
fnins-15-670287 June 11, 2021 Time: 17:22 # 1

ORIGINAL RESEARCH
published: 17 June 2021

doi: 10.3389/fnins.2021.670287

Edited by:
Yuanpeng Zhang,

Nantong University, China

Reviewed by:
Jon Orlando Cleary,

Guy’s and St Thomas’ NHS
Foundation Trust, United Kingdom

David Haynor,
University of Washington,

United States

*Correspondence:
Kendall H. Lee

lee.kendall@mayo.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 20 February 2021
Accepted: 25 May 2021

Published: 17 June 2021

Citation:
Edwards CA, Goyal A,

Rusheen AE, Kouzani AZ and Lee KH
(2021) DeepNavNet: Automated

Landmark Localization
for Neuronavigation.

Front. Neurosci. 15:670287.
doi: 10.3389/fnins.2021.670287

DeepNavNet: Automated Landmark
Localization for Neuronavigation
Christine A. Edwards1,2,3, Abhinav Goyal2,4, Aaron E. Rusheen2,4, Abbas Z. Kouzani1 and
Kendall H. Lee2,3,4,5*

1 School of Engineering, Deakin University, Geelong, VIC, Australia, 2 Department of Neurologic Surgery, Mayo Clinic,
Rochester, MN, United States, 3 Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN,
United States, 4 Mayo Clinic College of Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States,
5 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States

Functional neurosurgery requires neuroimaging technologies that enable precise
navigation to targeted structures. Insufficient image resolution of deep brain structures
necessitates alignment to a brain atlas to indirectly locate targets within preoperative
magnetic resonance imaging (MRI) scans. Indirect targeting through atlas-image
registration is innately imprecise, increases preoperative planning time, and requires
manual identification of anterior and posterior commissure (AC and PC) reference
landmarks which is subject to human error. As such, we created a deep learning-
based pipeline that consistently and automatically locates, with submillimeter accuracy,
the AC and PC anatomical landmarks within MRI volumes without the need for an
atlas. Our novel deep learning pipeline (DeepNavNet) regresses from MRI scans to
heatmap volumes centered on AC and PC anatomical landmarks to extract their
three-dimensional coordinates with submillimeter accuracy. We collated and manually
labeled the location of AC and PC points in 1128 publicly available MRI volumes used
for training, validation, and inference experiments. Instantiations of our DeepNavNet
architecture, as well as a baseline model for reference, were evaluated based on the
average 3D localization errors for the AC and PC points across 311 MRI volumes.
Our DeepNavNet model significantly outperformed a baseline and achieved a mean
3D localization error of 0.79 ± 0.33 mm and 0.78 ± 0.33 mm between the ground truth
and the detected AC and PC points, respectively. In conclusion, the DeepNavNet model
pipeline provides submillimeter accuracy for localizing AC and PC anatomical landmarks
in MRI volumes, enabling improved surgical efficiency and accuracy.

Keywords: deep brain stimulation, deep learning, human-machine teaming, landmark localization, neuroimaging,
neuronavigation, neurosurgery planning

INTRODUCTION

Imaging technologies such as magnetic resonance imaging (MRI) provide visualization of brain
structures that enable neurosurgeons to plan accurate and safe surgical trajectories (Edwards
et al., 2017). In MRI-guided functional neurosurgery, image space is registered to a stereotactic
head frame with a built-in three-dimensional (3D) coordinate system using stereotactic planning
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software (Edwards et al., 2018). This software allows surgeons to
view the neuroimaging data to derive 3D coordinates of the brain
target(s) to plan the surgical trajectory path(s). This approach has
been predominantly used to implant electrodes for deep brain
stimulation and to deliver focused ultrasonic ablation, both of
which provide therapeutic relief of debilitating movement and
psychiatric disorders (Elias et al., 2016; Edwards et al., 2017,
2018).

Although MRI technologies (1.5 and 3 Tesla) have improved
over the last decade, visibility of deep intracranial target nuclei
remains poor due to imaging protocols that do not provide
requisite image resolution and contrast. As such, it is standard
practice to use “indirect” targeting methods to locate DBS targets
in preoperative MRI scans. DBS targets are typically indirectly
identified by manually locating visible anatomical landmarks,
i.e., anterior and posterior commissure points (AC and PC), and
using these reference points to align the patient’s preoperative
MRI scan to a stereotactic brain atlas. In contrast, “direct”
targeting methods may be used when targeted structures are
visible and directly identifiable in preoperative images, e.g.,
acquired using special MRI sequences designed to target specific
structures, acquired in an ultra-high field MRI scanner, or in
visualizations created through multimodal fusion techniques
(Cho et al., 2010; Grewal et al., 2018, 2020; Hartmann et al.,
2019). Despite advances in visualizations and direct targeting
methods, manual localization of AC and PC points remain
standard practice and ACPC alignment is valuable beyond
targeting such as for multimodal visualizations for pre- and
post-operative assessments (Isaacs et al., 2020). The locations
of deep brain surgical targets are estimated by defining a
distance from the mid AC-PC point and crosschecked against the
registered atlas. Targets include various neurosurgical structures
including the subthalamic nucleus (STN) for Parkinson’s disease,
ventral intermediate nucleus for essential tremor, globus pallidus
internus for dystonia, and the centromedian-parafascicular
complex for Tourette’s syndrome. For example, the STN is
typically located 5 mm inferior, 1–2 mm posterior, and 9–12 mm
lateral from the mid AC-PC point (Slavin et al., 2006). Therefore,
accurate identification of the AC and PC points is of vital
importance for safe and efficacious outcomes.

