residues and the activation of
various downstream signaling pathways such as the Ras/Raf/
MEK/MAPK and PI3K/AKT/mTOR (16).

Given the current investigation, multiple drugs have been
approved for advanced HCC (Table 1). The emergence of
targeted therapy has transformed the therapeutic landscape of
advanced HCC (5, 24, 26–28). Despite advances in targeted
Frontiers in Oncology | www.frontiersin.org 3
therapy, overall response rate and 5-year survival rate remain
unsatisfactory (29). The inevitable development of drug
resistance and toxicity, and the absence of specific biomarkers
to screen patients sensitive to these agents, have spurred the
further exploration of novel therapeutic targets and strategies
(29–31).

Effective combination therapy is needed due to the limited
efficacy of monotherapy. Recent studies have shown that
combinations of multiple therapeutic regimens demonstrated
superior efficacy to monotherapy, particularly combination of
targeted therapy with immune checkpoint inhibitor (ICI) (32).
Notably, the approval of atezolizumab plus bevacizumab as the
first-line setting for patients with unresectable or metastatic HCC
alters the outlook for this disease. This review focused on the
advances of targeted therapy for advanced HCC.
TABLE 1 | Principal clinical trials for the FDA-approval of targeted and immunotherapeutic drugs for HCC.

Drugs Main targets Treatment
line

Pivotal study Study design Results Approval
time

Sorafenib VEGFRs, PDGFR-b, c-Kit,
FLT3, RET

First-line NCT00105443 Phase III, sorafenib vs.
placebo

OS: 10.7 vs. 7.9 months (HR 0.69; 95%
CI: 0.55-0.87, p<0.001)

2007

Time to radiologic progression: 5.5 vs. 2.8 months
(HR 0.58; 95%CI: 0.45-0.74, p<0.001)
ORR:2% vs. 1%

Lenvatinib VEGFR1-3, FGFR1-4,
PDGFR-a, RET, c-Kit

First-line NCT01761266 Phase III, lenvatinib vs.
sorafenib

OS: 13.6 vs. 12.3 months (HR 0.92; 95%
CI: 0.79-1.06)

2018

PFS: 7.4 vs. 3.7 months (HR 0.66; 95%
CI: 0.57-0.77, p<0.0001)
TTP: 8.9 vs. 3.7 months (HR 0.63; 95%
CI: 0.53-0.73, p<0.0001)
ORR: 40.6% vs. 12.4%

Atezolizumab
plus
Bevacizumab

PD-L1 VEGF First-line NCT03434379 Phase Ib, atezolizumab
plus bevacizumab vs.
sorafenib

Survival rates at 12 months: 67.2% vs. 54.6% 2020
PFS: 6.8 vs. 4.3 months (HR 0.59; 95%
CI: 0.47-0.76, p<0.001)
ORR: 33.2% vs. 13.3%

Regorafenib VEGFR1-3, PDGFR-b,
FGFR1, Tie-2, c-Kit, RET,
B-RAF

Second-line NCT01774344 Phase III, regorafenib vs.
placebo

OS: 10.6 vs. 7.8 months (HR 0.63; 95%
CI: 0.50-0.79, p<0.0001)

2017

PFS: 3.1 vs. 1.5 months (HR 0.46; 95%
CI: 0.37-0.56, p<0.0001)
ORR: 11% vs. 4%

Cabozantinib VEGFR2, c-Met, RET, c-
Kit, AXL, FLT3

Second-line NCT01908426 Phase III, cabozantinib
vs. placebo

OS: 10.2 vs. 8.0 months (HR 0.76; 95%
CI: 0.63-0.92, p=0.005)

2019

PFS: 5.2 vs. 1.9 months (HR 0.44; 95%
CI: 0.36-0.52, p<0.001)
ORR: 4% vs. <1%

Ramucirumab VEGFR2 Second-line NCT02435433 Phase III, ramucirumab
vs. placebo

OS: 8.5 vs. 7.3 months (HR 0.71; 95%
CI: 0.531-0.949, p=0.0199)

2019

PFS: 2.8 vs. 1.6 months (HR 0.452; 95%
CI: 0.339-0.603, p<0.0001)
ORR: 5% vs. 1%

Nivolumab PD-1 Second-line NCT01658878 Phase I/II, nivolumab ORR: The dose-expansion phase 20% (95%
CI: 15-26)

2017

The dose-escalation phase 15% (95% CI: 6-28)
Pembrolizumab PD-1 Second-line NCT02702414 Phase II, pembrolizumab ORR: 17% 2018

1 (1%) complete and 17 (16%) partial responses
Nivolumab plus
Ipilimumab

PD-1 CTLA-4 Second-line NCT01658878 Phase I/II, Nivolumab
Ipilimumab

ORR: arm A: 32% arm B: 27% arm C: 29% OS:
arm A: 22.8 months arm B: 12.5 months arm
C: 12.7 months

