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a b s t r a c t

Interactions between transmembrane (TM) proteins are fundamental for a wide spectrum of cellular
functions, but precise molecular details of these interactions remain largely unknown due to the scarcity
of experimentally determined three-dimensional complex structures. Computational techniques are
therefore required for a large-scale annotation of interaction sites in TM proteins. Here, we present a
novel deep-learning approach, DeepTMInter, for sequence-based prediction of interaction sites in
a-helical TM proteins based on their topological, physiochemical, and evolutionary properties. Using a
combination of ultra-deep residual neural networks with a stacked generalization ensemble technique
DeepTMInter significantly outperforms existing methods, achieving the AUC/AUCPR values of
0.689/0.598. Across the main functional families of human transmembrane proteins, the percentage of
amino acid sites predicted to be involved in interactions typically ranges between 10% and 25%, and
up to 30% in ion channels. DeepTMInter is available as a standalone package at https://github.com/
2003100127/deeptminter. The training and benchmarking datasets are available at https://data.mende-
ley.com/datasets/2t8kgwzp35.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transmembrane (TM) proteins are crucial for a large variety of
biological functions [1], acting as transporters, channels, receptors
and enzymes [2], and many of these functions are mediated by
protein–protein interactions (PPI). For example, a large-scale
affinity purification essay of yeast proteins [3] yielded 13,343
interactions between 2875 proteins, of which 1726 interactions
involve at least one TM protein. The membrane-linked interactome
of Arabidopsis thaliana was reported to involve 12,102 interactions
[4]. According to the BioGRID database [5] TM proteins are
involved in nearly a quarter of all confirmed human interactions,
and an even higher percentage (almost 40%) was identified based
on the most recent human interactome map [6]. Precise molecular
details of the majority of membrane-bound protein complexes
remain poorly characterized due to the scarcity of high-
resolution structures. Although TM proteins constitute 25–30% of
the cellular proteomes [7], they account for less than 2% of all
experimentally determined structures in PDB and, based on the
UniProt annotation [8], we estimate that less than 15% of all
human protein complexes with a known structure involve TM pro-
teins. Thus, knowledge about the location of protein binding sites
in the amino acid sequences of TM proteins remains limited.

There are several computational tools for predicting protein
interaction sites, including DLPred [9] and DELPHI [10] and, to
our knowledge, there are only two methods specifically trained
on membrane proteins. One of them, described in [11] and trained
on 128 protein chains, relies on amino acid composition and evo-
lutionary conservation while a more recent tool, developed in
our group (MBPred [12]) and trained on 171 chains, also leverages
co-evolutionary information. Both methods are implemented using
the same conventional machine learning approach - random forest
[13]. The recent advent of deep learning techniques has led to a
surge in prediction performance in many areas of structural bioin-
formatics and allowed to reduce its dependence on subjective
selection of informative features by domain experts [14]. Among
these deep-learning architectures, deep residual neural networks
(ResNets), which allow for a fast training with a very large number
of layers [15], have enabled considerable progress in predicting
secondary structures [16], residue contacts [17,18] as well as 3D
protein structures [19]. An additional path to enhancing the accu-
racy lies in the application of deep learning model ensembles, as
highlighted in a recent review [20]. Exponential growth in the
number of known amino acid sequences makes it possible to
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obtain deep multiple sequence alignments (MSAs) required for
efficient training of deep learning models for a growing number
of protein families.

Here, we present a fully automated deep-learning tool, DeepT-
MInter, to predict interaction sites in transmembrane proteins.
This method exploits an ultra-deep ResNet containing 27 residual
units, 58 convolutional layers and 1 dense layer, followed by
stacked generalization [21] for variance error reduction. DeepT-
MInter was trained on a dataset of 301 chains from 241 unique
transmembrane protein assemblies using a wide range of features,
including a non-redundant set of physicochemical scales, protein
topology, as well as evolutionary and co-evolutionary characteris-
tics [22]. The model hyperparameters (>2 million weight parame-
ters) were determined based on a 5-fold cross validation by the
stratified-shuffle method [23]. On an independent dataset of 30
chains (of which more than one third were released between
2019 and 2020) and on two previously released datasets of 137
chains, DeepTMInter significantly outperformed MBpred and DEL-
PHI both within structure-derived and predicted cytoplasmic,
transmembrane, and extracellular regions as well as in full amino
acid sequences. Furthermore, by reducing MSA sizes using HHfilter
[24] at a 90% sequence-identity threshold we were able to speed
up the method by an order of magnitude without a loss in
accuracy.
2. Materials and methods

2.1. Datasets of transmembrane proteins with known 3D structure

We obtained from the PDBTM database (version: July 2020)
[25] a dataset of 3090 three-dimensional structures of a-helical
TM proteins at better than 3.5 Å resolution (Fig. 1a). Their biolog-
ical oligomer structures were generated using the TMDET algo-
rithm [26,27] based on the PDB BIOMATRIX records. Upon
removing structures with non-biological contacts and those with
less than two chains we were left with 2073 PDB files containing
TM protein complexes. Subsequently, a TM protein chain in any
of the 2073 complexes was retained only if it possessed at least
one residue contact with any other chain in the same complex,
Fig. 1. Flowchart of our method to predict interaction sites in TM proteins. (a), (b), and
process, respectively.
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defined based on the minimal distance between any two nonhy-
drogen atoms of less than 6 Å (see Section 2.2 for detailed informa-
tion about interaction site definition). This procedure resulted in
10,194 unique protein chains.

For comparison purposes we also used two additional datasets
described in our previous work [12]. Briefly, the CompData dataset
(101 TM protein chains, Supplementary Table S1) was derived by
imposing a less than 30% sequence identity cutoff on a dataset of
267 TM protein chains benchmarked by Bordner [11]. The TestData
dataset (Supplementary Table S2) contains a non-redundant (se-
quence identity <30%) dataset of 36 protein chains deposited with
the PDBTM database between June 2015 and June 2017 and used to
test our previously developed MBpred method [12]. The structures
of 81 and 35 chains in the CompData and TestData datasets were
determined at better than 3.5 Å resolution, respectively. Upon
removing these 116 chains from the collection of 10,194 chains
described above, we were left with 10,078 chains. Following the
common practice in structural bioinformatics [28–30], we sub-
jected this dataset to a stringent redundancy reduction procedure
by imposing the requirement that no sequence pair shares a
sequence identity above 25%. The resulting 331 chains were then
randomly split into a training dataset (301 protein chains, dubbed
TrainData) and an independent dataset (30 protein chains, dubbed
IndepData) (Supplementary Tables S3 and S4). The detailed
description of the interaction partners of the training and testing
protein chains is given in Supplementary Tables S31-34.
2.2. Definition of interaction sites

Prediction of interaction sites is a class-imbalanced problem as
the interacting (minority) class is strongly under-represented com-
pared to the non-interacting (majority) class. As discussed in our
earlier publication [12], this problem can be partially alleviated
by defining amino acid residue contacts based on a somewhat lar-
ger distance threshold, which will result in more residues being
assigned to the interacting class. For this reason, out of several
alternative residue contact definitions, we selected the one pro-
posed by Hamp and Rost [31], which is based on the distance
between any two non-hydrogen atoms of less than 6 Å.
(c) schematically illustrate the dataset generation, input features, and prediction
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2.3. Protein topology

Extracellular (Extra), transmembrane (TM), and cytoplasmic
(Cyto) segments were determined exactly as in our previous pub-
lication [12]. First, positions of TM regions were defined according
to PDBTM. Since PDBTM does not always contain information
about the localization of extramembraneous regions (inside or out-
side), we used Phobius [32] predictions to verify sequence topol-
ogy. A non-TM segment as defined by PDBTM was confirmed as
cytoplasmic if the overlap between this segment and the cytoplas-
mic region predicted by Phobius was larger than the overlap
between this segment and the predicted extracellular region. The
same approach was used for extracellular regions. A combination
(Combined) of the three segment types above was also used in
benchmarking the performance of predictors. The sizes of the three
kinds of regions in the training and test datasets are presented in
Supplementary Table S17.