A review of factors impacting DBS targeting accuracy indicate
that human errors during image-guided planning contribute to
an overall average localization error of 1–2 mm (Li et al., 2016).
Error in the localization of the AC and PC anatomical landmarks
has contributed to misidentification of the target nuclei and
misalignment with the stereotactic brain atlas, leading to surgical
error (Pallavaram et al., 2008). As a secondary verification,
intraoperative electrophysiologic microelectrode recording is
performed. This method increases the risk of adverse events
such as intracerebral hemorrhage and seizures, especially if
initial AC-PC determinations are incorrect (Hariz and Fodstad,
1999; Binder et al., 2005). Thus, a novel system that provides
more accurate and reliable AC-PC localization would improve
functional neurosurgery. With the revival of artificial intelligence
(AI), sparked by deep learning methods demonstrating human-
level performance in computer vision applications, it is now
possible to conceive an AI-powered DBS surgical targeting

system that augments surgical planning by the neurosurgery team
(Panesar et al., 2020).

Early methods to automatically localize anatomical landmarks
relied on the identification of surrounding anatomical structures,
e.g., ventricles, corpus callosum and fornix. These methods
used low-level image processing techniques (e.g., edge detection,
histogram analysis, and region growing) coupled with anatomical
knowledge-based rules to conduct scene analysis (Verard et al.,
1997; Bhanu Prakash et al., 2006). Furthermore, they depend on
intensity-based image processing techniques (e.g., binarization)
to accurately identify regions of interest, and are thus considered
antiquated in light of more modern robust methods. These
traditional image processing approaches were superseded by
atlas registration and machine learning based techniques
(D’Haese et al., 2005; Pallavaram et al., 2009). Ardekani and
Bachmann introduced a template model to characterize the
displacement of the AC and PC points from an additional more
prominent anatomical landmark (i.e., midbrain-pons junction),
and demonstrated increased accuracy over methods that relied on
primitive image processing techniques (Ardekani and Bachman,
2009). A random forest regression approach demonstrated
increased accuracy from millimeters to submillimeter localization
errors compared to atlas-based methods for detecting AC and
PC points within a limited set of 100 T1-weighted MR volumes
acquired uniformly from an institution (Liu and Dawant, 2015).
These regression forests were built upon texture-based features
(i.e., local binary patterns), which have largely been replaced
by more robust deeply-learned features in the computer vision
community (LeCun et al., 2015).

Since the resurgence of artificial intelligence in the past decade,
deep learning based methods continue to rapidly evolve and
dominate computer vision applications for natural images and
videos. Deep regression approaches are commonly used for
facial landmark detection, human pose estimation and image
registration applications (Lathuiliere et al., 2019). Although deep
learning methods applied in the medical imaging domain were
lagging behind, they are gaining momentum (Akkus et al.,
2017; Hinton, 2018; Korfiatis and Erickson, 2019). Variations of
fully convolutional network (FCN) deep learning architectures
(e.g., U-Net) have achieved state-of-the-art results for image
segmentation and localization within medical imaging (Falk
et al., 2019). Payer et al. augmented an FCN architecture with a
spatial configuration network (SCN) module which preserves the
geometric relationships between landmarks, and enables more
accurate heatmap regression to localize landmarks where large
annotated medical image datasets are less readily available (Payer
et al., 2016, 2019). Zhang et al. (2017) proposed a cascaded two-
stage multi-task deep convolutional neural network architecture
to simultaneously localize hundreds of anatomical landmarks
in medical images where a limited amount of training data
is available (Zhang et al., 2017). In particular, Zhang et al.
detected 1200 landmarks in 700 MRI scans, with a mean error
of 2.96 mm (Zhang et al., 2017). Given the achievements of using
deep learning methods for challenging neuroimaging tasks, it is
expected that deep learning approaches would achieve increased
accuracy for the presumably less complex task of localizing
midline points, e.g., the AC and PC points.
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The aforementioned deep learning based methods have
demonstrated state-of-the-art and promising results for a variety
of medical image modalities and applications. Even so, these
methods neither report submillimeter accuracy in localization
of landmarks in neuroimaging data, nor report the localization
of AC and PC points as required for targeted functional
neurosurgery planning. Here, we present the development
and validation of a novel deep learning-based heatmap
regression pipeline that is built upon an implementation of
a 3D residual network (Liu et al., 2018) that demonstrates
submillimeter accuracy in localization of the AC and PC
landmarks within MRI volumes.