2020
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APPROVED TARGETED THERAPEUTIC
AGENTS FOR HCC

First-Line Setting
Sorafenib
Sorafenib is an oral multi-targeted TKI, which exerts dual
antitumor effects (33). This drug not only directly suppresses
tumor cells proliferation by blocking RAF/MEK/ERK and JAK/
STAT signaling pathways, but also inhibits tumor angiogenesis
by targeting VEGFRs, PDGFR-b, c-Kit, FLT3, RET (33, 34). In
the Sorafenib HCC Assessment Randomized Protocol (SHARP)
trial, in comparison to placebo arm, sorafenib arm showed
prolonged overall survival (OS) (10.7 months vs 7.9 months;
HR 0.69; p<0.001) and time to radiologic progression (5.5
months vs 2.8 months; HR 0.58; p<0.001) (35). Based on the
results, sorafenib was approved by FDA for the first-line
treatment of advanced HCC in 2007. The similarly promising
results were displayed in another phase III Oriental trial. The
study also showed a significant improvement in median OS (6.5
months vs 4.2 months; HR 0.68; p=0.014) and time to
progression (TTP) (2.8 months vs 1.4 months; HR 0.57;
p=0.0005) in patients treated with sorafenib compared with
placebo (36). Unfortunately, the treatment-related adverse
events led to dose reductions in small fraction of patients and
rarely needed interruptions (36).

Lenvatinib
Lenvatinib is an oral multi-kinase inhibitor targeting VEGFR1-3,
FGFR1-4, PDGFR-a, RET and c-Kit (37). Lenvatinib was
approved by the FDA in 2018 as first-line treatment for
advanced HCC. The approval is based on an open-label, phase
III, multicenter, non-inferiority trial (38). The previous phase II
clinical trial had shown positive results of lenvatinib for the
treatment of HCC (39). Then, the further phase III, non-
inferiority trial was performed to compare the efficacy and
safety of lenvatinib versus sorafenib in HCC patients (38). As
first-line treatment, lenvatinib was non-inferior to sorafenib in
OS (13.6 months vs 12.3 months; HR 0.92) (38). Furthermore,
lenvatinib showed a significant improvement in progression-free
survival (PFS) (7.4 months vs 3.7 months; HR 0.66; p<0.0001)
and objective response rate (ORR) (40.6% vs 12.4%; OR 5.01;
p<0.0001) compared with sorafenib (38).

Second-Line Setting
Regorafenib
Regorafenib primarily targets VEGFR1-3, PDGFR-b, FGFR1,
Tie-2, c-Kit, RET, B-RAF (40). The FDA approved regorafenib
as the second-line setting for advanced HCC in 2017 based on
the results of an international, multicenter, randomized, double-
blind, placebo-controlled, phase III RESORCE trial (41). The
trial aimed to assess the effectiveness and safety of regorafenib in
HCC patients who progressed after sorafenib treatment (41).
Regorafenib increased OS to 10.6 months from 7.8 months in the
placebo arm (HR 0.63; p<0.0001) (41). Regorafenib is the first
systemic therapy to show survival benefit in HCC patients who
progressed on sorafenib.
Frontiers in Oncology | www.frontiersin.org 4
Cabozantinib
Cabozantinib has dual blocking effects on VEGFR2 and c-Met,
which exerts anti-tumor potential by reducing angiogenesis and
suppressing cell proliferation, migration and invasion (42). The
drug also has targeted inhibition of RET, c-Kit, AXL, FLT3 (43).
The randomized phase III clinical trial CELESTIAL enrolled 707
patients with advanced and progressed HCC who had been
previously treated with sorafenib (44). Patients in cabozantinib
arm showed significantly improvement of survival compared
with the placebo arm (median OS: 10.2 months vs 8.0 months;
HR 0.76; p=0.005. median PFS: 5.2 months vs 1.9 months; HR
0.44; p<0.001) (44). Moreover, the ORR in cabozantinib arm was
4%, higher than less than 1% in placebo arm (44). Given the
survival benefits brought by cabozantinib, this drug was FDA
approved as second-line setting for HCC in 2019.
Ramucirumab
Ramucirumab is a fully human IgG1 monoclonal antibody
targeting VEGFR2 (45). Unlike small molecule VEGFR TKIs,
ramucirumab binds to specific epitope of the extracellular
domain of VEGFR2, blocking the binding of the therapeutic
target to its ligand VEGF (46). A phase II study showed that
ramucirumab 8 mg/kg infused intravenously every 2 weeks had
anticancer activity in advanced HCC patients (47). In 2019, the
FDA approved ramucirumab as monotherapy for HCC patients
having alpha fetoprotein (AFP) ≥400 ng/ml and previously
treated with sorafenib. The approval is based on the phase III
REACH-2 clinical trial. This is the first positive phase III trial
conducted in biomarker-selected HCC patients (48). Both the
median OS (8.5 months vs 7.3 months; HR 0.710; p=0.0199) and
PFS (2.8 months vs 1.6 months; HR 0.452; p<0.0001) were longer
in ramucirumab arm than that in placebo arm (48). However,
there was no statistical difference in ORR between ramucirumab
arm (5%) and placebo arm (1%) (p=0.1697) (48). Ramucirumab
had a manageable safety and acceptable tolerability. The
incidences of serious adverse events were 35% in ramucirumab
arm and 29% in placebo arm (48).
ADVANCES OF OTHER MULTI-TARGETED
THERAPEUTIC AGENTS FOR HCC