2.4. Multiple sequence alignments

We generated multiple sequence alignments (MSAs) for each
TM protein sequence by running HHblits searches [24] against
the latest release of the specially prepared Uniclust30 database

available at http://wwwuser.gwdg.de/~compbiol/uniclust/2020_

03/. Additionally, we also utilized the Uniprot20 database (http://

wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_

dbs/old-releases/), which has been used in several recent contact
prediction projects [33–35]. We found that there was no significant
difference in the prediction performance of models trained using
either of these two databases. All parameters used to run HHblits
in this work were according to the recommendations of Seedmayer

et al. [36], which can be found at https://github.com/soedinglab/

CCMpred/wiki/FAQ. In order to keep the CPU and memory require-
ments for calculating features at a manageable level, HHfilter [24]
was applied to only keep sequences sharing <90% sequence iden-
tity, which resulted in a significant reduction of MSA depth. In Sec-
tion 3.1.2 we will discuss the influence of the filtered MSAs on
prediction performance.

2.5. Input features

For each amino acid and each MSA position we generated a ser-
ies of sequence-based, physiochemical, and evolutionary charac-
teristics (Fig. 1b), including amino acid representation, amino
acid physicochemical scales, amino acid composition, MSA evolu-
tionary profile, Shannon entropy, evolutionary conservation, rela-
tive position, protein topology, and residue coevolution.

2.5.1. Amino acid representation
Amino acids in each sequence position were encoded by the

one-hot representation. A boolean vector of length 20 was used
to indicate the presence (1) or absence (0) of the amino acid X,
where X is one of the 20 amino acid symbols arranged in sequential
order: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y.

2.5.2. Amino acid physicochemical scales
The AAanalysis tool (Breimann et al., manuscript in

preparation) was used to generate a representative set of amino
acid physicochemical scales from the 565 redundant scales curated
in the AAindex database [37] and further 69 scales compiled from
other references. The redundancy of scales was reduced by apply-
ing 2-centroid k-means clustering with the Pearson correlation
cutoff of 0.5. The resulting set of non-redundant scales was further
clustered into 33 groups and in each group a scale with the highest
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Pearson correlation value with the centroid of that group was cho-
sen as representative. The final representative dataset contains 34
scales falling into the following 7 categories: conformation (16),
polarity (5), energy (8), composition (1), accessible surface (1),
shape (1), structure-activity (2) (Supplementary Table S5). Each
physicochemical scale was rescaled to the range [0,1]. For compar-
ison purposes we also used several other widely used amino acid
physicochemical scales (Supplementary Fig. S6).

2.5.3. Amino acid composition
Amino acid composition of each protein was represented by a

vector of length 20 containing the relative frequency of each amino
acid.

2.5.4. MSA evolutionary profile
The evolutionary profile for each symbol Y of 21 symbols (20

amino acids and one gap symbol) at MSA column i was calculated
as

EPY ;i ¼ log2
pY;i

pY

where pY ;i is the relative frequency of the symbol Y in the MSA col-
umn i and pY is the relative frequency of Y in the whole MSA.

2.5.5. Shannon entropy and evolutionary conservation
Shannon entropy for each MSA column i was computed as

E ¼ �
Xn

i¼1

pY ;ilog2pY;i

where n is 21 (20 amino acids and one gap symbol) and pY;i is the
relative frequency of each symbol Y at MSA column i. Lower values
of Shannon entropy correspond to higher conservation. Entropy val-
ues were transformed in such a way that higher values correspond
to a stronger evolutionary conservation C:

C ¼ 1� c � E

where the constant c is 1
log2ð20Þ.

2.5.6. Relative sequence position
Relative sequence position was computed by normalizing the

actual position i by protein length L: i
L.

2.5.7. Protein topology
For each amino acid position i we generated a boolean vector of

length 3 containing a one-hot representation of three topological
regions: cytoplasm, transmembrane helix, or extracellular region.

2.5.8. Residue coevolution
The likelihood of two amino acid residues to be in contact can

be measured by the evolutionary coupling (EC) values predicted
by the evolutionary coupling analysis (ECA) methods [38]. In order
to quantify the likelihood of a given residue to be involved in a con-
tact, the evolutionary coupling ratio (ECR) has been proposed [22]:

ECR ¼ ECX

EC=L

where ECX is the sum of all EC values involving the residue X at
position i and EC is the sum of all EC values of all residues in protein
of length L. In order to reduce the variance error, we employed four
ECA tools to generate three types of EC values, namely: mutual

information and EVfold (generated by FreeContact ftp://rostlab.

org/free/) and Gaussian DCA (https://github.com/carlobaldassi/

GaussDCA.jl). The ECR feature is thus represented by a vector of
length 3.
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2.6. The deep learning approach

2.6.1. Sequence window size and feature vector dimension
The choice of the sequence window size is crucial for optimizing

the speed of training and also because it determines the dimension
of the feature vector. For each window centered around a certain
sequence position we tested three different setups: i) a compara-
tively large window size of 9, ii) a comparatively small window size
of 3, and iii) a combination of two different window sizes, 9 and 3,
dependent on a particular group of features being used. Upon con-
ducting extensive computational experiments (data not shown) we
found the setup iii to deliver the most optimal results in terms of
the number of epochs required for training. We finally chose the
window size of 9 for three features - physicochemical scales, evo-
lutionary profile, and residue coevolution – while for all other fea-
tures we used the windows of length 3. This choice resulted in a
feature vector of length 660 (Supplementary Table S7).

2.6.2. Residual neural network architecture
We developed a deep learning architecture based on a residual

neural network (ResNet) for predicting interacting amino acid resi-
dues in transmembrane proteins (Fig. 2a). For each amino acid
position, the 660-dimensional feature vector (Section 2.6.1) was
reshaped into a 26 � 26 matrix (i.e. with 676 elements, with 16
dimensions padded by 0), which was batch-normalized in order
to speed up the training process [39]. The matrix was fed into an
initial convolutional layer with 64 filters using stride 1, thus result-
ing in 64 separate output matrices with the same dimension
26 � 26 as the input matrix. In line with previous work
[18,33,40], the same number of filters (64) was used in all other
convolutional layers within the proposed architecture. The l � l
values contained in the filter are the actual parameters to be
learned during training. Since the computational cost of applying
the convolution operation is directly proportional to the number
of parameters, we used relatively small filters of size 3 � 3 contain-
ing randomly generated normally distributed values.