MATERIALS AND METHODS

Data Preparation
Experiments were conducted using two datasets collated from
publicly available T1-weighted 1.5-Tesla (T) MRI volumes, which
we will refer to as ACPC-MRI-1 and ACPC-MRI-2. Each MRI
scan is 256× 256× 150 voxels with a cubic millimeter resolution
per voxel. The first dataset, ACPC-MRI-1, is comprised of 908
MRI volumes across 687 subjects from the following publicly
available data: Open Access Series of Imaging Studies (OASIS)
(Marcus et al., 2007) and Mindboggle-101 (Klein et al., 2017).
The OASIS dataset is comprised of scans for subjects aged 18
to 96 years, with a subset of subjects aged 60 years and older
who were diagnosed with the onset of dementia to moderate
Alzheimer’s disease (Marcus et al., 2007). Two to four additional
scans are included for the subset of 100 subjects with dementia
and 20 healthy subjects (Marcus et al., 2007). The MindBoggle
dataset includes T1-weighted MRI volumes from 101 healthy
subjects (Klein and Tourville, 2012). The second dataset, ACPC-
MRI-2, contains 220 volumes across 158 subjects from the
OASIS-3 dataset (LaMontagne et al., 2019). The AC and PC
anatomical landmarks were manually localized for a total of 1,128
MRI annotated volumes across ACPC-MRI-1 and ACPC-MRI-
2 datasets.

An annotation protocol was established to label the AC and
PC anatomical landmarks for each T1-weighted MRI volume.
To streamline the annotation process, each volume was aligned
to a common MRI template using a rigid registration approach,
which is publicly available in the Advanced Normalization Tools
(ANTs) software toolkit (Avants et al., 2011). Each normalized
MRI volume was imported into the publicly available 3D Slicer
Tool1 and viewed with a predefined AC and PC template
overlaid on the volume (Kikinis et al., 2014; Fedorov et al.,
2016). Using the 3D Slicer Tool, each annotator manually fine-
tuned reference point locations to the posterior and anterior
edges of the AC and PC points, respectively, and saved the
3D coordinates for each point to a fiducial markup file per
MRI volume (see Figure 1). Without fine tuning the locations,
the average 3D Euclidean distances between initial locations
provided by our template and our ground truth locations of
AC and PC points were 6.91 ± 5.50 mm and 6.44 ± 4.89 mm

13D Slicer Tool available from http://www.slicer.org (accessed May 2018).

(N = 1128), respectively. For the ACPC-Dataset-1, a team
of five annotators ranging from novice to an experienced
neurosurgeon labeled the AC and PC points for a total of
908 T1-weighted MRI volumes across 687 subjects. Multiple
annotators labeled a subset of the MRI scans (N = 274), and
the resulting 3D coordinates for each landmark were averaged
and used as ground truth. For quality control, when multiple
labels were available for a given point, the 3D Euclidean
distance between points was calculated The average AC and
PC distance, across annotators, was 1.14 ± 0.57 mm (2.92 mm
max error) and 1.04 ± 0.53 mm (2.94 mm max error),
respectively. For distances greater than 2.0 mm, the labels were
visually evaluated and adjusted by an expert annotator. For
MRI volumes where only a single annotation was available
and the annotator was considered a novice, the label was
visually inspected and adjusted as needed. Approximately 10%
of the labeled points were re-adjusted manually within the
Slicer Tool by an expert-level annotator. For ACPC-Dataset-2,
an expert-level annotator labeled the AC and PC landmarks of
all the volumes, using the same annotation protocol described
for ACPC-Dataset-1.

The DeepNavNet models described in this paper regress
from an input MRI volume to an output heatmap volume
with spheres centered around 3D coordinates of the AC and
PC landmarks within each volume. Therefore, training data
preparation included an additional step of creating heatmap
volumes with Gaussian spheres, with sigma set to 3, centered
around 3D coordinates of the AC and PC landmarks within
each MRI volume. Each heatmap was created with the same
dimensions as their corresponding MRI volume, and the voxel
intensity values were normalized to a maximum value of 1.
The ACPC-MRI-1 dataset was used for training, validation and
testing, whereas the ACPC-MRI-2 data was used for additional
testing only. As such, heatmap creation was only necessary for
the ACPC-MRI-1 dataset.