Sunitinib
Sunitinib (SU011248) is an oral multi-kinase inhibitor that
targets VEGFRs, PDGFRs, c-Kit, FLT3, RET and colony-
stimulating factor 1 (CSF-1) (49). The multicenter phase II
SAKK 77/06 trial evaluated the antitumor activity of sunitinib
in advanced HCC patients (50). Patients were administrated 37.5
mg sunitinib daily until disease progression or intolerable
toxicity occurred (50). The stable disease rate was 40% (50).
However, another open multicenter phase II study conducted in
Europe and Asia reported a low overall ORR (2.7%) in advanced
unresectable HCC patients treated with sunitinib, which did not
meet the primary endpoint (expected ORR was 15%) (51). In
addition, 50 mg/day sunitinib showed severe toxicity (51).
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Hence, phase III study of sunitinib in HCC was halted due to
its toxicity.

Brivanib
Brivanib is a selective dual inhibitor targeting VEGFR and FGFR.
Preclinical study had shown that brivanib significantly inhibited
the growth of multiple HCC xenografts (52). Several clinical
trials were conducted to evaluate the efficacy of brivanib in
advanced HCC patients. In phase II studies, brivanib showed
promising antitumor activity as first- or second-line therapy (53,
54). However, brivanib did not significantly improve OS of HCC
patients as second-line therapy in phase III study, and another
phase III study also did not meet the primary endpoint of OS
noninferiority for brivanib versus sorafenib (55, 56).

Vandetanib
Vandetanib is an oral TKI targeting VEGFR, EGFR and RET. In
a phase II, randomized, double-blind, placebo-controlled study,
vandetanib showed a trend of improvement in PFS and OS for
advanced HCC, but there was no statistically significant
difference compared to the placebo arm. Also, the two arms
had no difference in tumor stabilization rate (57). However, the
combination of vandetanib with radiotherapy significantly
enhanced radiation killing (58).

Linifanib
Linifanib (ABT-869) is an ATP-competitive TKI targeting all
VEGFRs and PDGFR families (59). In a phase II single-arm
clinical trial, linifanib showed clinical activity in advanced HCC
patients who had received ≤1 systemic therapy (60). An open-
label phase III clinical trial evaluated the efficacy and safety of
linifanib versus sorafenib in advanced HCC patients who were
not systemically treated (61). Although the linifanib arm had
longer TTP, PFS and higher response rate, the study did not meet
the primary endpoint, with no significant difference in OS
between the linifanib and sorafenib arms (61). Moreover,
patients in the linifanib arm experienced more frequent
grade ≥3 adverse events (61).

Nintedanib
Nintedanib (BIBF 1120) is an oral triple angiokinase inhibitor
targeting VEGFR1-3, FGFR, PDGFR (62). BIBF 1120 (50 or 100
mg/kg/d) showed anti-tumor and anti-angiogenic activity in
HepG2 xenograft model (62). In a randomized, multicenter,
open-label study of Asian patients with advanced HCC, the
phase I portion, patients were divided into two groups based
on baseline alanine aminotransferase/aspartate aminotransferase
(ALT/AST) and Child-Pugh score (group I: ALT and AST ≤ 2
times the upper limit of normal (ULN) and Child-Pugh score 5-
6; group II: ALT or AST>2 to ≤5 times the ULN or Child-Pugh
score 7), and the maximum tolerated dose (MTD) of 200 mg was
determined for both groups (63). The phase II portion, group I
patients were randomly assigned in a 2:1 ratio to nintedanib 200
mg twice daily or sorafenib 400 mg twice daily continuously for
28 days (63). The both arms showed similar results in primary
endpoint TTP (2.8 months vs 3.7 months) and the secondary
endpoint OS (10.2 months vs 10.7 months) (63).
Frontiers in Oncology | www.frontiersin.org 5
Dovitinib
Dovitinib is a multi-kinase inhibitor targeting VEGFR, PDGFR
and FGFR. In addition to its anti-angiogenic effects, dovitinib
induces dephosphorylation of retinoblastoma protein, upregulates
p-histone H2A-X and p27, and downregulates p-CDK-2 and
cyclin B1, thereby reducing cell proliferation and inducing
tumor cell apoptosis (64). In addition, dovitinib induces
apoptosis of sorafenib-resistant cell lines by inhibiting signal
transducer and activator of transcription 3 (STAT3) (65).
Unfortunately, a randomized, open-label, phase II study of Asia-
Pacific patients reported that dovitinib did not show superior
activity to sorafenib in first-line treatment of advanced HCC (66).