At the core of our ResNet architecture are 27 residual units (also
called residual blocks), all with the same structure (Fig. 2a). For
comparison, the number of residual units in some of the recently
published ResNet architectures were 9 [41], 18 [40], and 22 [34].
We found that increasing the number of residual units even further
Fig. 2. Overview of the supervised learning process of DeepTMInter. (a) Layout of the dee
Using stacked generalization to further enhance the prediction performance of the ResNe
rounded boxes in dark grey: respective obtained models.
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led to significantly higher requirements for computing power and
GPU memory resources; a deep architecture with 27 residual units
could be trained in an acceptable running time. Each residual unit
consists of 2 repeated basic structures consisting of batch normal-
ization [39], a rectified linear unit (ReLU) [42], and a convolutional
layer. This design of the residual unit, already used in our previous
work [17], allows to accelerate the optimization and to avoid over-
fitting of the ResNet architecture [43]. ReLU [42], which makes
input data non-negative [44], can alleviate the vanishing gradient
problem [44] and further improve the performance of ResNet
[42]. In order to reduce data dimensionality and the computational
cost, we plugged an additional block comprising batch normaliza-
tion and a convolutional layer with stride 2 (Fig. 2a) evenly dis-
tributed across the architecture: in the beginning (between
residual units 1 and 2), in the middle (between residual units 13
and 14), and at the end (between residual units 26 and 27). It
has become a common practice to apply dimensionality reduction
subsequent to a group of convolutional layers [45–48]. As a result,
the original matrix dimension is progressively reduced from
26 � 26 to 13 � 13, then to 7 � 7, and finally to 4 � 4. The last
residual unit is connected to a dense layer with 1024 neurons, fol-
lowed by a 2-way softmax function which outputs for each amino
acid the probabilities ( x1; x2½ � where 0 � x1; x2 � 1) of it being in
involved in an interaction (corresponding to the label [0, 1] if
x2 � x1) or not (corresponding to the label [1, 0] if x1 � x2). We
implemented the deep architecture of ResNet depicted in Fig. 2a
by using Google’s Tensorflow library (version 1.12.0) based on
Python programming language.

2.6.3. Settings for training the ResNet architecture
Adam [49], a computationally efficient algorithm, was

employed to train and optimize the ResNet architecture with the
learning rate of 0.001 and the batch size of 100 training samples.
The cross entropy objective function [50] was used to quantitively
measure the difference between the actual labels and predicted
labels (see Section 2.6.2).

2.6.4. Cross validation of the ResNet architecture
We categorized protein chains in the TrainData dataset into 5

classes according to their length: <200 (104 chains), 200–400
(125 chains), 401–600 (51 chains), 601–800 (16 chains), and
p ResNet architecture to predict interacting amino acid residues in TM proteins. (b)
t models. Rounded boxes in light grey: deep learning or machine learning methods;
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>800 (4 chains) (Supplementary Table S8). 5-fold stratified-shuffle
cross validation [23] was employed to evenly allocate protein
chains of different length classes for training and validation at each
iteration (Supplementary Fig. S1). Protein chains of each class were
then randomly selected for training and validation according to the
ratio 4:1 at each of the 5 iterations. Specifically, at each iteration,
240 chains were used for training and 60 chains for validation.

2.6.5. Avoiding over-training
Over-training is detrimental to the performance of models on

unseen validation data [51–53], even if they achieve ideal perfor-
mance on training data [54] (Supplementary Fig. S2). In order to
avoid over-training, the early stopping strategy [55] was adopted,
which involves aborting the training when the performance on val-
idation data begins to worsen [56]. At each round of cross-
validation, the model was chosen at one of the training epochs over
which the performance on validation data continued to show an
optimal trend [54,55].

2.6.6. Stacked generalization
Stacked generalization [21], an approach for implementing

model ensembles [57], was used to minimize the generalization
errors of the models trained by the ResNet architecture [58]
(Fig. 2b). The combined output, which was constructed by merging
the output (by column) of the five models generated by a 5-round
training on the full TrainData dataset (see Section 3.1.1), served as
input for a multi-layer perceptron (MLP) [59] and a Gaussian Naive
Bayes (GNB) classifier [60]. The output of the MLP and GNB models
was then fitted by logistic regression. The resulting final model was
used to report and evaluate the performance of the interaction site
predictor reported in this paper. The MLP, GNB, and logistic regres-
sion models were implemented using the scikit-learn package

(https://scikit-learn.org).

2.7. Evaluation criteria

The overall performance of DeepTMInter was evaluated based
on two threshold-free [61,62] measures: the area under the ROC
(Receiver Operating Characteristic) curve (AUC) and the area under
the Precision-Recall curve (AUCPR) [63]. In addition, we also
employed the following single-threshold performance measures
[61]:

Precision ðPÞ ¼ TP
TP þ FP

Recall ðRÞ ¼ TP
TP þ FN

Specificity ðSPÞ ¼ TN
TN þ FP

F1� score ðF1Þ ¼ 2� precision� recall
precisionþ recall

Accuracy ðACCÞ ¼ TP þ TN
TP þ TN þ FP þ FN

Matthews Correlation Coefficient MCCð Þ

¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

Jaccard Similarity Coefficient ðJSCÞ ¼ TP
TP þ FP þ FN
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where TP (true positive), FP (false positive), TN (true negative) and
FN (false negative) are the number of interacting residues predicted
as interacting, the number of non-interacting residues predicted as
interacting, the number of non-interacting residues predicted as
non-interacting, and the number of interacting residues predicted
as non-interacting, respectively. For each protein of length L in
the three test datasets we evaluated predictions based on the top-
ranked L/5 interaction sites (L-based performance evaluation is
most commonly adopted in structural bioinformatics [18,29,33]).
2.8. Comparison with other methods

We compared the performance of DeepTMInter on three test
datasets (see Section 2.1) with the MBPred algorithm previously

developed in our group ([12]; https://github.com/bojigu/MBPred).
The standalone MBPred suite contains four individual predictors
- MBPredTM, MBPredCyto, MBPredExtra, and MBPredAll - trained
on transmembrane, cytoplasmic, and extracellular regions as well
as full-length TM protein sequences, respectively. Additionally,
we also compared DeepTMInter with MBPredCombined, which
combines MBPredTM, MBPredCyto, and MBPredExtra predictions.

Another method we compared DeepTMInter with is DELPHI
[10], which employs a hybrid convolutional and recurrent neural
network architecture for predicting interaction sites in proteins
of any type, both soluble and transmembrane.
2.9. Human transmembrane proteins

We obtained 5178 human protein sequences with at least one
annotated transmembrane region from the UniProtKB/Swiss-Prot
database [8]. Interaction sites of the proteins were predicted by
DeepTMInter. Topologies of the human transmembrane proteins
were annotated according to UniProt. We finally retained for fur-
ther analysis 5051 human transmembrane proteins with the MSA
depth in the range between 20 and 10,000 after filtering (see Sec-
tion 2.4 for alignment generation). Thus, shallow MSAs providing
insufficient evolutionary information as well as excessively deep
MSAs imposing excessively high CPU requirements were excluded.
These proteins were classified into eight major functional classes -
G-protein-coupled receptor (GPCR), catalytic receptor, ligand-gated
ion channel (LGIC), voltage-gated ion channel (VGIC), other ion chan-
nel, transporter, enzyme, and other protein target – according to the
expert-curated ‘‘Guide to PHARMACOLOGY” database (GtoPdb;

https://www.guidetopharmacology.org/) [64,65].
2.10. Protein-protein interaction databases

For human transmembrane proteins we obtained 76,584
unique pairs of interacting proteins from a high-quality expert-
curated resource HuRI-Union [6], which represents the union of
the HI-union and Lit-BM databases. The 64,006 binary proteins
interactions (PPIs) in the HI-union database were systematically
identified by the yeast two-hybrid (Y2H) assay, while the Lit-BM
database comprises a collection of 13,441 high-confidence binary
PPIs from literature.

