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Abstract: This study describes the fabrication of sulfonated polyethersulfone (SPES) as a super-
hydrophilic substrate for developing a composite forward osmosis (FO) membrane on a nonwoven
backing fabric support. SPES was prepared through an indirect sulfonation procedure and then
blended with PES at a certain ratio. Applying SPES as the substrate affected membrane properties,
such as porosity, total thickness, morphology, and hydrophilicity. The PES-based FO membrane with
a finger-like structure had lower performance in comparison with the SPES based FO membrane
having a sponge-like structure. The finger-like morphology changed to a sponge-like morphology
with the increase in the SPES concentration. The FO membrane based on a more hydrophilic
substrate via sulfonation had a sponge morphology and showed better water flux results. Water flux
of 26.1 L m−2 h−1 and specific reverse solute flux of 0.66 g L−1 were attained at a SPES blend ratio of
50 wt % when 3 M NaCl was used as the draw solution and DI water as feed solution under the FO
mode. This work offers significant insights into understanding the factors affecting FO membrane
performance, such as porosity and functionality.

Keywords: forward osmosis; hydrophilic substrate; sulfonated polyethersulfone; thin-film composite;
nonwoven-embedded substrate

1. Introduction

Forward osmosis (FO), as an evolving desalination technology, has received significant
research interest in recent years. In this process, no hydraulic pressure is required for filtra-
tion to occur; thus, the amount of energy required is much lower in comparison with other
pressure-driven desalination technology, such as nanofiltration (NF) and reverse osmosis
(RO) [1,2]. Osmosis occurs when a solute with high solubility generates a concentration
gradient within a solution. The osmotic pressure gradient functions as the driving force
to induce water flow from the low concentrated side to the high concentrated side. To
utilize this pressure gradient as the driving force, a suitable semipermeable membrane
is required to separate the feed solution (FS) and draw solution (DS) [3]. The water flow
through the membrane from the FS to the DS side is spontaneous as a natural consequence
of osmotic pressure gradient and will continue until both FS and DS sides reach an osmotic
equilibrium [4]. Compared to the pressure-driven membrane processes (RO and NF),
the FO process has several advantages, such as lower energy requirements, especially
when DS recovery is not required; lower membrane fouling propensity and easier fouling
management; competitive contaminant rejection; and applicability for treatment of high-
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salinity and fouling-prone feed streams, which cannot be treated by other membrane-based
technologies [1,5–7].

Despite the advantages of FO, this process suffers from a lack of suitable membranes
and DS recovery strategies. A suitable FO membrane should be robust and semipermeable,
with high water flux, high selectivity against a number of solutes, and chemical and thermal
stability [8,9]. Initially, commercial RO membranes were utilized for the FO process until the
manufacture of the first industrial FO membrane customized for this process by Hydration
Technologies Inc. (HTI, Albany, NY, USA) [10]. The HTI FO membrane was developed
based on cellulose triacetate (CTA) polymer with nonwoven fabric support [11]. Currently,
the major types of FO membranes include asymmetric membranes, thin-film composite
(TFC) membranes, thin film nanocomposite (TFN) membranes, and chemically modified
membranes [11–13].

Among the different membrane types, TFC membranes are the most conventionally
used membranes for the FO process. TFC membranes are mainly made of polyamide
(PA) as a rejection layer on porous sub-layers through interfacial polymerization (IP) in
both flat sheet [12–14] and hollow fiber configurations [15,16]. The TFC FO membrane
is typically prepared by casting a polymeric membrane substrate on a nonwomen fabric
support backing and the subsequent IP reaction of 1,3-phenylenediamine (MPD) and
1,3,5-benzenetricarbonyl trichloride (TMC) [15,17,18]. Some TFC GO membranes do not
employ backing fabric supports; however, without fabric supports, TFC membranes might
be compacted under the influence of hydraulic pressure such as pressure-assisted osmosis
(PAO) and pressure-retarded osmosis (PRO) [8,19].

Generally, water permeability and selectivity can be enhanced from a porous sub-layer
and a thin rejection layer modification. Thus, FO membranes can be improved through
surface modification of the rejection layer and porous sub-layer or by embedding support
with a suitable backing fabric that does not hinder water flux. However, modifying the
porous sub-layer appears to be easier than other modification options. Hydrophilic polymer
film can be plasticized when exposed to water, and the rejection layer and backing fabric
are more rigid [20]. The main objective of membrane performance enhancement can be
achieved through lowering membrane structural parameter (S value). The membrane S
value is used to determine the internal concentration polarization (ICP) degree in the porous
support structure of FO membranes. The S value is determined by membrane support layer
thickness, tortuosity, and porosity. Consequently, as there are several chemical and physical
modification strategies and fabrication methods to minimize the structural parameter
of FO sub-layer, modifying the TFC FO membrane support has more effectiveness and
advantages compared to rejection layer modification [17,21].

Internal concentration polarization (ICP) is a major factor influencing the membrane
performance during FO operation [16,21,22]. ICP is related to the substrate structural
parameter and chemical properties of the support layer [22]. Moreover, previous studies
suggested that a substrate with finger-like morphology is ideal to have high water flux
and to decrease the ICP, due to a direct path for water molecules and lower resistance [15].
However, another study showed that having high performance in the FO process is more
related to membrane chemical properties (e.g., hydrophilicity) rather than membrane
physical properties (e.g., membrane morphology) [23]. It was found that membrane per-
formance was significantly higher in the hydrophilic but sponge-like membrane where
both initial polymer dope concentrations used for phase inversion followed by IP were the
same. However, due to chemical modification to induce hydrophilicity, membrane tensile
strength was substantially decreased. Without backing fabric support, these substrates
demonstrated low tensile strength and were not considered fit for commercial produc-
tion [8,24]. Therefore, there is a need to develop a TFC FO membrane to have both ideal
properties of mechanical strength and hydrophilicity for a higher performance.