Donafenib
Donafenib is a novel TKI and similar to sorafenib. In a phase Ib
clinical trial, a lower dosage of donafenib showed significant anti-
cancer effects (TTP was 120 days) and good safety profile in
Chinese patients with advanced HCC (67). The ZGDH3 study is
the first completed phase II/III clinical trial in China to evaluate
the efficacy of donafenib for the first-line treatment of advanced
HCC. At the 56th Annual Meeting of the American Society of
Clinical Oncology (ASCO 2020), the investigators presented the
latest ZGDH3 findings to the world through an oral presentation.
The study results showed that the primary endpoint of OS was
longer in donafinib arm than sorafenib arm (12.1 months vs 10.3
months). The donafenib arm showed a trend toward better
overall safety, demonstrating the potential of donafinib in
targeted therapy for HCC.
POTENTIAL THERAPEUTIC TARGETS
AND HIGHLY SELECTIVE DRUGS
FOR HCC

EGF/EGFR
EGFR is a PTK that binds to the ligands EGF and TGF-a to induce
receptor dimerization and autophosphorylation, which trigger the
downstream MAPK, PI3K, and PLCg signaling pathways that
mediate cell proliferation, survival, adhesion, migration, and
differentiation (68–71). EGFR is overexpressed in human HCC
cells (72). Some oncogenic mutations such as the L834R mutation
lead to spontaneous EGFR dimerization (73). Erlotinib is an oral
TKI that specifically blocks tyrosine kinase activity and
autophosphorylation of EGFR (74). DCR of 59% was observed
in a phase II study of erlotinib for advanced HCC patients who
had previously allowed only one systemic or local treatment (74).
Bevacizumab plus erlotinib had also shown promising biological
activity in the treatment of advanced HCC. In a phase II, single-
arm, single-institution, investigator-initiated study, 62.5% of
patients were alive and progression free at 16 weeks after the
treatment of bevacizumab plus erlotinib (75). The median PFS was
39 weeks, and the median OS was 68 weeks (75).

FGF19/FGFR4
FGF19 is an important driver of HCC development. It binds to
FGFR4 with high affinity (76, 77). Klotho-beta is a co-receptor
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for FGFR4, which is involved in the activation of FGF19/FGFR4
(78). The FGF19/FGFR4 pathway activates GSK3b/b-catenin,
PI3K/AKT, PLCg/DAG/PKC, RAS/RAF/MAPK signaling
cascades and promotes the survival, proliferation, and
metastasis of HCC (77). A phase I study evaluated the
antitumor activity of fisogatinib (BLU-554), a small molecule
highly selective inhibitor targeting FGFR4 (79). The ORR in
patients with FGF19-positive tumors was 17%. The median
duration of response (DOR) was 5.3 months, and the median
PFS was 3.3 months. However, in patients with FGF19-negative
tumors, the ORR was 0%, and the median PFS was 2.3
months (79).

Insulin-Like Growth Factor-1 (IGF-1)/IGF-1
Receptor (IGF-1R)
The binding of ligand IGF-1 to IGF-1R stimulates the activation
and phosphorylation of tyrosine kinase, which activates
downstream MAPK, AKT and STAT pathways and promotes
cell proliferation, migration, stemness and survival (80).
Activation of the IGF axis was observed in breast cancer,
sarcoma, and non-small cell lung cancer (81). In early HCCs,
IGF activity correlated with mTOR signaling and HCC cells
proliferation (82). Currently, at least 4 fully human IgG1
monoclonal antibodies targeting IGF-1R have been developed,
including cixutumumab (83). The drug blocks phosphorylation
of tyrosine residues, mediates receptor internalization and
degradation, and produces antibody-dependent complement-
mediated cytotoxicity (ADCC) and complement-dependent
cytotoxicity (CDC) effects (84). Preclinical study had shown
that IGF-1R blockade inhibited the growth of HCC, but no
clinically meaningful activity was observed in the phase II study
(84, 85). Besides, the combination of cixutumumab and sorafenib
also did not exhibit superior clinical efficacy in unselected ?A3B2
twb 0.24w?>patients with HCC (86). The IGF-1R is reciprocally
activated by NPM-ALK, suggesting that dual inhibition of IGF-1R
and ALK could enhance the therapeutic effect of IGF-1R inhibitor
(87). Lee reported that cixutumumab treatment activated STAT3
to induce IGF secretion, which recruited macrophages and
fibroblasts and created an angiogenic and metastatic
environment (88). Therefore, ongoing research elucidating
mechanisms of resistance and uncovering responsive biomarkers
are required for the success of IGF-1R targeted therapy.