Interaction partners for the proteins in our three test datasets
(TestData, CompData, and IndepData) were obtained by merging
1,858,173 binary interactions from the BioGRID database (version
3.5.188) [5] and 1,063,382 binary interactions from the IntAct
database (version: 4.1.25) [66], respectively (Supplementary
Figs. S3 and S4). A mapping between the PDB codes and UniProt
IDs of proteins was obtained by PyPDB [67].

https://scikit-learn.org
https://github.com/bojigu/MBPred
https://www.guidetopharmacology.org/


Fig. 3. Performance of our method on the IndepData dataset based on the 80% subsets and the full TrainData dataset. (a), (b), and (c) show AUC, AUCPR, and cross-entropy
error values over 100 training epochs. The errors in (c) measure the difference between actual and predicted labels of interaction sites using the cross-entropy objective
function (see Section 2.6.3). Blue lines and red dots represent the mean AUC, AUCPR, and error values produced by the models trained over 5 rounds on the full training set or
the models trained on the 80% subsets in the course of 5-fold cross validation, respectively. For each red dot the upper and lower bounds correspond to the maximum and
minimum values produced by 5 cross-validation models at each of the 100 epochs, respectively. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Performance comparison of DeepTMInter and DeepTMInter-Unfiltered on the IndepData dataset. (a), (b), and (c) show mean AUC, AUCPR, and cross-entropy error
values with (solid line) and without (dashed line) HHfilter over 100 training epochs produced by the models trained over 5 rounds on the full training set. (d) presents the
number of homologous sequences in MSAs generated with and without using HHfilter, with the mean values of 39,553 and 12,663, respectively. (e) and (f) show the AUC and
AUCPR values produced by the final ensemble models (stacked generalization, see Section 2.6.6) on four types of structure-derived and Phobius-predicted regions (Cyto, TMH,
Extra, and Combined) (Supplementary Tables S11). (g) shows the distribution of Neff values for the MSAs of proteins in the three test datasets. (h) shows the correlation
between Neff and the prediction performance measured as AUC on the three test datasets. Each dot represents a protein.
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Fig. 5. Performance comparison of DeepTMInter and DeepTMInter-Lit based on the IndepData dataset. (a), (b), and (c) show mean AUC, AUCPR, and cross-entropy error
values over 100 training epochs produced by the DeepTMInter (solid line) and DeepTMInter-Lit (dashed line) models trained over 5 rounds on the full training set. (d) shows
the AUC and AUCPR values produced by the final ensemble models (stacked generalization, see Section 2.6.6) on four types of structure-derived and Phobius-predicted
regions (Cyto, TMH, Extra, and Combined). (e) and (f) display the distribution of MCC and recall values of protein chains.
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3. Results

3.1. Prediction performance of DeepTMInter

In addition to performing a 5-fold cross-validation procedure,
we also conducted 5 rounds of training on the full TrainData data-
set in order to eliminate the influence on the prediction perfor-
mance of some random factors, such as the initialization
parameters of the residual neural network (see Sections 2.6.4 and
Table 1
Performance gauged by mean precision (P), recall (R), specificity (SP), accuracy (ACC), MC
TMH, Extra, and Combined regions on the TestData dataset.

Predictor Region P R SP ACC MCC F1

L/5

MBPredCyto Cyto 0.651 0.231 0.817 0.439 0.077 0.2
MBPredTM 0.593 0.215 0.806 0.422 0.008 0.2
MBPredExtra 0.645 0.219 0.811 0.440 0.068 0.2
MBPredAll 0.657 0.227 0.814 0.449 0.075 0.2
DELPHI 0.663 0.256 0.838 0.485 0.107 0.3
DeepTMInter 0.743 0.322 0.871 0.481 0.202 0.

MBPredCyto TMH 0.574 0.224 0.816 0.490 0.059 0.2
MBPredTM 0.620 0.248 0.837 0.509 0.106 0.3
MBPredExtra 0.572 0.210 0.814 0.489 0.051 0.2
MBPredAll 0.645 0.267 0.841 0.532 0.150 0.3
DELPHI 0.584 0.248 0.836 0.535 0.096 0.3
DeepTMInter 0.734 0.350 0.890 0.554 0.240 0.

MBPredCyto Extra 0.624 0.205 0.804 0.447 0.025 0.2
MBPredTM 0.572 0.184 0.797 0.418 0.001 0.2
MBPredExtra 0.660 0.228 0.809 0.463 0.072 0.3
MBPredAll 0.611 0.222 0.814 0.442 0.023 0.2
DELPHI 0.591 0.230 0.828 0.479 0.054 0.3
DeepTMInter 0.763 0.325 0.867 0.504 0.194 0.

MBPredAll Combined 0.654 0.245 0.829 0.493 0.111 0.3
MBPredCombined 0.665 0.242 0.827 0.492 0.118 0.3
DELPHI 0.616 0.251 0.839 0.513 0.094 0.3
DeepTMInter 0.759 0.344 0.888 0.530 0.234 0.
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2.6.6). Note that no protein chain in the TrainData dataset shares
more than 25% sequence identity with any protein from the Indep-
Data dataset (see Section 2.1), on which our method was assessed.

As seen in Fig. 3, the best performance on validation data is
achieved in the vicinity of epoch 60 and the corresponding models
were chosen for final assessment according to the early stopping
strategy. Overall, the performance of models trained on the full
TrainData dataset is significantly better in terms of mean AUC val-
ues, AUCPR values, and cross-entropy error function than that of
C, F1-score (F1), and AUC, and AUCPR (see Section 2.7) using structure-derived Cyto,

P R SP ACC MCC F1 AUC AUCPR

L/10

98 0.613 0.113 0.913 0.413 0.038 0.172 0.760 0.539
76 0.540 0.109 0.907 0.397 0.001 0.157 0.612 0.488
95 0.566 0.093 0.905 0.403 0.001 0.153 0.581 0.444
93 0.619 0.114 0.910 0.420 0.031 0.172 0.745 0.511
25 0.689 0.148 0.924 0.460 0.113 0.212 0.720 0.575

376 0.733 0.197 0.944 0.440 0.158 0.250 0.807 0.744

93 0.574 0.119 0.909 0.480 0.040 0.184 0.605 0.449
24 0.665 0.141 0.926 0.500 0.105 0.219 0.753 0.507
84 0.592 0.120 0.911 0.484 0.051 0.189 0.581 0.410
43 0.637 0.137 0.922 0.510 0.095 0.213 0.724 0.471
20 0.654 0.147 0.930 0.535 0.121 0.227 0.707 0.569

429 0.775 0.205 0.958 0.523 0.200 0.303 0.820 0.721

88 0.587 0.101 0.900 0.424 0.009 0.165 0.626 0.528
58 0.516 0.085 0.891 0.408 0.001 0.141 0.594 0.453
12 0.658 0.112 0.910 0.437 0.061 0.184 0.685 0.497
90 0.625 0.117 0.910 0.439 0.047 0.187 0.672 0.518
04 0.648 0.134 0.919 0.470 0.071 0.209 0.644 0.591

