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Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including
leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of
antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently
been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS
levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription
factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from
malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However,
once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and
chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them
more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit
mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which
leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.

1. Introduction

Acute myeloid leukaemia (AML) is primarily a disease of
the elderly with 75% of cases being diagnosed in patients
over 60 years of age [1]. AML comprises a biologically
heterogeneous group of disorders that occur as a consequence
of a wide variety of genetic abnormalities in haematopoietic
progenitors that are derived from the bone marrow. In
fitter, generally younger patients complete remission can be
achieved only in a minority with current chemotherapeutic
regimens. Patients who are not fit for intensive chemotherapy
are generally managed with a palliative approach without a
chance of cure. Furthermore, even in patients who do achieve
remission following intensive chemotherapy many relapse
from the persistence of a small clone of minimal residual
disease [2, 3] and, despite considerable efforts over the last 30
years to develop and improve therapy, presently two-thirds
of younger adults and 90% of older adults still die of their

disease [4]. It is envisaged that improved outcomes for all
patients will now only come from novel treatment strategies
(beyond increasing doses of conventional cytotoxic drugs)
derived from an improved understanding of the biology of
the disease.

2. Oxidative Stress

Oxidative stress is described as a change in the balance
between reactive oxygen species and antioxidant defence
mechanisms, where the balance is disturbed for the support
of the oxidants [5]. Together, oxidants and antioxidants are
essential for normal cellular function including metabolism
and signal transduction which allow for the maintenance
of cellular homeostasis [6, 7]. However, oxidative stress, if
unconstrained, results in the damage of important cellular
components which may result in DNA mutations or cell
death.
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Reactive oxygen species (ROS) are oxygen-containing
chemical species with reactive properties, including free
radicals such as superoxide and nonradical molecules such
as hydrogen peroxide [8]. These reactive species result from
both endogenous and exogenous cellular sources. Endoge-
nous sources of cellular ROS include oxidative phosphory-
lation within mitochondria, which results in the formation of
dioxygen, which is normally reduced to water but in some
instances is partially reduced to form superoxide. Further
reduction reactions can subsequently give rise to hydrogen
peroxide [9, 10], which has long been thought of as a harmful
molecule; however, recently, new evidence has emerged
which suggests that at low concentrations hydrogen peroxide
acts as an intracellular signalingmolecule involved in survival
and proliferation mechanism. In contrast, exogenous ROS
is produced by many environmental mediators which have
demonstrated involvement in a number of pathological states
including cardiovascular disease [11], chronic inflammation
[12], and neurodegenerative diseases [13] as well as cancer
[14].

3. Reactive Oxygen Species

There is a complex interaction between ROS generation,
signaling, and toxicity that results in the initiation, growth,
and survival of cancer. Cancer may be induced through
oxidative damage to cellular macromolecules as a result of
overproduction of ROS, which subsequently affects antiox-
idant and/or DNA repair mechanisms [15]. In addition,
ROS can stimulate signal transduction pathways leading
to activation of key protumoural transcription factors [16].
Once the malignant state has been established, the same
cellular survival mechanisms that the cell had employed to
protect against tumorigenesis are subsequently subverted to
support a protumoural state and protect the cancer cells from
chemotherapy. ROS have a physiological cellular response to
trigger cellular inflammation and damage that may lead to
cell death.This protective effect is lost in cancer cells and thus
endogenous and exogenous efforts to induce cytotoxicitymay
also be lost in cancer. Specifically in human leukaemia the
NRF2 pathway appears central to the control of the redox
state functioning at least in part through its regulation of
glutathione synthesis and regeneration. It is envisaged that
the identification of tumour-specific dependence within this
pathwaymay ultimately be exploited to developmuch needed
new treatments.

4. Acute Myeloid Leukaemia

AML develops from a common myeloid progenitor, a cell
whichwould physiologically differentiate to formmonocytes,
granulocytes, platelets, and erythrocytes in the bone marrow
[17, 18]. AML is the most common acute leukaemia affecting
adults, and its incidence increases with age [19]. However,
AML is a heterogeneous disease driven by a wide variety of
genetic lesions [20]. In patients fit enough for conventional
intensive cytotoxic chemotherapy, the treatment destroys
actively cycling leukaemic cells and initial remission rates

are high. However, in these patients following remission
induction and despite in many cases the disease becoming
undetectable by current testing technologies, a subpopula-
tion of cells with leukaemic stem cell properties frequently
survives chemotherapy and it is this subpopulation (minimal
residual disease) that is responsible for the relapse commonly
encountered in this disease [21]. In patients not fit for such
cytotoxic chemotherapy, management is presently based
around palliation and symptom control.

The discovery of specific mutant genes in AML has
provided increased biologic understanding, new potential
targets for drug development [22], and new diagnostic meth-
ods for detection of minimal residual disease [23, 24]. For
instance, mutations of the FMS-like tyrosine kinase-3 (FLT3)
receptor (internal tandem duplication (ITD)) are found in
approximately 25% of new cases of AML [25, 26]. FLT3-
ITD has been found to cause increased levels of ROS within
murine Ba/F3 or 32D cells expressing FlT3-ITD as well as
MOLM-14 and MV-4-11 human AML cell lines which carry
FLT3-ITDmutations [27], suggesting that ROS are important
in regulating FLT3 mutated AML.