c-Met
c-Met is an RTK, and its known ligand is HGF (89). HGF induces
dimerization and activation of overexpressed c-Met, which
stimulates multiple downstream signaling pathways such as
MAPK, PI3K, STAT and NF kappa-B (90). In preclinical
models of HCC, the HGF/c-Met inhibitor MSC2156119J
inhibited tumor growth and induced complete regression (91).
Tivantinib (ARQ 197), an orally administered selective c-Met
inhibitor, showed antitumor activity in phase I and phase II
studies (92, 93). However, in phase III studies, for MET-high
advanced HCC patients who previously treated with sorafenib,
no significantly improved PFS and OS were observed in
tivantinib arm compared to the placebo arm (94, 95). More
randomized trials are necessary to determine whether tivantinib
Frontiers in Oncology | www.frontiersin.org 6
is a potential treatment for certain subgroups of patients.
Tepotinib, another highly selective c-Met inhibitor, met the
primary endpoint in treating sorafenib-pretreated patients with
advanced HCC, with a 12-week PFS of 63.3% (96). The HGF/c-
Met and VEGF/VEGFR pathways had synergistic effects in
neovascularization through enhancing intracellular signaling
and modulation of signaling molecules (97). A clinical study
reported that advanced HCC patients treated with the anti-
VEGFR2 mAb ramucirumab plus the anti-MET mAb
emibetuzumab showed an 6.7% overall response rate, 60%
DCR and 5.42 months PFS, which further supporting the
results of preclinical study (98). In addition, other c-Met
inhibitors such as foretinib and capmatinib also showed
promising antitumor activity in advanced HCC (99, 100).

Angiopoetin/Tie-2
Ang-1 and Ang-2 are angiopoietins, which activate Tie-2
receptor and promote neovascularization (101). Trebananib is
a peptide inhibitor that blocks the interaction of Ang-1 and Ang-
2 with the Tie-2 receptor and reduces tumor angiogenesis (102).
The efficacy of trebananib in combination with sorafenib for
advanced HCC was evaluated in a phase II study (103). The
primary endpoint of the study was planned to be a 4-month PFS
of ≥78%. It is disappointing that the study was not met the
primary endpoint (103).

Transforming Growth Factor-b (TGF-b)/
TGF-b Receptor (TGF-bR)
TGF-b is a secreted factor that leads to decreased cell adhesion,
loss of polarity and tight junctions by inducing epithelial
mesenchymal transition (EMT) (104). TGF-b binds to TGF-bR
and upregulates the expression of pro-angiogenic factors such as
VEGF (104). TGF-b/Smad signaling promotes immune escape
by impairing the function of cytotoxic T cells, DC cells and NK
cells (104–106). These mechanisms contribute to HCC
tumor progression. Galunisertib (LY2157299) is a small
molecule inhibitor that selectively targets TGF-bR. This drug
demonstrated antitumor activity for second-line treatment of
HCC in a phase II study (107). TGF-b/TGFbR signaling has been
reported to confer resistance to sorafenib (108). In preclinical
study, galunisertib enhanced sorafenib-induced apoptosis (108).

mTOR
mTOR is a dual-specificity kinase that catalyzes phosphorylation
on serine/threonine and tyrosine residues of its substrates (109).
mTORC1 and mTORC2 are two major complexes that mediate
the regulation of multiple targets by mTOR (109). mTORC1
promotes anabolism of proteins and nucleotides by upregulating
the expression of metabolic genes and inhibiting catabolic
processes such as autophagy (110). mTORC2 phosphorylates
and activates AKT (protein kinase B), PKC (protein kinase C)
and SGK (serum/glucocorticoid regulated kinase) of the AGC
protein kinase family, which promotes the survival and
proliferation of HCC cells (111, 112). In addition, activated
AKT phosphorylates and activates mTORC1, resulting in a
positive feedback pathway loop that regulates HCC cell growth
(110). Preclinical studies showed that mTOR inhibitors
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significantly inhibit growth and induce apoptosis of HCC cell
lines (113–115). Everolimus given daily at 7.5 mg showed clinical
activity in advanced HCC patients in a randomized phase I/II
study (116). However, in a global multicenter randomized phase
III clinical study, everolimus did not improve OS of these
patients (117). Treatment of HCC patients undergoing liver
transplantation with mTOR-inhibitor temsirolimus for ≥3
months improved survival outcomes, and the greatest benefit
was observed in the subgroup with AFP ≥10 ng/ml (118). A
phase II trial of bevacizumab plus temsirolimus for the first-line
treatment of HCC reported positive results with ORR of 19% and
median OS of 14 months (119). However, everolimus plus
sorafenib did not demonstrate better survival benefits
compared to sorafenib alone in another phase II trial (120).
Combination therapy of MEK inhibitors and mTOR inhibitors
exhibited enhanced antitumor effects in vivo and in vitro models
of HCC (121).