Deep Learning Software Framework and
Computational Resources
All experiments were conducted using the open source NiftyNet
(0.6.0) framework for medical image analysis built on Google’s
TensorFlow (1.15.0) deep learning framework, on a Lambda Labs
TensorBook laptop with an NVIDIA GeForce GTX 1070 with 32
GB of memory (Gibson et al., 2018). DeepNavNet’s localization
model was built upon NiftyNet’s regression application, the
original implementation of which utilize an iterative sampling
method to regress from MRI T2-weighted images to CT
images (Berger et al., 2017). To create DeepNavNet, this
application was adapted to train models to learn a mapping
from MRI volumes to volumetric heatmaps concentrated around
corresponding AC and PC anatomical landmark locations.
NiftyNet configuration files were modified to experiment with
different training paradigms to create an optimized model to
automatically locate the AC and PC with the greatest accuracy,
and a post-processing Python script was created to extract
the 3D coordinates for the AC and PC landmarks from
heatmap volumes.
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FIGURE 1 | Example of an MRI volume annotated using 3D Slicer software. The volume is displayed in Right-Anterior-Superior (RAS) coordinate space. The
annotator manually adjusts fiducial markers overlaid on the AC and PC points from linked 2-D views. For this subject, the AC and PC points are both visible in the
same sagittal slice, whereas only the AC point is visible in the axial and coronal slices shown here. Depending on the orientation of the brain within the MRI volume,
the AC and PC points are sometimes both visible within a single sagittal and an axial slice. The 3D coordinates for each point are displayed in millimeters in the
Cartesian X-Y-Z space. The labels and corresponding 3D coordinates are saved to a fiducial comma-separated values (.fcsv) file.

Deep Learning Architecture and Training
Experiments
DeepNavNet models were trained using a 3D residual network
architecture that was originally created to segment volumetric
medical images, with demonstrated success parcellating
anatomical structures within neuroimaging data (Li et al.,
2017). This 20-layered network includes dilation to widen
the receptive field to provide voxel context and more spatial
resolution compared to other convolutional neural networks
used for segmentation applications, e.g., (U-Net) (Ronneberger
et al., 2015; Li et al., 2017). Also, the network includes residual
connections, which are known to enable effective training of
deep networks by preserving and propagating information
through the networks (Lundervold and Lundervold, 2019). All
experiments used NiftyNet’s built-in implementation of this
architecture, which is referred to as highres3dnet_large in the
software framework.

NiftyNet’s framework includes a patch-based analysis pipeline
with different sampling methods to extract windows from input
data, as is often required for neuroimaging deep learning
applications to counter challenges of high-dimensional data and
GPU memory limitations. DeepNavNet builds upon this feature

to employ a weighted sampling method with Gaussian sphere
heatmaps as sampling priors for the AC and PC locations. This
heatmap was created from the initial AC and PC locations in the
template used during the manual annotation process previously
described. Also, this template heatmap was used as an error map
for regression. NiftyNet’s implementation includes an option to
fine tune sampling by updating the error maps, however, this was
not necessary for our application. DeepNavNet was trained with
a spatial window size set to (72, 72, 1) and a random flipping
layer set to augment the training data with three orthogonal 2D
views for patch analysis. In addition to flipping sampled windows,
training data was randomly augmented by up to 10% increases
and decreases in spatial volume scaling. For all experiments, the
training batch size was set to 64, which is the number of windows
processed per iteration.

To optimize DeepNavNet for automated AC and PC
localization, we generated variations using a combination of
different training parameters. Loss functions used include the
root mean squared error (RMSE) and Huber loss functions
(Lathuiliere et al., 2019). Regularization was achieved by using
a combination of data augmentation with lasso regression (L1) or
ridge regression (L2) regularization methods. Adaptive learning
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rate techniques used were adaptive moment estimation (Adam)
and root mean square propagation (RMSprop), with initial
learning rate and weight decay parameters set to 0.005 and
1e-5, respectively (Kingma and Ba, 2015). Each variation of
the DeepNavNet model was trained for 2,500 iterations and
corresponding learning curves were captured via Tensorboard
software. An 80:10:10 ratio was used to separate the ACPC-MRI-1
dataset into subsets of data used for training (N = 726), validation
(N = 91) and testing (N = 91). Table 1 provides a list of training
experiments that created 8 variations of the DeepNavNet model,
which were then tested for accuracy during inference experiments
(see Figure 2). Figure 2 also lists the training hyperparameters
employed within DeepNavNet, which were optimized during
model validation.

Inference Experiments
Inference experiments were conducted to evaluate model
accuracy as measured by calculating the 3D Euclidean distance
error between the ground truth and predicted AC and PC
coordinates. Initial evaluations of all the models used a test
set of 91 volumes from ACPC-MRI-1 dataset, which were
volumes not used to train nor validate the models during the
training process. If the model was able to detect the AC and PC
coordinates with reasonable accuracy, then additional testing was
performed with the full-set of 220 volumes from ACPC-MRI-2
dataset, and the resulting 3D Euclidean localization errors were
combined to determine the overall accuracy across both datasets
(N = 311). First, a baseline evaluation was established using the
publicly available Automatic Registration Toolkit (ART) software
package, which includes an Ardekani and Bachmann model-
based approach to detect AC and PC points and a model trained
on T1-weighted MRI volumes (Ardekani and Bachman, 2009)
(Klein et al., 2009). The acpcdetect module within ART was
used to detect the AC and PC locations within the combined
dataset of 311 MRI test volumes. A Python script was created
to extract the AC and PC 3D coordinates from the output text
file per MRI volume.