For developing a high-performance membrane, the substrate structure can be modi-
fied. There are several options to increase membrane hydrophilicity, such as nanoparticle
incorporation in the membrane during phase inversion and/or IP [25–29] and chemical
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modification [30]. These can be achieved by (a) adding PEG in the support; (b) incorpo-
rating Carbone allotropes and other nanoparticles [17,31]; and (c) fabrication methods
with “different solvents” and support post-treatment with “activating solvent” [32]. These
methods’ effects on physicochemical properties of the membrane include support pore
size, porosity, surface charge, hydrophilicity, and functional groups [33,34]. For example,
support pore size in the top skin layer during interfacial polymerization may have both
negative and positive impacts on the performance of a TFC FO membrane [35,36]. The
membrane support improvement to acquire hydrophilic support with low ICP and low
structural parameter can be achieved in several pathways. However, enhancing membrane
hydrophilicity through sulfonation seems to be more effective compared to other polymeric
support modification methods. The only disadvantage of sulfonation is membrane tensile
strength decline, which can be ignored in reinforced support membranes with backing
fabric support. Direct and indirect sulfonation has been used in several previous stud-
ies as a facile chemical modification method to enhance the membrane hydrophilicity.
For instance, sulfonated poly(ether ketone) (SPEK) polymer was blended with polysul-
fone by Han et al. [37] and resulted in enhanced membrane hydrophilicity and reduced
structural parameter.

In this study, PES polymer was blended with sulfonated PES (SPES) to prepare a
high-performance FO membrane reinforced on nonwoven polyethylene terephthalate
(PET) backing fabric. The highly hydrophilic SPES was synthesized based on previous
studies [23,38]. The SPES composition varied from 0 wt % to 50.0 wt %. The effects of
SPES content on the hydrophilicity, thickness, and morphology were examined. Finally,
the developed TFC membranes with different PES/SPES ratios were assessed in the FO
process and compared with a neat TFC membrane.

2. Materials and Methods
2.1. Chemicals and Materials

Polyethersulfone (PES, Sigma-Aldrich, MO, USA) (Mn: 55,000) was used for the fabri-
cation of membrane substrates. Solvent for casting solution was N-methyl-2-pyrrolidone
(NMP, >99.5%, Merck, Dramstadt, Germany). Trimesoyl chloride (TMC) (98% purity,
Sigma-Aldrich and m-phenylenediamine (MPD) (>99% purity, Sigma-Aldrich) were used
for the interfacial polymerization. N-hexane (Sigma–Aldrich 99.0%) was used as the solvent
for TMC. Commercial non-woven polyester fabric (PET, Grade 3250 Ahlstrom, Helsinki,
Finland) was used as support backing fabric. Sodium chloride (NaCl) was used for prepar-
ing the draw solution and feed solution. DI water was used as a feed solution (FS) and
NaCl with concentrations of 0.5, 1, 2, and 3 M were used as DS.

2.2. Preparing of Sulfonated Polyethersulfone (SPES)

PES chemical structures before and after sulfonation are presented in Figure 1. SPES
polymer was prepared based on previous studies [38,39]. Figure 2 shows the step-wise
polyethersulfone (SPES) polymer sulfonation procedure.

We mixed 20 g PES with 400 g CH2Cl2 and stirred continuously to obtain a homo-
geneous solution. Then, 25 mL chlorosulfonic acid was added in the mixture under N2
atmosphere, in the close system. The mixture was placed in stirring conditions at room tem-
perature at 400 rpm for 150 min. The treated mixture was poured into 1000 g of methanol
in a container submerged in an ice bath to precipitate the polymer solution. Finally, the
sulfonated precipitated polymer was filtrated and washed with DI water a few times to
eliminate the remaining methanol. Finally, under N2 environment, it was dried out, first at
80 ◦C for 12 h and then 150 ◦C for 6 h [38].



Membranes 2021, 11, 813 4 of 20Membranes 2021, 11, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. Polyethersulfone (PES) structure and sulfonated polyethersulfone (SPES) chemical struc-

ture after sulfonation. 

 

Figure 2. PES sulfonation based on the process by Li et al. [38]. 

Figure 1. Polyethersulfone (PES) structure and sulfonated polyethersulfone (SPES) chemical structure
after sulfonation.

Membranes 2021, 11, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. Polyethersulfone (PES) structure and sulfonated polyethersulfone (SPES) chemical struc-

ture after sulfonation. 

 

Figure 2. PES sulfonation based on the process by Li et al. [38]. 
Figure 2. PES sulfonation based on the process by Li et al. [38].

2.3. FO membrane Substrates Fabrication via Phase Inversion

Table 1 shows the casting solution compositions with a certain amount of PES and
SPES denoted as sample T1, T2, and T3. PES and SPES were mixed in a sealed glass
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container with NMP and then stirred for 24 h at ambient temperature. An ultrasonic bath
was used for degassing dope polymer solutions for 1 h. Then, the solutions were placed in
a desiccator before casting for over 48 h. The casting was conducted using a stainless-steel
film applicator (gate height was 200 µm) on a glass plate. Immediately after casting, the
substrates were immersed into a water bath for 15 min. The substrates were then stored in
DI water and stored in dark, cool conditions (5–8 ◦C).