Hippo-Yes-Associated Protein (YAP)
The Hippo-YAP pathway plays a prominent role in inhibiting
tumor growth, especially in HCC (122). The core component of
the Hippo signaling pathway, adaptor protein salvador homolog
1 (SAV1 or WW45), couples mammalian sterile 20-like kinase 1/
2 (MST1/2)-mediated kinases large tumor suppressor homolog
1/2 (LATS1/2) phosphorylation (122). This cascade leads to
downstream YAP phosphorylation and retention in the
cytoplasm, followed by ubiquitination and degradation (122).
When Hippo-YAP signaling is attenuated, YAP and
transcriptional coactivator translocate to the nucleus and
initiate transcription of pro-proliferative and apoptosis-
suppressing genes (122). Hypoxia induces nuclear translocation
and accumulation of YAP (123). CT-707 is a YAP signaling
inhibitor that increases YAP phosphorylation and reduces
nuclear accumulation. Both in vivo and in vitro HCC models
have demonstrated potent anti-tumor activity of CT-707 (124).

RAS/RAF/MEK/ERK
Evidences suggest that the RAS/RAF/MEK/ERK pathway is
hyperactive in HCC (125, 126). Activated RAS induces
phosphorylation of RAF kinase, which subsequently leads to
the phosphorylation of downstream signaling factors MEK and
ERK. Phosphorylated ERK dimerizes and translocates to the
nucleus to participate in cell proliferation and differentiation
(127). Therefore, aberrant activation of the RAS/RAF/MEK/ERK
pathway may be critical for the formation and maintenance of
HCC. Selumetinib is a small molecule, non-ATP competitive
inhibitor that selectively targets MEK1, 2 (128). Disappointingly,
in a phase II study of selumetinib for the first-line treatment of
advanced HCC patients, no radiographic response was observed
and the TTP was short, indicating low monotherapy activity
(127). The combination of sorafenib and selumetinib for
advanced HCC showed encouraging antitumor activity
superior to sorafenib alone in a phase Ib study, suggesting that
this combination may have a synergistic effect (129). Several
clinical studies had reported that HCC patients treated with the
MEK1/2 inhibitor refametinib plus sorafenib had a better clinical
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response relative to refametinib alone, especially those with RAS
mutations (130, 131).

STAT3
Many cancer cells harbor constitutive activation of STAT3 (132).
Phosphorylated STAT3 was detected in 60% of HCC specimens
(133). Several cytokines and growth factors such as IL-6, EGF,
HGF are involved in the induction of STAT3 activation (134,
135). In addition, phosphorylation of tyrosine residue is critical
for STAT3 dimerization, which mediates nuclear entry and DNA
binding, inducing target gene transcription (132). Besides,
activation of STAT3/SNAIL signaling promotes EMT,
contributing to the progression of HCC (136). STAT3
inhibitor OPB-111077 showed limited preliminary efficacy in
preclinical HCC models and phase I clinical trial for second-line
treatment of advanced HCC (137, 138).

Endosialin (TEM-1, CD248)
An experiment validated the differential expression of endosialin
on tumor-associated myofibroblasts and tumor vessel-associated
mural cells, involving in tumor angiogenesis, adhesion to
extracellular matrix (ECM) proteins and migration through
matrigel (139, 140). Ontuxizumab (MORAb-004-001) is a
humanized anti-endosialin IgG1k monoclonal antibody. The
first-in-human study of this drug was conducted in the US as
an open-label phase I clinical study for patients with solid tumors
who had failed standard chemotherapy. The study observed
initial anticancer activity of ontuxizumab (141). A phase I
study was subsequently initiated in Japan to confirm the
efficacy, safety and tolerability of ontuxizumab in solid tumors.
In this study, stable disease rate of 53.3% and tumor shrinkage of
33.3% were observed in HCC patients (142).

Endoglin (CD105)
Endoglin (CD105) is highly expressed on active endothelial cells
(143). Endoglin is involved in angiogenesis, inflammation and
cancer-associated fibroblast (CAF) accumulation in the tumor
microenvironment (TME) (143). TRC105 is a chimeric IgG1
mAb that competitively blocks the binding of endoglin to its
ligand bone morphogenetic protein (BMP) and inhibits tumor
angiogenesis (144). TRC105 alone lacked significant clinical
activity in the treatment of HCC (145). However, TRC105 in
combination with sorafenib showed encouraging activity in first-
line treatment of HCC (partial response rate was 25%) (146).

Cyclin-Dependent Kinase 4/6 (CDK4/6)
CDK4/6 promotes the cell cycle progression (147, 148). CDK4/6
amplification has been found in multiple malignant tumors
(149–151). Palbociclib (PD-0332991) is a selective CDK4/6
inhibitor that induces reversible cell cycle arrest in human
HCC lines and is efficacious in multiple preclinical models of
HCC (152). In vivo model, palbociclib in combination with
sorafenib was more efficacious than sorafenib alone (152).
Another CDK4/6 inhibitor, ribociclib, showed similar
antitumor activity in preclinical study (153).
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Histone Deacetylases (HDAC)
HDAC reversibly regulates acetylation of histones and non-
histones. Dysregulation and mutation of HDAC lead to
abnormal cell proliferation, EMT and tumor angiogenesis (154).
Resminostat is a HDAC inhibitor. In the SHELTER study, the
combination of resminostat and sorafenib prolonged median TTP
and OS compared with resminostat alone (155). However, in
comparison of this combination with sorafenib monotherapy for
East Asia advanced HCC patients, no significant efficacy
advantage was observed in the combination arm (156).
COMBINATION THERAPY OF TARGETED
THERAPY AND ICI