Using NiftyNet software, inference experiments were
conducted to test the accuracy of each instantiation of the
DeepNavNet model listed in Table 1. The DeepNavNet model
predicts a heatmap for each input MRI volume (see Figure 3).

TABLE 1 | DeepNavNet training experiments.

DeepNavNet
Model #

Loss function Regularization Adaptive learning rate

RMSE Huber L1 L2 Adam RMSProp

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

A post-processing Python script was created to extract the
predicted 3D coordinates for the AC and PC landmarks
from the predicted heatmaps. Since input MRI volumes are
aligned to a template volume, the AC and PC landmarks are
expected to be relatively centered within a region of the volume.
Furthermore, there are anatomical constraints regarding the
position of the AC and PC with respect to each other. As such,
post-processing included applying a binary mask to filter out
false positives outside this region of interest, applying a Gaussian
filter to smooth the spheres, and assigning AC and PC labels to
maximum voxels identified based upon their spatial relationship
to each other (see Figure 4).

Statistical Analysis
Outliers were identified and removed from each model’s
localization errors prior to comparison between models to ensure
fair comparison. Outliers were defined as those errors which
were greater than 3 scaled median absolute deviations (MAD)
away from the median of the errors for that model. Scaled
MAD = c ∗ median(

∣∣Ai −median (A)
∣∣) for all i in the model,

where c = −1
√

2 ∗ erfc−1(1.5)
. After outliers were removed, AC

errors across models were compared with a one-way analysis
of variance (ANOVA), and post-hoc comparisons between
DeepNavNet models and baseline were conducted with one-
tailed unpaired t-tests, while post-hoc comparisons between
DeepNavNet models were done with two-tailed unpaired t-tests.
A Bonferroni correction with 6! = 720 comparisons was applied
to each significance level (α = 0.05) to correct for multiple
comparisons. P-values less than 0.001 are reported as such
rather than reporting the exact value. The same procedure was
performed for PC localization errors across all models.

RESULTS

Our best performing DeepNavNet (Model-1) achieved a mean
localization error of 0.79 ± 0.33 mm (1.62 mm max error) and
0.78 ± 0.33 (1.66 mm max error) between the ground truth
and the detected AC and PC points across N = 311 volumes,
respectively (see Table 2). A one-way ANOVA was conducted
across all models separately for AC and PC localization errors
to assess differences in model ability to accurately localize these
landmarks. We found that models did perform differently for
both AC and PC localization (AC: F = 47, p < < 0.001; PC:
F = 19, p < <0.001). Each DeepNavNet instantiation was then
compared directly to the baseline model, separately for AC and
PC localization error. Models 1-6 were found to significantly
outperform the baseline model for accurately localizing the AC
landmark (one-tailed unpaired t-tests, all adjusted p < <0.001;
see Figure 5A). For localizing the PC landmark, models 1, 2, and
5 were found to significantly outperform the baseline model (one-
tailed unpaired t-tests, all adjusted p < <0.001; see Figure 5B).

To assess model precision, we assessed the spread of AC
and PC localization error distributions across our models with
outliers kept in the data. These outliers represent failures of the
model to reliably locate the AC and PC landmarks across trials.
The number of outliers and the standard deviation of the models
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FIGURE 2 | Training and validation of DeepNavNet model using NiftyNet framework. Each input data volume is 256 × 256 × 150 voxels with
1 mm3

× 1 mm3
× 1 mm3 resolution. Key parameters from a customized NiftyNet configuration file are displayed on the right. These parameters were used to

create DeepNavNet Model #1 (see Table 1).

FIGURE 3 | DeepNavNet heatmap regression using NiftyNet Framework for test data.

with outliers kept are presented in Table 3. The source of large
outliers for the baseline method is unknown and inconsistent;
however, visual inspection indicates that it is unable to reliably
detect AC and PC points within images with advanced signs
of dementia, e.g., atrophy, enlarged ventricles, and asymmetries
across the hemispheres. In contrast, the DeepNavNet models
produced a fewer number of outlier errors and the magnitude
of the errors were much smaller. Visual inspection of the MRI
scans does not indicate the cause of the outlier errors, however,
the results were consistent across the DeepNavNet models.