405 0.778 0.181 0.938 0.460 0.161 0.265 0.738 0.685

29 0.646 0.120 0.916 0.458 0.065 0.190 0.721 0.497
31 0.662 0.119 0.914 0.457 0.075 0.191 0.732 0.517
31 0.653 0.137 0.926 0.495 0.094 0.213 0.695 0.572

425 0.815 0.202 0.961 0.488 0.205 0.294 0.793 0.718
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models trained on TrainData subsets in the course of cross valida-
tion (Fig. 3a-c, Supplementary Tables S9 and S10). The ~20%
increase in the number of protein chains between each cross-
validation subset and the full training set and the concomitant
increase in the number of interaction sites (from ~82,000 for each
of cross validations to 102,685, see Supplementary Table S8) lead
to a surge in prediction performance. Thus, we finally settled for
the models trained based on the full TrainData dataset, which were
further used to construct the final ensemble model referred to as
DeepTMInter (see Section 2.6.6). The application of the stacked
generalization to the final ensemble model results in an approxi-
mately 0.5%-3% increase compared to the separate models in terms
of AUC performance using different regions (Supplementary
Table S10).

3.2. Influence of MSA depth on prediction performance

MSA depth is a major factor determining the CPU and memory
requirements for feature generation. We therefore evaluated the
performance of our method on full MSAs (this model is referred
to as DeepTMInter-Unfiltered) and on shallow MSAs filtered by
HHfilter (see Section 2.4) (referred to as DeepTMInter). The perfor-
mance of these two models is in general comparable (Fig. 4a-c),
with DeepTMInter even overperforming DeepTMInter-Unfiltered
in some cases using the four types of either structure-derived or
Phobius-predicted regions (Cyto, TMH, Extra, and Combined)
(Fig. 4e and f). For example, using the structure-derived Extra
region the AUC and AUCPR values of DeepTMInter (0.688 and
0.458, respectively) are significantly higher than the values
achieved by DeepTMInter-Unfiltered (0.656 and 0.425, respec-
tively). Thus, significantly reducing alignment depth (Fig. 4d)
allowed to speed up our method without sacrificing prediction per-
formance. We examined how the prediction performance is influ-
enced by the MSA quality based on the numbers of effective
sequences (Neff) [68,69], which were computed using ConKit
[70] with the 80% sequence-identity threshold [68] (Fig. 4g and
h). According to the linear regression analysis there is overall a sta-
tistically significant correlation between the MSA quality and the
prediction performance on all test datasets, as evidenced by low
Table 2
Performance gauged by mean precision (P), recall (R), specificity (SP), accuracy (ACC), MC
TMH, Extra, and Combined regions on the CompData dataset.

Predictor Region P R SP ACC MCC F1

L/5

MBPredCyto Cyto 0.727 0.236 0.838 0.432 0.082 0.3
MBPredTM 0.674 0.215 0.809 0.410 0.020 0.3
MBPredExtra 0.681 0.216 0.821 0.411 0.030 0.3
MBPredAll 0.764 0.261 0.855 0.454 0.139 0.3
DELPHI 0.754 0.248 0.870 0.463 0.136 0.3
DeepTMInter 0.804 0.289 0.900 0.461 0.174 0.3

MBPredCyto TMH 0.598 0.227 0.818 0.505 0.074 0.3
MBPredTM 0.663 0.269 0.850 0.531 0.147 0.3
MBPredExtra 0.574 0.209 0.812 0.495 0.047 0.2
MBPredAll 0.662 0.270 0.848 0.535 0.150 0.3
DELPHI 0.664 0.285 0.853 0.553 0.171 0.3
DeepTMInter 0.719 0.319 0.889 0.552 0.211 0.4

MBPredCyto Extra 0.647 0.216 0.823 0.472 0.075 0.3
MBPredTM 0.589 0.194 0.801 0.450 0.016 0.2
MBPredExtra 0.696 0.243 0.863 0.492 0.133 0.3
MBPredAll 0.681 0.244 0.854 0.496 0.124 0.3
DELPHI 0.664 0.244 0.861 0.499 0.110 0.3
DeepTMInter 0.784 0.315 0.895 0.527 0.234 0.4

MBPredAll Combined 0.687 0.260 0.856 0.509 0.134 0.3
MBPredCombined 0.679 0.260 0.855 0.510 0.129 0.3
DELPHI 0.698 0.275 0.868 0.538 0.169 0.3
DeepTMInter 0.773 0.320 0.903 0.544 0.229 0.4
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p-values (e.g., 1.415e�05 on TestData and 2.084e�04 on Indep-
Data), although the R-square values are moderate (e.g., 0.42 on
TestData and 0.38 on IndepData).
3.3. Selection of amino acid physicochemical scales

In order to investigate how the choice of amino acid physico-
chemical scales influences model performance, two groups of
scales were prepared: one generated by the AAanalysis tool and
the other one manually collected from literature (see Methods, Sec-
tion 2.5.2). Our final model, DeepTMInter, was trained with the
scales generated by the AAanalysis tool and all the other features.
For comparison, the model trained with the scales collected from
references and all the other features is further referred to as
DeepTMInter-Lit.

Overall, DeepTMInter shows a better performance than
DeepTMInter-Lit in terms of AUC values on all test datasets
(Fig. 5). For instance, using Phobius-predicted combined regions
on the IndepData dataset DeepTMInter achieves the AUC value of
0.690 (AUCPR = 0.599) compared to 0.676 (0.595) of
DeepTMInter-Lit (Supplementary Tables S10 and 12). We assume
that this gain in performance stems from the fact that the AAanal-
ysis tool selects the representative scales of each kind and thus sig-
nificantly reduces data redundancy, which is detrimental to
learning algorithms [71,72].
3.4. Performance comparison of DeepTMInter with other methods

We compared the prediction performance of DeepTMInter with
the four underlying predictors (MBPredTM, MBPredCyto, MBPre-
dExtra, and MBPredAll) in the MBPred suite, with the ensemble
predictor MBPredCombined, as well as with DELPHI (see Sec-
tion 2.8). Due to the adoption of the early stopping strategy to pre-
vent over-training (see Section 2.6.5), our trained model achieved
high prediction performance not only on the two previous test
datasets (TestData and CompData) (Tables 1 and 2), but also on
the independent test dataset (IndepData) (Figs. 6 and 7, Table 3,
and Supplementary Tables S13-S14).
C, F1-score (F1), and AUC, and AUCPR (see Section 2.7) using structure-derived Cyto,

P R SP ACC MCC F1 AUC AUCPR

L/10

37 0.693 0.115 0.924 0.385 0.066 0.190 0.618 0.622
09 0.616 0.102 0.907 0.371 0.008 0.168 0.571 0.552
08 0.663 0.112 0.914 0.379 0.048 0.181 0.585 0.570
63 0.728 0.132 0.935 0.400 0.103 0.210 0.656 0.664
58 0.751 0.129 0.942 0.414 0.111 0.212 0.735 0.717
87 0.764 0.156 0.957 0.400 0.129 0.229 0.807 0.779

07 0.594 0.120 0.911 0.486 0.049 0.188 0.578 0.452
54 0.715 0.149 0.931 0.507 0.133 0.232 0.650 0.558
89 0.570 0.108 0.906 0.481 0.030 0.173 0.576 0.444
55 0.667 0.144 0.931 0.505 0.106 0.222 0.669 0.566
65 0.699 0.159 0.933 0.528 0.146 0.237 0.715 0.571
03 0.757 0.181 0.955 0.517 0.174 0.267 0.803 0.716