ICIs is a novel therapeutic approach that differs from
conventional treatment mechanisms (157). It restores the
viability of tumor-specific T cells and utilizes the host immune
system to kill tumors (158, 159). Among many ICIs identified,
anti-PD1/PD-L1 and anti-CTLA-4 are currently approved for
clinical application, and combination treatment of anti-PD1 and
anti-CTLA-4 could have synergistic effect in some kinds of
cancer (160–163). PD-L1 expression and tumor mutational
burden are widely used molecular marker to guide ICI therapy,
but the predictive value is not consistent among different cancers
(164, 165). The combination of targeted therapy with ICI shown
more potent efficacy (Table 2) (32, 166).

Encouraging results from the CheckMate-040 (167) and
KEYNOTE-224 (168) studies led to accelerated FDA approval of
nivolumab and pembrolizumab as second-line therapy for
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advanced HCC. Further, combination of targeted therapy with
immunotherapy becomes mainstream, especially anti-
angiogenesis therapy and ICI (169). In multiple mice models,
combinations of ICI with anti-angiogenesis agents significantly
increase the active anti-tumor immune cell and reduce the
immune inhibitory components in comparison with ICI alone.
At present, it is well accepted that combination therapy of ICI and
anti-angiogenesis could achieve superior efficacy to monotherapy
in several types of solid cancer (170). Atezolizumab is a high-
affinity human monoclonal IgG1 antibody that specifically targets
PD-L1 and blocks its interaction with PD-1 and B7.1, recovering
pre-existing anti-tumor immunity (164, 171). Bevacizumab is an
anti-VEGF monoclonal antibody (172). In a phase II trial, 13%
ORR was observed in bevacizumab-treated patients with
unresectable, nonmetastatic HCC (172). Results from a
multiarm phase Ib GO30140 study suggested atezolizumab plus
bevacizumab had a more significant PFS benefit than
atezolizumab alone (173). On May 29, 2020, the FDA approved
atezolizumab plus bevacizumab as the first-line setting for patients
with unresectable or metastatic HCC. Approval was granted
following the results of phase III IMbrave150 trial (32). This
trial assessed the efficacy of atezolizumab plus bevacizumab
versus sorafenib and demonstrated that atezolizumab plus
bevacizumab arm had higher 12-month OS (67.2% vs 54.6%)
and longer PFS (6.8 months vs 4.3 months; HR 0.59; p<0.001) than
sorafenib arm (32). The incidences of grade 3/4 adverse events
were 56.5% with atezolizumab-bevacizumab and 55.1% with
sorafenib (32). Approval of atezolizumab plus bevacizumab is
likely to change the paradigm of the treatment of HCC. In a phase
Ib study, lenvatinib plus the anti-PD-1 mAb pembrolizumab had
TABLE 2 | Current clinical trials investigating the combination therapy of targeted agents and ICIs for HCC.

Study design ClinicalTrials.gov Identifier Phase Line Primary end point Study status