DeepNavNet Model-1 was trained using the RMSprop
adaptive learning rate method, coupled with RMSE loss function
and L1 regression regularization methods, and demonstrated
submillimeter accuracy that is significantly better than the

baseline method. In addition to further evaluating models
against a second independent dataset (i.e., ACPC-MRI-2), the
learning curves for training and validation data were examined
to assess how well the learned model generalizes to previously
unseen data. The pattern of progression of the training and
validation learning curves for our overall best performing
model DeepNavNet-1 indicates that the learned model does not
overfit the training data and is expected to maintain reasonable
accuracy across datasets (Lundervold and Lundervold, 2019; see
Figure 6).

Another instantiation of our model (DeepNavNet Model-2)
achieved comparable accuracy to DeepNavNet Model-1 for PC
localization; however, even though it also achieved submillimeter
accuracy, its AC localization error was greater than Model-1.
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FIGURE 4 | Post-processing and overlay visualizations of a predicted AC-PC heatmap volume. (A) The 3D coordinates of AC and PC points are extracted from each
predicted heatmap volume. (B) Visualizations of a post-processed predicted heatmap overlaid on its corresponding MRI scan. The radius of the spheres is
approximately 7.5 mm.

DeepNavNet Model-1 and Model-2 were trained using the same
hyper parameter settings, however, the latter used L2 regression

TABLE 2 | Average 3D AC and PC localization errors of baseline and DeepNavNet
models, measured in millimeters.

Model # (Description, N = #
test MRIs)

AC Mean ± Std Dev
(Max)

PC Mean ± Std Dev
(Max)

0 (Baseline) 1.22 ± 0.44 (2.57) 1.00 ± 0.45 (2.31)

1 (RMSE-L1-RMSprop)
(N = 311)

0.79 ± 0.33 (1.62) 0.78 ± 0.33 (1.66)

2 (RMSE-L2-RMSprop)
(N = 311)

0.84 ± 0.35 (1.91) 0.80 ± 0.36 (1.84)

3 (Huber-L1-RMSprop)
(N = 311)

0.93 ± 0.40 (2.08) 1.00 ± 0.38 (2.14)

4 (Huber-L2-RMSprop)
(N = 311)

0.81 ± 0.35 (1.85) 0.92 ± 0.39 (2.01)

5 (RMSE-L1-adam) (N = 311) 0.87 ± 0.38 (2.05) 0.86 ± 0.35 (1.87)

6 (RMSE-L2-adam) (N = 91) 1.01 ± 0.43 (2.08) 1.03 ± 0.42 (2.07)

7 (Huber-L1-adam) (N = 91) X X

8 (Huber-L2-adam) (N = 91) X X

An “X” denotes that the Model did not predict heatmaps with AC and PC landmarks
highlighted. Models 0–5 were evaluated using the full test set (N = 311), whereas
Models 6–8 were only evaluated on the first test set (N = 91) due to their
reduced performance. The bolded values correspond to the best performing model
as measured by the lowest mean localization errors.

regularization instead of L1 regression. The training curves for
the DeepNavNet Model-1 and Model-2 follow a very similar
stable and gradual progression toward their minimum total loss
values across training iterations, with the total loss values for
Model-2 being slightly lower than Model-1 (see Figure 7).

Similarly, DeepNavNet Model-3 and Model-4 were trained
using the RMSprop adaptive learning rate technique with L1 and
L2 regression regularization techniques, respectively. Although
they achieved a significant boost in accuracy compared to
baseline (Model-0), they were less accurate than DeepNavNet
Model-1 and Model-2. Using the Huber loss function, in contrast
to the RMSE function, produced the less accurate DeepNavNet
Model-3 and Model-4. Further, their PC localization errors were
greater than their AC localizations errors.

DeepNavNet Model-5 significantly outperformed the baseline
model and achieved submillimeter accuracy for localizing AC
and PC, however, it underperformed compared to DeepNavNet
Model-1 and Model-2. The training curve for DeepNavNet
Model-5 shows that the model required more training iterations
to reach minimum loss values, after which the model then tracks
similarly to DeepNavNet, Models 1 and 2 (see Figure 7).

DeepNavNet Models 6 to 8 were not evaluated on the
ACPC-MRI-2 test set due to the poor quality of their predicted
heatmaps from the ACPC-MRI-1 test set. DeepNavNet Model-
6 outperformed the baseline for AC localization, however, it was
less accurate compared to the other DeepNavNet models. Further,
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FIGURE 5 | Boxplots of localization errors achieved, measured in millimeters, by the baseline and DeepNavNet models 1-6. Statistical analysis of the baseline and
Models 1-5 were conducted using all of the test data (N = 311), whereas Model 6 was evaluated using a subset (N = 91). Box whiskers span 1.5 times the
interquartile range (IQR) in both directions. The 95% confidence interval spans 1.57 times the IQR /

√
n around the median notch for each box. Non-overlapping

notches indicate significant differences between models, and asterisks indicate p-values < <0.001 relative to baseline error. (A) Boxplots for AC localization errors.
(B) Boxplots for PC localization errors.

assessment of its total loss across training iterations shows that
Model 6 abruptly reached its minimum total loss values sooner,
with total loss values larger than high performing instantiations
of DeepNavNet models (see Figure 7). This is an indication that
the initial learning rate (i.e., 0.005) in our configuration may
need adjustment. DeepNavNet Models 7 and 8 failed to predict
heatmap volumes with the AC and PC points highlighted as
indicated by “X” values in Table 2. All of the DeepNavNet models
that used the Huber loss function (Models 3, 4, 7 and 8), rather
than the RMSE loss function, exhibited a lower total loss across
training iterations, however, that is not an indication that the
model is able to effectively learn to regress to heatmaps with AC
and PC points highlighted (see Figure 7).