Table 1. Compositions of the casting solutions.

Samples
Solution Composition Sulfonated Polymer

Content (%)PES (wt %) NMP (wt %) SPES (wt %)

T1 15 85 0 0
T2 10 85 5 25
T3 7.5 85 7.5 50

2.4. Fabrication of Polyamide (PA) Rejection Layer

Preparing a thin film composite membrane was accomplished by forming polyamide
active layer on the membrane substrate top surface by IP. First, the substrates were placed
in a sealed frame so that the monomer solutions will only be in contact with the top surface.
The samples were soaked in 3.4 wt % MPD solution for 2 min, and then the excess MPD
solution was removed using filter paper [40]. Next, 0.15 wt % TMC solution in N-hexane
was poured onto the substrate top surface for 2 min to form the rejection layer. The resultant
TFC-FO membranes were washed with water to eliminate the remaining solution and kept
in DI water at 8 ◦C FO experiments and characterization.

2.5. Membrane Characterization

Schottky field emission scanning electron microscope (SEM, Zeiss Supra 55VP, Carl
Zeiss AG, Jena, Germany) was used for morphology evaluation. The samples were dried
in ambient air for 24 h, then immersed in liquid nitrogen and cut. The samples were
coated by Balzers sputter coater (SCD 050, BAL-TEC, Oerlikon Balzers, Bergisch Gladbach,
Germany) with a thin film of carbon before SEM imaging. The contact angles of the
samples were measured by optical tensiometer (Attension Theta Lite 100, Biolin Scientific,
Espoo, Finland). Three to five measurements were recorded for the average value. A
digital micrometer (293–330 Mitutoyo, Kawasaki, Japan) was used for sample thicknesses
measurement. Porosity (ε) of the membrane samples was measured by determining the
net wet (W1) and dry mass (W2) based on the following equation [41]:

ε =
(W1 − W2)/ρi[

W1−W2
ρi

]
+ [W2/ρm]

× 100 (1)

where ρi and ρm are the density of the solvent and membrane, respectively.
Membrane tensile strength was obtained by an LS1 tensile testing device (AMETEK,

Lloyd Instruments, Ltd., UK). The structural parameter (S value) of the membrane was
calculated by the following equation by considering membrane tortuosity (τ), porosity (ε),
and support layer thickness (t):

S =
tτ
ε

(2)

Thin-Film Composite Membrane Characterization

The intrinsic properties of the membrane samples were assessed by RO testing mode.
Water permeability (A value) was obtained based on the following equation:

A =
∆Va

∆ta·∆Am·∆P
(3)
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The A value was calculated by applying hydraulic pressure of 1–5.0 bar onto a feed
container with DI water. The amount of permeate water over time is ∆Va, whereas ∆P is
the applied pressure variance and ∆ta and Am is the affective membrane zone [42].

Membrane sample salt rejection was measured based on the following equation:

R =
C f − Cp

C f
× 100% (4)

where Cf and Cp are the concentration of accumulated salt in the feed and permeate,
respectively.

Salt permeability (B) of samples was measured by the following equation:

B =
A(1 − R)(∆p − ∆π)

R
(5)

where R is the rejection of the samples and ∆p and ∆π are the applied hydraulic pressure
and the osmotic pressure difference for the membrane samples, respectively.

2.6. TFC-FO Performance Tests

FO tests were run on a bench-scale FO unit. The schematic experimental setup is
available in a previous study [2]. The setup contained two peristaltic pumps which were
connected to the FO testing cell by rubber tubes. The flow rates of both sides were kept
consistent at 200 mL/min while each test was run for 20 min. By measuring the average
change weight of both the DS and FS tank, water flux (Jw) was determined.

The membranes’ performances were tested under both FO and pressure-retarded os-
mosis (PRO) modes. The reverse solute flux (RSF) of the membrane during FO performance
was obtained by recording the electrical conductivity (EC) when the FS was DI water via a
multimeter (CP-500L, Seoul, Korea).

The water flux can be calculated by the following equation in the FO mode [43]:

Jw =
1

KD

[
ln

AπD,b + B
AπFm + Jw + B

]
FO mode (6)

In the PRO mode, the water flux can be calculated by the equation:

Jw =
1

KD

[
ln

AπD,m − Jw + B
AπF,b + B

]
PRO mode (7)

B is the salt permeability coefficient of the TFC-FO membrane. The πDm and πFm are
the osmotic pressures on the membrane surfaces in the DS and FS containers, respectively,
whereas πD,b, and πF,b are the bulk osmotic pressure of the DS and FS tanks. KD is the
solute resistivity for the diffusion of draw solutes, which can be determined as:

KD =
tτ
εD

=
S
D

(8)

where τ, t, and ε represent tortuosity, thickness, and porosity of the membrane samples,
respectively. D is diffusivity or the diffusion coefficient of membranes.

2.7. Model Development

A (computational fluid dynamics) CFD model for the FO was developed via the
finite element method by COMSOL Multiphysics® (Version 5.4, COMSOL Inc., Stockholm,
Sweden). A schematic of the FO diagram was presented in Figure 3.



Membranes 2021, 11, 813 7 of 20

Membranes 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 

𝐾𝐷 =
𝑡𝜏

𝜀𝐷
=

𝑆

𝐷
 (8) 

where τ, t, and ε represent tortuosity, thickness, and porosity of the membrane samples, 

respectively. D is diffusivity or the diffusion coefficient of membranes. 