5. Manipulation of the Redox Status by
Leukaemia Oncogenes

A number of oncogenes such as KRAS, cMYC, BCR/ABL,
NRF2, and NF-kappaB (NF-𝜅B) are able to alter the redox
balance of human cancer cells including leukaemic cells [26,
28–32]. The oncogenic BCR/ABL fusion gene found mainly
chronic myeloid leukaemia (CML) is capable of inducing
ROS levels in both human and murine cell lines [33, 34].
Moreover, BCR/ABL-induced ROS can also result in signal-
ing changes including the upregulation of the nonreceptor
tyrosine kinase FYN [35, 36]. FYN deficiency in the presence
of BCR/ABL expression is a mediator of chronic myeloid
leukaemia (CML) proliferation and CML resistance to the
drug of choice for CML, the BCR/ABL inhibitor, imatinib.
Together, these findings illustrate how a cancer associated
tyrosine kinase can induce ROS resulting in leukaemia
proliferation and drug resistance.

It has also been described that leukaemic oncogenes
may also affect the transcription, stability, or activity of
antioxidant proteins within leukaemic cells. For example,
BCR/ABL and NF-𝜅B can increase the transcription of
NRF2 and by association its regulated genes, which have
been shown to have cytoprotective properties. Furthermore,
activation of NRF2 requires a phosphorylation process which
results in the stabilisation of NRF2 and its release from its
negative regulator allowing transcription of the antioxidant
genes [37]. The transcription factor NRF2 is activated by
increased oxidative stress inducing protection of normal
cells against electrophilic and oxidative stress [38]. This
provides an example of transcriptional pathways by which
leukaemic oncogenes can influence the redox environment of
leukaemia cells and represent possible targets for therapeutic
intervention.
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Figure 1: Glutathione synthesis as seen through NRF2. GSH is a two-step synthesis reaction catalysed by glutamate-cysteine ligase (GCL)
and GSH synthetase. GSH is consumed in many ways, such as by oxidation or conjugation. In addition, cells may lose GSH due to export
of its reduced, oxidized, or conjugated forms and intracellular GSH is regenerated via reduction at the expense of one NADPH molecule.
Highlighted in red are the genes regulated by NRF2 activity.

6. NRF2 Regulated Cellular
Antioxidants in Leukaemia

Our research has previously shown that current standard
AML chemotherapy (cytarabine and daunorubicin) induces
an increase in ROS inAML cells as part of theirmechanism of
cytotoxic action [39]. Furthermore, we also recently reported
that malignant blasts from AML patients have inappropriate
constitutive NRF2 activation, resulting in increased cell
survival and chemotherapy resistance [40, 41]. The NRF2
signaling pathway is a major cellular pathway that under
normal conditions protects nonmalignant cells against elec-
trophilic and oxidative stress [38]; however, in AML as well
as many other malignancies, including chronic lymphocytic
leukaemia (CLL), NRF2 is constitutively activated [42]. In
AML, constitutive activation of NRF2 occurs not through
somatic mutation of NRF2 or its inhibitor KEAP1 but as a
result of upstream constitutive activation of NF-𝜅B.

NRF2 regulates the expression of over 200 genes includ-
ing many antioxidant genes and phase II enzymes such
as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxi-
doreductase 1 (NQO1) [43, 44] and genes involved in glu-
tathione metabolism and regeneration [45–48]. No single
gene induced by NRF2 can be identified as the most impor-
tant for cell protection, as cell protection is a result of the coor-
dinated induction of NRF2 target genes. As well as the work
on AML, NRF2 genes have also been dysregulated in other
human blood cancers including CLL and multiple myeloma
(MM). In CLL, experiments show the presence of NRF2
signaling and suggest that altered NRF2 responses may con-
tribute to the observed selective cytotoxicity of electrophilic

compounds in this disease [49]. In MM, HO-1 is increased in
bortezomib-resistant MM cells, suggesting a possible role for
HO-1 and NRF2 in chemotherapy resistance [50]. Together
these results highlight the importance of NRF2 in human
blood cancer.

6.1. Glutathione Metabolism, Regeneration, and Control of
ROS. GSH has emerged as an important regulator of
chemotherapy resistance in human cancer. GSH is present in
all mammalian tissues at 1–10 millimolar concentrations and
protects against oxidative stress [51]. In the cell GSH exists
in the thiol-reduced GSH and disulfide-oxidized (GSSG)
forms [52] and its major reservoir is the cytosol (80–85%)
[53–55]. GSH synthesis occurs via a two-step ATP-requiring
enzymatic process and exerts a negative feedback inhibition
on key rate limiting enzymes including glutathione cysteine
ligase (GCL) [56, 57] either by phosphorylation or by protein
expression [58]. The regulation of GSH synthesis is under
tight control involving key enzymes including GCL, GSH
synthetase, and GSH reductase. More importantly these
enzymes are all regulated, at least in part, by NRF2 through
its activation of the ARE [59].This highlights the importance
of addressing the link between NRF2 and GSH in disease,
especially leukaemia. Figure 1 shows the link between NRF2
and GSH synthesis and regeneration.