In short, our final resulting DeepNavNet pipeline used our
best performing DeepNavNet model (Model-1) that was trained
using an RMSE loss function with L1 regression regularization
and RMSprop adaptive learning rate techniques. Our resulting
DeepNavNet pipeline significantly improved the accuracy of
automatically detecting the 3D coordinates for AC and PC points,
compared to the baseline method. Intermediate versions of our
pipeline that used other versions of our DeepNavNet model had
mixed results and overall underperformed compared to our final
DeepNavNet model (Model-1).

DISCUSSION

We described the development and evaluation of our novel
deep learning-based pipeline that simultaneously detects AC
and PC anatomical landmarks with submillimeter accuracy.
A core component of this pipeline is the DeepNavNet model

which was successfully trained to predict a heatmap with
the AC and PC landmarks identified. A key advantage of
this method is that one model has been able to detect both
AC and PC landmarks within the same predicted heatmap,
while preserving the spatial relationship between the landmarks.
Furthermore, since all image volumes were normalized to the
same template MRI volume with known AC and PC locations,
their AC and PC landmarks are expected to be identified
within a known region of interest. The DeepNavNet pipeline

TABLE 3 | Number of outliers and the resulting standard deviation and maximum
error measured in millimeters with the outliers included for the baseline and our
DeepNavNet models.

Model # (Description,
N = # test MRIs)

AC # Outliers, Std Dev
(Max)

PC # Outliers, Std Dev
(Max)

0 (Baseline) 11, 5.01 (62.59) 10, 3.45 (49.76)

1 (RMSE-L1-RMSprop)
(N = 311)

3, 0.38 (3.25) 6, 0.36 (2.00)

2 (RMSE-L2-RMSprop)
(N = 311)

2, 0.38 (2.94) 1, 0.36 (1.91)

3 (Huber-L1-RMSprop)
(N = 311)

4, 0.42 (2.38) 0, 0.38 (2.14)

4 (Huber-L2-RMSprop)
(N = 311)

4, 0.39 (2.31) 3, 0.41 (2.74)

5 (RMSE-L1-adam)
(N = 311)

1, 0.39 (2.49) 4, 0.37 (2.30)

6 (RMSE-L2-adam)
(N = 91)

6, 11.39 (79.40) 4, 8.09 (72.65)

The bolded values correspond to the best performing model as measured by the
lowest mean localization errors.
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FIGURE 6 | Training and validation learning curves for DeepNavNet Model-1.

FIGURE 7 | Tensorboard training learning curves for DeepNavNet Models 1-8 using hyperparameters described in Table 1.

demonstrated that it is able to automatically identify and fine-
tune predicted AC and PC locations with submillimeter accuracy.
Post-processing to extract the 3D coordinates for each landmark
within the heatmap volumes was relatively simple since the
regions of interest were confined to regions around the initial
AC and PC template locations. More sophisticated methods to
extract centroid coordinates of other anatomical structures from
volumetric heatmaps could be considered in future applications,
such as a DeepNavNet pipeline to automatically locate specific
deep brain stimulation targets.

A key component of our research included the creation of
a large-scale annotated dataset of MRI volumes, which were
critical for training, validating and testing our models, and will
be invaluable for follow-up research within the neuroimaging
community. We manually annotated the AC and PC landmark
locations for 1,128 1.5-T MRI volumes collated from publicly

available data collected from multiple institutions which were
acquired from healthy subjects to those with varying degrees of
cognitive decline. The anatomical brain structures of subjects
with advanced stages of dementia were visibly different from
relatively healthy subjects, e.g., enlarged ventricles, atrophy, and
asymmetries. As such, manual identification of the AC and PC
points took longer, while also providing a more diverse dataset
for training and evaluating more robust models. Even so, it
is expected that the DeepNavNet models and pipeline would
require fine-tuning for different types of MRI scans and other
neuroimaging modalities.