2.7. Model Development 

A (computational fluid dynamics) CFD model for the FO was developed via the finite 

element method by COMSOL Multiphysics®  (Version 5.4, COMSOL Inc., Stockholm, Swe-

den). A schematic of the FO diagram was presented in Figure 3. 

 
Figure 3. A schematic of the forward osmosis (FO) model diagram. Nomenclature: Jw—water flux, 

Js—reverse salt flux, C—concentration, V—cross flow velocity, ts—porous thickness, δ—concentra-

tion polarization thickness; subscripts: m—membrane, d—draw, f—feed, b—bulk. 

Governing Equations 

To simplify the CFD model, the below assumptions were considered: 

● Steady-state; 

● Isothermal conditions; 

● Flow is incompressible and the laminar flow on the draw and feed solution channels; 

and 

● Thermodynamic equilibrium at the interface of the active layer. 

To calculate velocity distribution on the draw and feed solution channels, Navier–

Stokes and continuity equations were simultaneously applied [44]: 

Figure 3. A schematic of the forward osmosis (FO) model diagram. Nomenclature: Jw—water flux,
Js—reverse salt flux, C—concentration, V—cross flow velocity, ts—porous thickness, δ—concentration
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Governing Equations

To simplify the CFD model, the below assumptions were considered:

• Steady-state;
• Isothermal conditions;
• Flow is incompressible and the laminar flow on the draw and feed solution chan-

nels; and
• Thermodynamic equilibrium at the interface of the active layer.

To calculate velocity distribution on the draw and feed solution channels, Navier–
Stokes and continuity equations were simultaneously applied [44]:

∂u
∂x

+
∂v
∂y

= 0 (9)

(
u

∂u
∂x

+ v
∂u
∂y

)
= −1

ρ

∂p
∂x

+
µ

ρ

(
∂2u
∂x2 +

∂2u
∂y2

)
(10)(

u
∂v
∂x

+ v
∂v
∂y

)
= −1

ρ

∂p
∂x

+
µ

ρ

(
∂2v
∂x2 +

∂2v
∂y2

)
(11)

P, ρ, and µ are the pressure, solution density, and dynamic viscosity, respectively.
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To calculate velocity distribution in the support layer, the Brinkman equation was
applied due to high accuracy:

− ∂P
∂x

+
µ

ε

(
∂2u
∂x2 +

∂2u
∂y2

)
= u

µ

κ
(12)

− ∂P
∂y

+
µ

ε

(
∂2v
∂y2 +

∂2v
∂x2

)
= v

µ

κ
(13)

ε and κ are the porosity and the pure water permeability of the porous layer, respectively.
To calculate concentration distributions through the draw and feed solution channels,

Fick’s equation was applied to both convection and diffusion terms:

u
∂c
∂x

+ v
∂c
∂y

= D
(

∂2c
∂x2 +

∂2c
∂y2

)
(14)

where D is the diffusion coefficient.
To calculate concentration distributions in the support layer, Fick’s equation was used:

u
∂c
∂x

+ v
∂c
∂y

=
ε

τ
D
(

∂2c
∂x2 +

∂2c
∂y2

)
(15)

The boundary conditions were defined for the FO in Table 2 [45].

Table 2. Boundary conditions for the FO operation at FO mode.

BC No. NS–Feed CD–Feed Brinkman—Porous CD–Porous NS–Draw CD–Draw

1 uf = 0 ∂cf/∂x = 0 - - - -

2 vf = vf0 cf = cf0 - - - -

3 ∂uf/∂y = 0 ∂cf/∂y = 0 - - - -

4 uf = Jw Js up = Jw Js - -

5 - - up = 0 ∂cp/∂y = 0 - -

6 - - up = 0 ∂cp/∂y = 0 - -

7 - - ∂uf/∂x = 0 cp = cd ud = Jw cp = cd

8 - - - - vd = vd0 cd = cd0

9 - - - - ∂ud/∂y = 0 ∂cd/∂y = 0

10 - - - - ud = 0 ∂cd/∂x = 0

BC = boundary condition; CD = convection and diffusion equations; NS = Navier–Stokes equations.

The mathematical equations have been introduced to predict water and reverse salt
fluxes for FO mode based on the bulk concentration of the feed and draw solution, the
driving force of the process. It should be noted that the effects of ECP and ICP were
considered in these equations to increase prediction accuracy.

Dilutive ICP (FO mode):

Jw = A

πdbexp
[
1 − Jw

(
1
kd

− S
Dd

)]
− π f bexp( Jw

k f
)

1 + B
Jw

[
exp( Jw

k f
)− Jw(

1
kd

− S
Dd

]
 (16)

where A and B are the water and salt permeability coefficient; πdb and π f b are the bulk
osmosis pressure; kd and kf are mass transfer coefficients through the draw and feed solution
channels, respectively; S is the membrane structural parameter; and Df and Dd are diffusion
coefficients on the feed and draw solution channels, respectively.
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The RSF was evaluated by:

Js = B

 Cdb +
Js
Jw

exp(JwKr)exp( Jw
kd
)
−
(

C f b +
Js

Jw

)
exp(

Jw

k f
)

 (17)

where Cdb and Cfb are the bulk concentrations of the feed and draw solution channels.
There are some relationships presented to predict the quantity of mass transfer coeffi-

cients. The analytical Leveque solution can predict mass coefficients with high accuracy,
based on the following equations:

Re =
Vρdh

µ
(18)

Sc =
µ

ρD
(19)

Sh = 1.85(ReSc
dh
L
)

0.33
(20)

km =
ShD
dh

(21)

where Sc is the Schmidt number, Sh is the Sherwood number, Re is the Reynolds number,
and dh and L are the hydraulic diameter and length, respectively.