SHR-1210 + Apatinib NCT04014101 II First ORR Recruiting
SHR-1210 + Apatinib NCT03463876 II Second ORR Active, not recruiting
AK104 + Lenvatinib NCT04444167 Ib/II First ORR Recruiting
Nivolumab + Bevacizumab vs. Nivolumab vs. Bevacizumab NCT04393220 II First PFS/OS Recruiting
Pembrolizumab + Regorafenib NCT04696055 II Second ORR Recruiting
Nivolumab + Galunisertib NCT02423343 I/II Second MTD Completed
Toripalimab + ATG-008 NCT04337463 I Second MTD/RP2D/ORR Recruiting
HLX10 + HLX04 NCT03973112 II Second ORR Recruiting
HX008+Bevacizumab vs. HX008 + Lenvatinib NCT04741165 II First ORR Recruiting
Sintilimab + Lenvatinib NCT04042805 II First ORR Recruiting
Toripalimab + Lenvatinib NCT04368078 II Second ORR Recruiting
Toripalimab + Bevacizumab NCT04605796 II First ORR/Safety Recruiting
Camrelizumab + Lenvatinib NCT04443309 I/II First ORR Recruiting
Camrelizumab + Apatinib NCT04701060 II First ORR Recruiting
Tislelizumab + regorafenib vs. regorafenib NCT04183088 II First ORR/PFS Recruiting
MK-1308A + Lenvatinib NCT04740307 II First ORR Recruiting
Pembrolizumab + Lenvatinib vs. Lenvatinib + placeco NCT03713593 III First PFS/OS Active, not recruiting
Nivolumab + Lenvatinib NCT03841201 II First ORR/Safety Recruiting
PDR001 + Sorafenib NCT02988440 I First AE/DLT Completed
Atezolizumab + Bevacizumab NCT04102098 III First RFS Recruiting
Avelumab + Axitinib NCT03289533 I First AE Completed
Atezolizumab + Cabozantinib vs. sorafenib NCT03755791 III First PFS/OS Recruiting
Durvalumab + Tivozanib NCT03970616 I/II First AE Recruiting
Durvalumab + Bevacizumab vs. Durvalumab NCT03847428 III First RFS Recruiting
July 2021 | Volume
ICIs, immune checkpoint inhibitors; HCC, hepatocellular carcinoma; ORR, objective response rate; PFS, progression-free survival; OS, overall survival; MTD, maximum tolerated dose;
RP2D, recommended phase II dose; AE, adverse event; DLT, dose limited toxicity; RFS, recurrence-free survival.
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promising anticancer activity in advanced HCC. The ORR and
DOR were 46.0% and 8.6 months, respectively. The median PFS
and OS were 8.6 months and 22 months, respectively (174). The
combination of ramucirumab and the anti-PD-L1 mAb
durvalumab also showed promising results in a phase Ia/b open-
label study of advanced HCC. The ORR was 11%. The median PFS
and OS were 4.4 and 10.7 months, respectively (175). SHR-1210
(anti-PD-1 antibody) 200 mg every 2 weeks plus apatinib 250 mg
daily exhibited encouraging clinical activity in advanced HCC in
an open, dose-escalation and extension study (176). The ORR was
30.8% and partial response was achieved in 8 of 16 evaluable HCC
patients (176). Clinical trials of other targeted drugs in
combination with ICIs are also underway. In ASCO 2021, the
preliminary results of some ongoing clinical trials showed that
combination therapies of ICIs with anlotinib had superior
efficacies to monotherapies (177, 178). In addition, studies
demonstrated that PARP inhibitors could also enhance the
efficacy of ICIs by promoting antigen presentation and
modifying immune microenvironment, leading to the enhanced
tumor-killing activities of T cell (179).
CONCLUSION AND PERSPECTIVE

Advanced HCC is a major challenge in cancer treatment.
Sorafenib is the first FDA-approved TKI for the first-line
treatment of advanced HCC, bringing a breakthrough to the
treatment challenge. Based on the promising results in clinical
studies, other molecularly targeted drugs such as lenvatinib,
regorafenib, cabozantinib, ramucirumab also have been
approved by FDA for first- or second-line treatment of
advanced HCC. However, the efficacy is far from being satisfied.
Therefore, new targets are extensively explored. In addition to
interfering with the interaction between PTK and ligand, blocking
the downstream signaling pathway of PTK cascade also exhibits
effective inhibition of HCC progression, such as mTOR inhibitors,
MEK inhibitors and STAT3 inhibitors. Besides, targeted inhibitors
acting on cell cycle progression also show antitumor potential in
preclinical studies of HCC. Following the research advance,
potential target for HCC continues to be uncovered. For
example, a recent study demonstrated that p38 MAPK gamma
induced mouse hepatocyte proliferation after partial hepatectomy
by promoting the phosphorylation of retinoblastoma protein as
CDK-like kinase. Moreover, p38g was required for the chemically
induced formation of liver tumors (180). Sterol o-acyltransferase1
(SOAT1) and carnitine palmitoyltransferase 1A (CPT1A) were
Frontiers in Oncology | www.frontiersin.org 9
found to regulate fatty acid metabolism, and simultaneously
targeting SOAT1 and CPT1A demonstrated synergistic
anticancer efficacy in HCC in vitro and in vivo models (181).
Liu et al. applied multi-omics technology to characterize tumor
microenvironment and defined HCC into three immune subtypes.
Their study suggested that MMP-9 reflected immune features and
might be a valuable predictor of immunotherapeutic response in
HCC (182).

Despite impressive progress in targeted therapy for advanced
HCC, several challenges remain. One is drug-related adverse
events, which lead to dose reduction, interruption or
discontinuation. Besides, drug resistance remains a major cause
of the failure of targeted therapy. The underlying mechanisms
may be tumor heterogeneity and clonal evolution. In addition,
there is a lack of reliable biomarkers to identify the HCC patients
most likely to benefit from targeted therapy. Some circulating
markers, such as AFP, IL-6 and TNF-a, correlate with the
treatment outcomes of HCC (183–185), but large prospective
studies are required to validate the preliminary findings. How to
overcome these challenges and explore low-toxic and efficient
treatment strategies are the direction of effort.

Single drug activity is insufficient and a rational combination
of different drugs is needed to obtain maximum benefit. The
combination of targeted therapy plus ICI has attracted attention,
with positive results in several clinical trials. In the future, the
integration of multidisciplinary treatment approaches for
advanced HCC and the development of personalized treatment
plans based on the disease status of HCC will contribute to the
progress of precision medicine.
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