The focus of this work was to develop a deep learning based
pipeline that demonstrates consistent submillimeter accuracy for
detecting AC and PC points, across a large-scale diverse dataset of
1.5-T MRI volumes, as a first step toward an automation pipeline
to enable a modernized human-machine teaming approach to

Frontiers in Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 670287

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-670287 June 11, 2021 Time: 17:22 # 10

Edwards et al. Automated Landmark Localization for Neuronavigation

surgery planning. Further improvements to accuracy may be
achieved by experimenting with other loss functions, such as
an adaptive loss function designed for landmark localization
(Teixeira et al., 2019). Although we achieved superior accuracy
results, the practical implementation of this work will require
further research to reduce the overall computation time. In
particular, the heatmap inference time per MRI scan is a
few minutes, whereas the post-processing step to extract the
coordinates is approximately a second per MRI scan. We
experimented with multiple combinations of different training
parameters, however, further research could leverage techniques
that learn optimal hyperparameters (Liaw et al., 2018). Also,
meta-learning approaches to identify optimal parameters may
reduce the size of the resulting models and enable a more
efficient network for inference (Vanschoren, 2018). Furthermore,
with the rise of edge computing, there is growing interest in
improving the efficiency of deep neural networks to enable
deployment of such technologies on edge devices. Methods
to prune deep neural networks are expected to enable more
efficient models (Blalock et al., 2020). In addition, in April 2020,
the creators of NiftyNet framework announced that they are
shifting toward an open-source PyTorch-based deep learning
framework for medical imaging called Medical Open Network
for AI (MONAI).2 Future experiments to advance DeepNavNet
would likely benefit from moving to the MONAI framework
as well since it is expected to gain momentum in the deep
learning medical imaging community. Another machine learning
approach that is gaining momentum across multiple application
domains, including landmark detection in medical images,
combines deep learning and reinforcement learning methods –
i.e., deep reinforcement learning (DRL) (Mnih et al., 2015;
Francois-Lavet et al., 2018; Sutton and Barto, 2018). In contrast
to supervised deep learning approaches, which learn to minimize
a loss function based on labeled training data, a DRL artificial
agent learns to maximize an award function by trial-and-error as
it navigates the data environment in a sequential Markov decision
process (MDP) framework. Ghesu et al. (2016) introduced an
approach that used a DRL agent to locate anatomical landmarks
in medical image volumes. Building upon this research, DRL
methods continue to advance and show promise as an effective
strategy for real-time navigation to landmarks within medical
images (Ghesu et al., 2017, 2019; Al and Yun, 2019; Alansary
et al., 2019). Even so, establishing an effective decision space
and award function that reliably converges is non-trivial for
DRL approaches in dynamic environments, and is especially a
barrier for using such agents where consistently accurate and safe
results are required (Dulac-Arnold et al., 2019). A multi-agent
collaborative DRL approach, introduced in 2019, achieved an
average localization error of 0.93 ± 0.18 and 1.05 ± 0.25 mm for
AC and PC points, respectively (Vlontzos et al., 2019). Although
our current supervised deep learning approach is more accurate,
there is an acceleration of innovation in DRL methods and such
artificial agents are expected to improve through experience as
they navigate through more neuroimaging data, such as our
ACPC-MRI -1 and ACPC-MRI-2 datasets.

2Medical Open Network for Artificial Intelligence available from https://monai.io

Our method described here focused on identifying AC and PC
points as a necessary first step toward aligning to a stereotactic
atlas. However, the regression pipeline that we have developed
and validated can be applied toward segmentation of a wide range
of neural and non-neural structures. The heatmap is a relatively
straightforward approach to generate probabilistic distributions
of target region locations, enabling rapid model development
and training. Post-processing algorithms for region coordinate
extraction can then employ more advanced segmentation
methods, such as spherical Hough transforms or an additional
convolutional neural network. Our model presented herein
provides a framework upon which future parcellation networks
can be developed. Additional exploration will be needed to
optimize our method for other biological structures (e.g.,
hyperparameter tuning, model architecture, etc.).

Another approach to consider beyond improved indirect
targeting using AC and PC landmarks is to employ deep learning
methods to directly register a subject’s MRI data to a stereotactic
atlas, followed by an indirect targeting process (Sutton and Barto,
2018). In addition, ultra high-field 7.0 T MRI scanners are
becoming clinically available at a limited number of large medical
institutions (e.g., Mayo Clinic, Rochester, MN, United States),
and provide unprecedented high-resolution imaging of deep
brain structures (Cao et al., 2018). As such, this technology is
expected to enable direct targeting for deep brain stimulation
and other therapies. Furthermore, they will provide invaluable
data to improve and enable AI-powered surgical planning
systems that would learn to safely navigate to deep brain
stimulation targets for optimal clinical results. We anticipate
that our model will benefit from the incorporation of ultra-
high field imaging via direct localization of target nuclei and
pathology.

CONCLUSION

Our novel DeepNavNet pipeline automatically identifies the
3D coordinates of AC and PC anatomical landmarks in MRI
volumetric data with state-of-the-art submillimeter accuracy,
as required for image-guided targeted neurosurgery planning
procedures. This technology is a first step toward automating
surgical planning to improve surgical accuracy and efficiency.
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