3. Results and Discussion
3.1. Sulfonated Membrane Substrate Characterization

Blending sulfonated materials into pure PES polymer solution was performed to
fabricate an enhanced FO TFC membrane with a more hydrophilic substrate. Sulfonation
was expected to greatly affect the FO membrane substrate and the performance of the
resulting FO TFC membrane. In this study, the substrate morphology and hydrophilicity
were first investigated. Figure 4 presents the SEM images of membrane samples fabricated
with three different concentrations of sulfonated PES, as described in Table 1.

Figure 4a presents the SEM images of cross-section, top, and bottom surface of the
synthesized membrane substrates containing zero SPES content. The occurrence of a large
number of macrovoid structures can be seen, which is consistent with an earlier study [23].
However, with the presence of SPES, the macrovoids in the developed sulfonated substrates
became noticeably fewer, although they were still indistinctly noticeable at 25 wt %, as
revealed in Figure 4b. For the 50 wt % SPES substrate, the SEM images exhibited a fully
sponge-like morphology where macrovoids disappeared, as shown in Figure 4c.

The ternary diagram can explain several pathways that could have happened through-
out the phase inversion for the polymer solution [46]. Based on the diagram, substrate
morphology is a result of the demixing rate in phase inversion. Blending SPES could delay
demixing and, as a result, the sponge-like structure would be formed. With an increase in
sulfonated material content, macrovoid formation reduced significantly. Meanwhile, in the
non-sulfonated sample, instantaneous demixing resulted in forming the macrovoid struc-
ture [23,37]. Dope polymer solution viscosity is one of the important factors in membrane
fabrication that affects transport characteristics and morphology. Enhancing the polymer
concentration increases the solution viscosity. When the solution viscosity increases, a
slower mixing is obtained. On the contrary, the mass transport rate during an exchange of
solvent and non-solvent decreases, and the polymer chains precipitate slowly. Moreover,
the polymer precipitation crosses the binodal curve at higher polymer contents in the
ternary phase diagram, leading to the formation of a substrate with a thicker skin layer
and lower porosity [45].
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(a) PES (no sulfonated polymer), (b) SPES (25 wt % sulfonated material) and, (c) SPES (50 wt % sulfonated material)
membrane substrate samples denoted as T1, T2, and T3, respectively.

Based on SEM images in Figure 4, different degrees of sulfonation did not alter the
top and bottom surface of substrates, while the two membranes had noticeable differences
in the cross-section morphology. Nevertheless, in the previous study by atomic force
microscopy (AFM), it was realized that with the increase in sulfonation concentration,
surface roughness decreased [12]. Similar to a previous study, it can be seen that with the
increase in sulfonation, traces of finger-like structures in the bottom surface of the sample
decreased [23].

Previous studies explored the consequence of sulfonation on substrate thickness [12,47,48].
Several factors can influence the thickness during phase inversion; nevertheless, the ther-
modynamics of polymer dope solution was found to be the key contributing factor [49,50].
Commonly, casting solution with low thermodynamic instability produces thinner sub-
strate [23]. Based on the SEM images (Figure 4) and membrane substrate thickness mea-
surements in Table 3, higher amounts of SPES blended in the polymer doper resulted in
a thinner substrate with a sponge-like porous structure. Despite the lower thickness of
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the dried membrane substrates, wetting resulted in water absorption and swelling for the
sulfonated samples; thus, both the membrane substrates containing SPES (T2 and T3) were
thicker under wet conditions.

Table 3. Characterization of the membrane substrates with different degrees of sulfonation.

Membrane ID Thickness (µm) Porosity (%) Contact Angle
(◦)

Mechanical Properties (with Backing Fabric)

Tensile
Strength (MPa)

Modulus
(MPa)

Elongation at
Break (%)

T1 178 ± 2.0 71 ± 2 65 ± 1 42.1 115.2 39.2
T2 163 ± 3.0 77 ± 3 45 ± 1 36.1 82.2 36.2
T3 158 ± 2.0 82 ± 2 35 ± 2 33.2 55.6 43.3

Table 3 shows the characteristics of the developed membrane samples. The results
show that the porosity and the hydrophilicity of the substrates were enhanced with the
increase in sulfonation. The T1 substrate contact angle (0 wt % sulfonation) was 65◦, while
for T2 and T3, samples were reduced to 45◦ and 35◦, respectively, owing to the improved
hydrophilicity. Accordingly, these results indicate that by increasing the sulfonation rate
ratio, if applicable, membrane substrates with a higher grade of hydrophilicity can be
developed. Additionally, the membrane sample thickness was slightly decreased with
an increase in SPES materials. For the neat membrane sample (T1) with zero content
of SPES materials, the thickness was 178 µm, whereas for the T2 and T3 samples with
25 wt % and 50 wt % SPES incorporation, substrate thickness was reduced to 163 and
158 µm, respectively.