08 0.617 0.107 0.913 0.435 0.040 0.176 0.591 0.515
77 0.545 0.094 0.899 0.422 �0.007 0.154 0.545 0.448
41 0.703 0.131 0.943 0.453 0.110 0.212 0.643 0.586
39 0.701 0.135 0.937 0.463 0.110 0.216 0.635 0.581
38 0.700 0.135 0.936 0.474 0.110 0.216 0.706 0.626
15 0.792 0.181 0.959 0.474 0.187 0.272 0.777 0.712

60 0.707 0.136 0.936 0.475 0.104 0.220 0.651 0.604
59 0.717 0.141 0.938 0.481 0.114 0.227 0.635 0.589
79 0.729 0.145 0.939 0.505 0.135 0.235 0.718 0.633
26 0.799 0.174 0.960 0.494 0.177 0.270 0.796 0.738



Fig. 6. Performance comparison of DeepTMInter with MBPred and DELPHI. (a), (b), and (c) show the ROC curves on the TestData, CompData, and IndepData datasets,
respectively, while (d), (e), and (f) show the Precision-Recall curves on the TestData, CompData, and IndepData datasets, respectively.

Fig. 7. Comparison of JSCs (Jaccard similarity coefficients) between DeepTMInter and the three specialized MBPred predictors (MBPredTM, MBPredCyto, and MBPredExtra)
on the TestData dataset. Each dot corresponds to one protein chain.
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Table 3
Performance gauged by mean precision (P), recall (R), specificity (SP), accuracy (ACC), MCC, F1-score (F1), and AUC, and AUCPR (see Section 2.7) using structure-derived Cyto,
TMH, Extra, and Combined regions on the IndepData dataset.

Predictor Region P R SP ACC MCC F1 P R SP ACC MCC F1 AUC AUCPR

L/5 L/10

MBPredCyto Cyto 0.612 0.230 0.853 0.506 0.104 0.322 0.608 0.113 0.932 0.479 0.070 0.185 0.624 0.581
MBPredTM 0.538 0.206 0.824 0.476 0.027 0.285 0.569 0.108 0.919 0.470 0.040 0.176 0.568 0.522
MBPredExtra 0.524 0.205 0.819 0.471 0.019 0.278 0.554 0.111 0.919 0.467 0.037 0.174 0.591 0.540
MBPredAll 0.659 0.246 0.868 0.519 0.153 0.347 0.641 0.118 0.936 0.480 0.090 0.195 0.648 0.622
DELPHI 0.616 0.223 0.844 0.507 0.110 0.317 0.614 0.107 0.920 0.478 0.069 0.178 0.632 0.600
DeepTMInter 0.633 0.269 0.855 0.514 0.135 0.352 0.687 0.147 0.937 0.493 0.129 0.228 0.689 0.657

MBPredCyto TMH 0.588 0.206 0.809 0.498 0.058 0.295 0.603 0.106 0.907 0.483 0.048 0.177 0.566 0.482
MBPredTM 0.635 0.242 0.837 0.515 0.090 0.335 0.652 0.124 0.921 0.493 0.073 0.204 0.603 0.513
MBPredExtra 0.594 0.211 0.815 0.500 0.063 0.299 0.622 0.113 0.908 0.488 0.061 0.185 0.548 0.476
MBPredAll 0.649 0.240 0.836 0.524 0.125 0.336 0.644 0.116 0.915 0.494 0.080 0.192 0.593 0.502
DELPHI 0.634 0.234 0.829 0.516 0.106 0.329 0.617 0.115 0.913 0.486 0.059 0.188 0.596 0.533
DeepTMInter 0.635 0.246 0.834 0.515 0.109 0.331 0.676 0.131 0.919 0.499 0.107 0.209 0.661 0.603

MBPredCyto Extra 0.514 0.216 0.803 0.555 0.074 0.288 0.444 0.093 0.898 0.545 0.031 0.148 0.571 0.355
MBPredTM 0.518 0.238 0.807 0.556 0.085 0.301 0.471 0.112 0.909 0.551 0.055 0.170 0.581 0.386
MBPredExtra 0.463 0.204 0.804 0.539 0.029 0.265 0.465 0.106 0.902 0.543 0.042 0.163 0.519 0.312
MBPredAll 0.520 0.232 0.807 0.556 0.075 0.299 0.508 0.130 0.905 0.553 0.065 0.192 0.571 0.367
DELPHI 0.560 0.269 0.822 0.576 0.122 0.342 0.543 0.131 0.915 0.563 0.105 0.202 0.703 0.476
DeepTMInter 0.558 0.259 0.820 0.573 0.133 0.328 0.503 0.112 0.913 0.555 0.075 0.175 0.688 0.458

MBPredAll Combined 0.608 0.249 0.840 0.571 0.139 0.344 0.597 0.122 0.918 0.548 0.084 0.200 0.610 0.514
MBPredCombined 0.573 0.240 0.834 0.557 0.104 0.325 0.573 0.118 0.916 0.542 0.068 0.190 0.589 0.493
DELPHI 0.578 0.238 0.831 0.559 0.109 0.325 0.603 0.126 0.919 0.548 0.091 0.202 0.642 0.541
DeepTMInter 0.612 0.276 0.846 0.573 0.151 0.360 0.658 0.151 0.928 0.559 0.135 0.233 0.689 0.598
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3.4.1. Performance comparison using threshold-free measures
On all test datasets the AUC and AUCPR performance of predic-

tors was benchmarked using the Cyto, TMH, Extra and Combined
regions either defined according to PDBTM or predicted by Pho-
bius. For the three specialized predictors (MBPredCyto, MBPredTM,
and MBPredExtra), we calculated the AUC and AUCPR values not
only for their specialized regions but also for the regions on which
Fig. 8. Relative solvent accessibility of interaction and non-interaction sites. (a) and (b)
respectively. (c) shows the RSA density of FN and FP predictions. The densities in (a)-(c) a
Seaborn library [78]. (d) shows the percentage of buried and exposed sites among the f
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they were not trained (Table 3 and Supplementary Tables S13 and
S14). Overall, DeepTMInter shows a significant improvement in
terms of the AUC and AUCPR performance compared to the other
two state-of-the-art methods. For example, on the IndepData data-
set our method gives the AUC value of 0.661 (AUCPR = 0.603), dis-
tinctly higher than 0.603 (0.513) of MBPredTM and 0.596 (0.533) of
DELPHI using structure-derived TMH regions. Note that DELPHI
show the RSA density of actual and predicted interaction and non-interaction sites,
re calculated by using the Gaussian kernel density estimate (Gaussian KDE) from the
alse predictions.