It is becoming apparent that NRF2 is the main transcrip-
tion factor that controls the regulation of many aspects of
GSH synthesis and regeneration [60, 61]. Importantly the
regulation of GCL at the transcriptional level is essential
for the maintenance of GSH homeostasis in response to
oxidative stress. In addition, levels of GCLC and GCLM are
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decreased in NRF2 knockout mice; the resulting lack of GSH
synthesis is lethal during embryogenesis [62].Moreover, GSH
synthetase which catalyses the second step of GSH generation
is also regulated by NRF2 and overexpression of either NRF1
or NRF2 induced the GSS promoter activity by 130 and
168%, respectively. Other genes involved in GSHmetabolism,
regeneration, and function are also regulated by NRF2
activation, which include GSH S-transferases (GSTs), GSH
reductase (GR), and GSH peroxidase (GPX) [48, 63, 64].
Together, this information suggests that NRF2 controls the
effectiveness of GSH to combat the excess of ROS.

Hydrogen peroxide is one of the main activators of
the NRF2-KEAP1 pathway. It is metabolised by GPX in
the cytosol resulting in GSH being oxidized to GSSG in
the mitochondria. GSSG can be reduced back to GSH by
GR at the expense of NADPH, thereby forming a redox
cycle, where organic peroxides can be reduced by either
GPX or GSH S-transferase (GST) [65]. GSTs are a family of
phase II conjugation enzymes under the regulation of the
NRF2/ARE pathway [66]. The main role of GST is to catal-
yse the detoxification of various harmful compounds [67].
This detoxification process is under the tight control of NRF2
as GST mRNA and protein expression are decreased in
NRF2-null mice, and NRF2 is required for GST induction
[68]. Moreover, the mRNA expression of GST is markedly
increased in KEAP1-null mice [69]. This provides evidence
that not only GSTs but also many other enzymes that are
involved in GSH synthesis and regeneration are coordinately
regulated by NRF2 and justifies the necessity to address the
NRF2 GSH axis in human cancers, especially leukaemia.

6.2. NRF2, GSH, and Leukaemic Cell Survival. Although
NRF2 is protective against tumorigenesis by reducing the
amount of ROS and DNA damage in cells, tumour cells were
found to be capable of harnessing the protective function
of NRF2 for their own protection and survival [42, 70].
Indeed, NRF2 activity itself is elevated in some leukaemia
types where it contributes to leukaemogenesis [71]. Elevated
nuclear localization of NRF2 and the subsequent genetic
changes result in reduced sensitivity to proteasome inhibitors
inAML cell lines [41], suggesting thatNRF2may also regulate
sensitivity to ROS-producing therapeutic agents. Moreover,
molecular analyses have revealed that treatment with stress
inducers (e.g., tumour necrosis factor) results in increased
NRF2 activity inTHP-1,HL-60, andAML 193 cell lines, which
in turn increases the transcription of antioxidants [72].

Primitive hematopoietic stem and progenitor cells reside
within the bone marrow and express the CD34 surface
antigen [73, 74].Moreover, primitive AML cells also generally
express CD34 and are more resistant to chemotherapy [74,
75]. A recent study by Pei et al. evaluates the characteristics
of primary CD34+ cells derived from patients with AML in
comparison to normalCD34+ controls [76].This is consistent
with the finding that CLL cells have elevated levels of reactive
oxygen species (ROS) compared to normal controls [77].
Taken together, this suggests that altered GSH content might
be a common property of primary hematopoietic malignant
tissues.

The prognostic value of GST deletions in adult AML,
including individuals with GSTM1 or GSTT1 deletions (or
deletions of both), is found to have enhanced resistance
to chemotherapy, lower complete remission, and a shorter
survival [78]; this further supports the suggestion of a dis-
turbed glutathione metabolism in AML cells. AML cells have
elevated expression of multiple GSH metabolising enzymes
including GCL and GST compared to control CD34+ cells
and knockdown of GCLC or GPX1 impaired the growth
of leukaemic cells in vitro [76]. Moreover, a significantly
decreased GSH to GSSG ratio further indicates aberrant
glutathione homeostasis in AML cells; this is consistent with
findings of increased basal levels of nuclear NRF2 in primary
AMLs [41]. This highly suggests that increased NRF2 activity
inAMLcells is responsible for the elevated expression of these
genes as a mechanism by which AML cells compensate for
increased oxidative stress in leukaemic cells. The aberrant
glutathione metabolism presents a unique and potentially
useful asset for targeting of primitive leukaemic cells.

7. Conclusion

ROS play an important functional role in human leukaemia.
NRF2 and its control of GSH regulate ROS. Recent data
suggests that GSH is fundamental to NRF2 function in AML
suggesting that this pathway may yield future therapeutic
targets for leukaemia cells in which GSH is dysregulated.
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