As FO is not a pressure-based process, the tensile strength of the FO membrane can
generally be ignored. However, applying the FO membrane in a module for application at
an industrial scale where large water flows are expected could accumulate certain hydraulic
pressure during the process. Previous studies confirmed that membrane polymeric film
tensile strength can be significantly affected by sulfonation [23,37]. From the results in
this study, it was clear that by increasing sulfonation ratios to 50 wt %, the membrane
mechanical strength declined substantially. Thus, in this work, to reinforce the overall
substrate mechanical strength, the membrane substrate was cast on a nonwoven backing
fabric support. The mechanical properties of the membrane samples are presented in
Table 3. Increasing the sulfonation decreased the tensile strength and Young’s modulus of
the substrates. Due to the use of fabric backing support, the overall mechanical stability of
all membrane substrates became reasonable.

Figure 5 shows the comparison of the FTIR spectra of T1 (neat sample) and T3 samples
with 50 wt % of SPES. The spectra contained vibrations of aromatic SO3H and sulfonic acid
groups appearing at ~1025 cm−1 and ~1180 cm−1, respectively, confirming the existence
of the SO3H group on the polymer chains [51,52]. Furthermore, the absorption peak at
3420 cm−1 could be attributed to the hydroxyl of sulfonic acid groups, further confirming
the existence of sulfonic acid groups in the SPES substrate.



Membranes 2021, 11, 813 12 of 20

Membranes 2021, 11, x FOR PEER REVIEW 12 of 20 
 

 

3420 cm−1 could be attributed to the hydroxyl of sulfonic acid groups, further confirming 

the existence of sulfonic acid groups in the SPES substrate. 

 

Figure 5. Fourier transform infrared (FTIR) spectra of the membrane substrates for (a) SPES (T3), 

and (b) PES (T1) samples. 

3.2. Characterization of TFC FO Membranes 

Table 4 presents the structural parameters, transport properties, and rejection perfor-

mance of the fabricated samples. The water permeability coefficient (A) rose when the 

SPES blending ratio was increased. Different degrees of sulfonation could affect the top 

surface properties (pore size, interface degree), topologies, and chemical properties, which 

accordingly affected the IP and development of the rejection layer [12]. Although it is dif-

ficult to distinguish the consequence of blended sulfonated materials on IP and rejection 

layer from comparing the membrane morphologies, water flux performance and salt re-

jection for the blended and neat membranes can demonstrate the effect of sulfonation on 

rejection layer properties. For instance, the A values for the T1 sample (0 wt % SPES) was 

1.62 Lm−2h−1bar−1 (LMH bar−1), and it was raised to 2.21 LMH bar−1 and 3.15 LMH bar−1 for 

T2 and T3, respectively. With an increase in the degree of sulfonation, salt permeability 

coefficient (B) similarly increased. Nevertheless, salt rejection remained at an acceptable 

level as it was 96.5 % for the T1 sample, and for T2 and T3, the rejections were 94.1%, and 

92.8%, respectively. Overall, the rejection of these reinforced membranes on PET fabric 

were higher compared to the samples in the previous study without backing fabric sup-

port. PET fabric as a backing support in this study also may act as a barrier to water flux, 

Figure 5. Fourier transform infrared (FTIR) spectra of the membrane substrates for (a) SPES (T3), and
(b) PES (T1) samples.

3.2. Characterization of TFC FO Membranes

Table 4 presents the structural parameters, transport properties, and rejection per-
formance of the fabricated samples. The water permeability coefficient (A) rose when
the SPES blending ratio was increased. Different degrees of sulfonation could affect the
top surface properties (pore size, interface degree), topologies, and chemical properties,
which accordingly affected the IP and development of the rejection layer [12]. Although
it is difficult to distinguish the consequence of blended sulfonated materials on IP and
rejection layer from comparing the membrane morphologies, water flux performance and
salt rejection for the blended and neat membranes can demonstrate the effect of sulfona-
tion on rejection layer properties. For instance, the A values for the T1 sample (0 wt %
SPES) was 1.62 Lm−2 h−1 bar−1 (LMH bar−1), and it was raised to 2.21 LMH bar−1 and
3.15 LMH bar−1 for T2 and T3, respectively. With an increase in the degree of sulfonation,
salt permeability coefficient (B) similarly increased. Nevertheless, salt rejection remained
at an acceptable level as it was 96.5 % for the T1 sample, and for T2 and T3, the rejections
were 94.1%, and 92.8%, respectively. Overall, the rejection of these reinforced membranes
on PET fabric were higher compared to the samples in the previous study without backing
fabric support. PET fabric as a backing support in this study also may act as a barrier to
water flux, but it can be neglected due to the low-thickness and high-porous nature of the
PET nonwoven fabric. Furthermore, polymer solution penetrates the fabric during the cast
and solidifies during phase inversion. Membrane support polymeric film embedment with
the fabric in the bottom surface is more porous (spongy) which may potentially reduce
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the ICP effect. By comparing these results with previous work, suitable PET nonwoven
backing fabric support may break the permeability–selectivity trade-off of the TFC FO
membrane and improve its tensile strength without sacrificing the water permeability
properties through lowering overall ICP.

Table 4. Membrane samples transport properties and structural parameters.

Sample ID a Water permeability (A) b Salt Permeability B (10−7 m/s) NaCl Rejection (%) c S (×10−4 m)

LMH bar−1 ×10−12 m/s Pa

T1 1.62 ± 0.15 4.5 ± 0.5 1.6 ± 0.1 96.5 10.9

T2 2.21 ±0.1 6.13 ± 0.5 3.59 ± 0.1 94.1 7.84

T3 3.15 ±0.15 8.75 ± 0.5 6.25 ± 0.15 92.8 5.91
a Assessed in the RO setup (applied hydraulic pressure of 10 bar and DI water as FS). b Assessed in the RO setup (applied hydraulic
pressure of 10 bar and 200 ppm NaCl as FS). c Assessed in the FO setup using 1 M NaCl as the DS with DI water as FS.