Fig. 9. Feature importance measured by mean decrease of impurity (MDI). The mean (a) and the max (b) MDI values of 11 unique features are achieved over the full training
and the 5-iteration cross-validation datasets, respectively.
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achieves the best AUC (0.703) and AUCPR (0.476) performance
using the Extra region. Interestingly, on the TestData and Comp-
Data datasets, DeepTMInter also significantly outperforms all other
methods in the Extra regions (Tables 1 and 2). To investigate the
weaker performance of our method in this region on the IndepData
dataset, we derived from protein structures the number of interac-
tion and non-interaction sites (Supplementary Table S18) and
found that unlike the even ratios of interaction vs. non-
interaction sites in the Cyto (1199 vs. 1338) and TMH (766 vs.
Fig. 10. Statistics and performance comparison using the BordInter, FuchInter, and RostIn
datasets. Left side: NI - number of interacting amino acid residues; NNI - number of non-i
ROC curves on the TestData, CompData, and IndepData datasets, respectively based on t
curves on the TestData, CompData, and IndepData datasets, respectively. Similar to Fig
MBPredTM, and MBPredExtra) are evaluated using the predictions for the respective reg
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984) regions, sites in the Extra region are clearly biased towards
the non-interaction class with the ratio of 516 vs. 1210. We there-
fore speculate that this imbalance complicates distinguishing the
interaction sites from the overrepresented non-interaction sites.
By contrast, the method DELPHI, trained on non-TM proteins, still
performs well in this non-TM region [10]. MBPredCyto, MBPredTM,
and MBPredExtra have been reported to perform best in predicting
interacting amino acid residues located in their respective regions
(Cyto, TMH, and Extra) on the TestData dataset [12]. Indeed, we
ter residue contact definitions on the TestData (a), CompData (b), and IndepData (c)
nteracting amino acid residues. Right side: AUC and AUCPR. (d), (e), and (f) show the
he BordInter interaction definition, while (g), (h), and (i) show the Precision-Recall
. 6, the ROC and Precision-Recall curves of three separate predictors (MBPredCyto,
ions they were trained on.
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found that this is the case both on the CompData and IndepData
datasets. For example, on the CompData dataset among all special-
ized predictors in the MBPred suite MBPredCyto, MBPredTM, and
MBPredExtra yield the highest AUC values of 0.618, 0.650, and
0.643 (AUCPR = 0.622, 0.558, and 0.586).

Fig. 6 shows the ROC and Precision-Recall curves of predictors
using their specialized structure-derived regions on all test
datasets. DeepTMInter is clearly superior to the MBPred suite
and DELPHI and achieves the highest AUC (0.793, 0.796, and 0.689)
(Fig. 6a-c) and AUCPR values (0.718, 0.738, and 0.598) (Fig. 6d-f).
Overall, the MBPred suite is mostly comparable to DELPHI in terms
of the AUC performance across the three test datasets on average,
but is worse than DELPHI in terms of the AUCPR performance
(Fig. 6). On all test datasets MBPred predictors exhibit comparable
performance in predicting interaction sites located in the regions
they are specifically trained on. For example, on the IndepData
dataset MBPredCyto and MBPredTM produce similar ROC curves
corresponding to the AUC values of 0.624 and 0.603, respectively.

3.4.2. Performance comparison using single-threshold measures
For proteins in all test datasets mean precision, recall, F1-score,

and MCC were calculated using entire combined structure-derived
regions (Tables 1–3). Based on these performance measures
DeepTMInter is also way ahead of the MBPred suite and DELPHI.
For example, on the CompData dataset DeepTMInter achieved
the highest precision 0.783, recall 0.324, F1-score 0.432, and MCC
0.239 values. In addition, JSC (Jaccard similarity coefficient, see
Section 2.7) was used to assess the similarity between a set of
actual labels and a set of predicted labels for sites in TM proteins
[73,74]. A high JSC is indicative of high performance of a predictor.
Fig. 11. Evolutionary conservation of interaction and non-interaction sites derived fro
(TestData, CompData, and IndepData) in the Cyto, TMH, Extra, and Combined (the full pro
and non-interaction sites is inferred by p-values obtained by t-Test.
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For the three structure-derived regions (Cyto, TMH, and Extra) on
the TestData dataset we compared JSCs of DeepTMInter to those
of the MBPredTM, MBPredCyto, and MBPredExtra, respectively,
for each individual protein. As seen in Fig. 7, DeepTMInter vastly
outperforms the three underlying MBPred predictors on all 36 pro-
teins and in all the three structure-derived regions (Cyto, TMH, and
Extra), with mean JSCs 0.258, 0.298, and 0.274 (averaged over JSCs
of all proteins in that dataset) compared to 0.182, 0.199, and 0.194
of MBPredCyto, MBPredTM, and MBPredExtra, as well as 0.205,
0.197, and 0.185 of DELPHI. Mean JSC values indicate that the set
of predicted labels corresponding to protein sites produced by
DeepTMInter shows a stronger agreement to the experimentally
determined sites (the set of their actual labels) than those pro-
duced by MBPred. Additionally, we also evaluated the JSC perfor-
mance on the IndepData dataset, e.g., with DeepTMInter
achieving 0.220, 0.204, and 0.221 compared to DELPHI achieving
0.196, 0.208, and 0.198 on the Cyto, TMH, and Combined regions,
respectively, and furthermore compared to MBPredCyto,
MBPredTM, and MBPredExtra achieving 0.199, 0.207, and 0.162
using their specialized regions, respectively. In the Extra region
DELPHI achieves a significantly better JSC of 0.226 compared to
0.179 of DeepTMInter.

3.4.3. Exposure states of falsely classified amino acid positions
To get an understanding of how the falsely predicted interaction

sites are correlated with interface properties, we calculated the
occurrence of misclassified amino acid positions in exposed and
buried regions of structures (Fig. 8). For each amino acid, the rela-
tive solvent accessibility (RSA) [75] was calculated based on known
3D structures using the DSSP software [76]. The RSA threshold for
m structures (a) and predicted by DeepTMInter (b) across all three test datasets
tein sequence) regions. Statistical significance of the difference between interaction
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classifying residues as exposed or buried was set to 0.1, as sug-
gested in [77]. We found that in terms of the RSA values the inter-
action sites predicted by DeepTMInter closely follow the
distribution of values for the interaction sites derived from 3D
structures (Fig. 8a and b). Both actual and predicted interaction
sites are overwhelmingly located in the solvent (or lipid) accessible
regions of proteins. While the false negative (FN) predictions (as-
signing established interaction sites as non-interacting) are appar-
ent errors, the false positive (FP) predictions might point to
unknown interaction sites that have yet to be experimentally con-
firmed. Overall, falsely predicted positions, both FN and FP, tend to
reside in exposed areas of structure (Fig. 8c and d).
3.4.4. Feature importance analysis
We performed an importance analysis of topological, physio-

chemical, and evolutionary features on our full training and 5-
iteration cross-validation datasets (Fig. 9). Since we are not aware
of any measures that are able to deduce feature importance from
deep-learning model training phases [79], we followed the com-
mon practice [12,79,80] to quantify the feature importance based
on mean decrease of impurity (MDI) inferred from XGBoost
[79,81]. The MDI values provide support for recursively splitting
the feature set in the XGBoost method to classify sites as interact-
(b)

(a)

Fig. 12. Percentage of amino acids predicted to be involved in interactions in the
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ing or non-interacting. In each split the features that best improve
the classification performance are identified. For visualization pur-
poses we evaluated the mean (Fig. 9a) and the maximal (Fig. 9b)
MDI values of the different feature categories within sliding win-
dows (see reference [79]). Amino acid composition makes the
strongest contribution to the interaction site classification among
all features. The EVfold coevolution feature remains very powerful
for distinguishing between interaction and non-interaction sites
(the EVfold feature has also been ranked best in our previous anal-
ysis for MBPred [12]) while the Gaussian DCA co-evolution makes
a moderate contribution. This finding is in line with previous
reports that residues involved in binding sites are collectively
under functional constraints and are therefore subject to co-
evolution [82]. Features representing amino acid types and reflect-
ing their physiochemical properties only have run-of-the-mill
importance (Fig. 9).
3.5. Performance evaluation using different residue contact definitions