In the FO membranes, the A and B values are intrinsic transport parameters associated
with the properties of the active rejection layer. Therefore, a rise in the A and B parameters
with the increase in sulfonation degree is linked to the top skin layer characteristics of the
PA rejection layer. As mentioned earlier, an increase in sulfonated material content in the
polymer solution leads to a more even skin surface, which could affect interfacial poly-
merization, leading to the formation of uniform and thinner rejections [37]. Furthermore,
a lower degree of sulfonation leads to the formation of rougher top skin surface during
phase inversion, which might result in the development of a thicker rejection layer during
phase inversion, thus reducing the TFC FO membrane permeability [12].

A lower structural parameter (S value) is favorable for FO membranes [53]. The
membrane S value is associated with the ICP degree and membrane physical properties,
such as porosity and thickness. With a rise in the degree of sulfonation, the S values of
the membrane samples reduced. The S value for the T1 sample was 10.9 ×10−4 m, which
reduced to 7.84 ×10−4 m and 5.91×10−4 m for T2 and T3, respectively. Sulfonation could
therefore result in the formation of a more porous substrate with a lower S value.

3.3. TFC FO Membranes Performance

Performances for the fabricated membrane samples under FO and PRO modes were
evaluated. The DS was 0.5–3.0 M of NaCl and feed solution was DI water. Figure 6a,b
show the water flux performance of the TFC FO membrane samples under the FO PRO
modes, respectively. As anticipated, the water flux rose with the DS concentration increase
for all samples due to a higher DS concentration generating a higher driving force. As
shown in Figure 6a,b, with the rise in the amount of sulfonation, the performances of the
FO membrane samples were enhanced in both modes, consistently with the membrane
A values.

Accordingly, in the PRO mode, similar water flux enhancement for the sulfonated
TFC FO samples was also observed. For instance, the water flux for the T1 membrane (2 M
NaCl DS-DI as FS) in the FO mode was 10.8.4 LMH and improved to 19.4 LMH under
the PRO mode of operation. However, in the same conditions and molar concentration,
the water flux levels under the FO mode for T2 and T3 were 14.1 and 19.9 LMH, which
improved to 22.1 LMH and 26.1, respectively. Under the PRO mode, in this study, water flux
performances for T2 and T3 are only about 30–40% higher than the FO mode of membrane
orientation. Generally, in the FO process, the water flux difference between FO and PRO
modes is significant by two folds, similar to the T1 membrane sample (with no sulfonated
polymer) [2,48,49]. However, in this study, the performance difference between FO and
PRO is slightly lower for T2 and T3 samples. This could indicate the insignificant level of
dilutive ICP in the FO mode and further confirm the positive effect of sulfonation on the
substrates [11,54].
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contain 25 wt % and 50 wt % SPES blend concentrations in the polymer solution, respectively).

Table 5 also summarizes the membrane performance in terms of water flux, RSF, and
specific reverse salt flux (SRSF) in FO and PRO modes of operation. For instance, the
T1 FO membrane (2 M NaCl as DS) had 10.8 LMH water flux where it was 14.1 LMH
for T2 and 19.9 LMH for T3 under the FO mode. Thus, the results show the membrane
flux improvement by sulfonation. A similar enhancement in water flux under the PRO
mode was also observed. For instance, the water flux of the T1 FO membrane (using 2 M
NaCl as DS) was 19.4 LMH, while it was 22.1 LMH for T2 and 26.2 LMH for T3 under
the PRO mode. Based on the membrane performance data presented in Figure 6 and
Table 5, it is evident that sulfonation could significantly enhance the membrane water flux
performances concerning RSF.

Table 5. Thin-film composite (TFC) FO membrane performance under FO and PRO modes using 2 M NaCl as DS and DI as
FS modes.

Membrane ID FO Mode PRO Mode

Water Flux (LMH) RSF (gMH) SRSF (g/L) Water Flux (LMH) RSF (gMH) SRSF (g/L)

T1 10.8 8.4 0.65 19.4 11.1 0.57
T2 14.1 11.1 0.78 22.1 14.7 0.66
T3 19.9 12.55 0.63 26.2 16.8 0.64

This improvement was most likely due to the changes in the membrane substrate
hydrophilicity and porosity. Evaluation of the cross-section morphologies for membrane
samples (Figure 4) indicated interesting results. The T1 membrane sample with a finger-like
pore structure had lower performance in comparison with T2 and T3 membrane samples,
which both possess a sponge-like and denser structure. Based on this finding, the ideal FO
membrane morphology can be irrelevant as the FO membranes’ performances can also be
enhanced by increasing membrane hydrophilicity. However, in this study, it can be seen
that the substrate hydrophilicity enhancement via sulfonation could also alter the substrate
morphology into a more sponge-like porous structure.

RSF is an important performance parameter that shows the amount of draw solute
diffusing through the membrane reversely [55]. This parameter indicates the permselec-
tivity of the membrane. A high RSF can complicate concentrate management, membrane
fouling, and scaling, in addition to the loss of DS [56,57].
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Figure 7 and Table 6 show the RSF of membrane samples in this study under both FO
and PRO modes of operation. Even though the water flux increased with the rise in the
sulfonation degree, the RSF also consistently increased for all three membrane samples, as
expected, due to the trade-off of permeability and selectivity.
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Figure 7. Membranes’ performance in terms of reverse salt flux (RSF) under FO mode with different
NaCl molar concentrations as DS and deionized wate(DI) r as FS.

The RSF of the T1 membrane sample was 8.4 gMH in the FO mode, which rose to
11.1 gMH and 12.55 gMH for T2 and T3, respectively. Similarly, the RSF for the T1 sample
was 11.1 gMH, rising to 14.7 gMH and 16.8 gMH for the T2 and T3 samples with the
PRO mode, respectively. Similar to the trend for water flux, RSF was also observed to be
higher under the PRO mode compared to the FO mode. To provide more comprehensive
information about the combined permeability and selectivity performance of the TFC mem-
branes, the specific RSF (SRSF) can be determined to give a better evaluation of membrane
performance under different operating modes. SRSF is defined as the quotient of the RSF
and the water flux, which is impartially constant regardless of the DS concentrations [58].

Figure 8 shows the SRSF for the developed membranes in this study. With an increase
in sulfonation degree, SRSF was slightly reduced to some extent, but it was constant in the
range of 0.5–0.8 g/L.

In this study, CFD simulation was performed to see if the sulfonated PES-based TFC
membrane behaves in accordance with all phenomena occurring during the FO process.
The results of the CFD model and experimental data were compared for all fabricated
membranes (T1, T2, and T3) and are presented in Figure 9. Considering all resistivities
including ICP and ECP, RSF, and the variable parameters, dynamic viscosity, density, and
osmotic pressure, which could vary with different concentrations, our CFD model could
calculate the driving force near the actual driving force. In most of the previous studies,
the driving force was considered constant along with membrane length, but this is not a
correct assumption. In our model, the 2000 concentrations along membrane length were
utilized to compute 2000 Jw and Js; after that, their average was calculated. Additionally,
the experimental data resulted from several repetitions. Therefore, the CFD model results
have an acceptable agreement with experimental data.
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Table 6. Comparison performances of flat sheet TFC FO membranes on different fabric support.

Membrane Types/Materials/Support Fabric
Water Flux (LMH) Specific Reverse Salt Flux

(g/L) DS NaCl
(M)

FS References
FO

Mode
PRO

Mode FO Mode PRO Mode

TFC flat-sheet (HTI) Psf Polyester
mesh 16.8 33.1 0.44 0.55 1.0 DI [59]

TFC flat-sheet (HTI) Psf Polyester
mesh 13.0 N/A 0.81 N/A 2.0 DI [14]

TFC flat-sheet
membrane CE 1 N/A 37.6 N/A 0.17 N/A 1.0 DI [60]

TFC flat-sheet
membrane Psf N/A 12.0 20.5 0.40 0.31 1.0 10 mM

NaCl [13]

TFC flat-sheet
membrane Psf PET

nonwoven 15.1 N/A - - 1.0 DI [14]

* TFC PAO 2 PES Compacted
woven mesh 16.1 - 0.43 - 0.5 DI [8]

TFC FO PES Permeate
spacer fabric 17.1 21.0 0.47 0.46 2.0 DI [61]

TFC FO PES Nonwoven
PET fabric 19.9 26.2 0.63 0.64 2.0 DI Present

work
1 Cellulose ester. 2 Pressure-assisted osmosis. N/A: without or not available. * Note: For the TFC-PAO membrane, applied hydraulic
pressure was 5 bar.
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Figure 8. Membranes’ performance in terms of specific reverse salt flux (SRSF) under the FO mode
with different NaCl molar concentrations as DS and DI water as FS.

The mathematical equations (Equations (16) and (17)) could not anticipate with high
accuracy the amount of Jw and Js when the concentration is higher than 1 M [62]. A possible
reason for the discrepancies is the application of the effect of ECP by calculating the mass
transfer coefficients, which could cause errors between CFD and experiment results because
the amount of these mass transfer coefficients can be different from the actual quantity of
these resistivities. Despite the discrepancies, a good agreement was obtained between the
experimental and simulated results.

Table 6 shows the comparison between the results of the current work with previous
and commercialized different TFC flat sheet FO membranes. The membranes prepared in
this study were only compared with other TFC membranes with woven and nonwoven
backing fabric support in literature, to provide a fair comparison. The best-performing
membrane prepared in this study was found to be comparable in terms of water flux and
SRSF with other TFC membranes in literature.
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4. Conclusions

In this study, nonwoven fabric backing-supported TFC FO membranes with PES/SPES
substrate were developed. The effect of SPES blending onto the membrane substrate
was investigated through changes in morphology, total thickness, hydrophilicity, tensile
strength, and TFC membrane performances. Changes in substrate morphology from
macrovoid to sponge shape, thinner thickness, and lower membrane hydrophilicity were
achieved after SPES blending into the PES polymer material. Furthermore, membrane
water permeability increased while the membrane structural parameter decreased, which
resulted in better membrane performance under the FO process. The modified TFC FO
membrane showed high water flux performance of 26.1 LMH and 32.7 LMH, under FO
and PRO modes, respectively, using 3 M NaCl as DS and DI water as FS. This high-
performance membrane may be suitable for fertigation applications in the fertilizer-drawn
forward osmosis (FDFO) unit; however, developing smarter membranes such as biomimetic
substrates may be the answer to elevate the FO process to a commercial scale.
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