To evaluate how DeepTMInter performance in predicting inter-
action sites depends on the choice of a particular residue contact
definition, the AUC and AUCPR values were calculated on TestData,
CompData, and IndepData datasets and compared using the
complete protein sequences (a) and in the TMH, Cyto, and Extra regions (b).
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BordInter [11], FuchsInter [83], and RostInter [31] residue contact
definitions (Fig. 10a-c and Supplementary Table S15). Note that
the sites in the full protein sequences (the Combined region)
obtained by DeepTMInter were involved in the calculation of the
two criteria above. The numbers of interacting (NI) and non-
interacting (NNI) amino acid residues were derived from experi-
mental 3D structures (Fig. 10a-c and Supplementary Table S16).
As expected, the number of residue contacts increases progres-
sively with the spatial distance cutoff according to the BordInter
(4 Å), FuchInter (5.5 Å), and RostInter (6 Å) definitions. The RostIn-
ter definition leads to the highest AUC and AUCPR values on the
three test datasets. For example, on the CompData dataset the
AUC (0.762, 0.790, and 0.796) and AUCPR values (0.527, 0.690,
and 0.738) were obtained using the BordInter, FuchInter, and
Fig. 13. Number of interaction partners versus the percentage of amino acids involved i
families (b)-(i).
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RostInter definitions, respectively. A higher distance threshold
(RostInter) also results in more residues labeled as interacting, thus
partially alleviating the imbalance between the two residue classes
(interacting and non-interacting), while the low distance threshold
BordInter impairs the performance by increasing the imbalance as
discussed in [12] (see also Supplementary Table S16). Using the
most stringent contact definition (BordInter) DeepTMInter remains
the most accurate method on structure-derived Combined regions
(Fig. 10d-i). For example, it achieves an AUC value of 0.675
(AUCPR = 0.448) compared to 0.639 (0.402) of DELPHI on the
IndepData dataset. Based on the Extra region and the IndepData
dataset, DELPHI has the highest AUC value of 0.700 (AUCPR = 0.338)
compared to that of 0.668 (AUCPR = 0.303) for DeepTMInter. Note
that the distance threshold utilized for training DELPHI - the sum
n interactions in all human transmembrane proteins (a) and in separate functional
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of the Van der Waal’s radii of two atoms +0.5 Å [10] – is in most
cases smaller than the BordInter, FuchInter, and RostInter distance
thresholds.

3.6. Evolutionary conservation of interaction sites

We compared the conservation scores (ranging from 0 to 1) of
interaction and non-interaction sites in the Cyto, TMH, Extra, and
Combined regions (Fig. 11), disregarding alignment columns with
more than 50% of gaps. In line with [11] and our own previous
work [12], interaction sites both derived from structures
(Fig. 11a) and predicted by DeepTMInter (Fig. 11b) are significantly
more evolutionarily conserved than non-interaction sites in all four
regions (Cyto, TMH, Extra, and Combined). The Combined region
(i.e., the full sequence) displays the most statistically significant
difference between interaction and non-interaction sites both
derived from structures (p-value 2.39e�24, t-Test) and predicted
by DeepTMInter (p-value 8.05e�37, t-Test). Interaction sites in
the transmembrane domains, while still more conserved compared
to the positions not involved in interactions, exhibit a lower p-
value of 5.32e�06 due to the degenerate amino acid composition
and hence stronger overall conservation of hydrophobic, lipid-
immersed sequence segments [84,85].
Fig. 14. Overview of interaction sites in Nav1.5. (a) Comparison of known interaction site
colored in white (PDB code: 4jq0 chain D) interacts with the C- and N-lobes of calmodu
predicted interaction surfaces of Nav1.5 are colored in red (c) and blue (d), respectively
referred to the web version of this article.)
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3.7. Family-specific analysis of interaction sites and network
connectivity in human transmembrane proteins

We investigated the relationship between the biological activi-
ties of proteins and their interaction patterns by analyzing the
average percentage of interaction sites in the eight major mem-
brane protein classes (see Section 2.9) curated by the GtoPdb data-
base (Fig. 12a and b, and Supplementary Tables S19-S26 and
Fig. S14). Overall, ligand-gated, voltage-gated, and other ion chan-
nels appear to have the largest percentage of their amino acid
sequence involved in interactions (21.6%, 22.9%, and 32.4%, respec-
tively) (Fig. 12a). Within the latter class (Supplementary Figs. S5
and S13) Orai channels [86] as well as connexins and pannexins
[87] stand out as having the highest proportion of interaction sites.
Similarly, among the 20 sub-families within the ‘‘other protein tar-
get” class, other pattern recognition receptors, sigma receptors and
abscisic acid receptor complex all have more than 40% of their
sequence predicted to mediate interactions (Supplementary
Fig. S9). Proteins in these three sub-families play an important role
in signaling pathways [88–90]. Among the eight functional groups,
the ‘‘other ion channel” class harbors the highest percentages
(37.6% and 35.9%) of interaction sites in the TMH and the Extra
regions (Fig. 12b and Supplementary Figs. S6-S8), respectively,
s reported in the literature with DeepTMInter predictions. (b) The Nav1.5 fragment
lin (PDB code: 4jq0 chain A) colored in cyan through its IQ motif. The known and
. (For interpretation of the references to colour in this figure legend, the reader is
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while in the ‘‘Enzyme” and ‘‘other protein target” classes interac-
tion sites reside in the Cyto region (Fig. 12b and Supplementary
Figs. S10-S12).

In most of the families the percentage of the amino acids
involved in interactions lies within the range of 10%-25%, while
Fig. 15. Interaction interfaces of the human CALHM2 chain A. (a) Amino acid positions in
to the RostInter definition (see Methods) are shown in blue. (b), (c), and (d) Interaction
residues (right) generated by DeepTMInter, MBPred, and DELPHI, respectively. (For interp
web version of this article.)
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the ‘‘catalytic receptors” and ‘‘other ion channel” classes are char-
acterized by a wider range of 10%-50% (Fig. 13). On average human
transmembrane protein interact with 10.5 protein partners accord-
ing to the HuRI-Union database (see Section 2.10). We found no
clear dependence (low R2 values) of the number of interaction
volved in protein interactions derived from the experimental 3D structure according
probabilities (left) and binary predictions of interacting (blue) vs. non-interacting
retation of the references to colour in this figure legend, the reader is referred to the
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partners on the number of amino acid positions predicted to be
involved in interactions both across all human transmembrane
proteins (Fig. 13a) and in each of the eight major functional fami-
lies (Fig. 13b-i). Such dependence might be obscured by the fact
that the same binding site often mediates interactions with a large
number of partners [91].

3.8. Case studies

3.8.1. Human cardiac voltage-gated sodium channel
The human cardiac voltage-gated sodium channel Nav1.5,

encoded by the gene SCN5A, is expressed in the cardiomyocyte sar-
colemma to carry an inward depolarizing current during phase 0 of
the cardiac action potential [92]. According to the BioGRID data-
base Nav1.5 has 22 interaction partners, and we identified addi-
tional 21 interaction partners based on literature analysis
(Supplementary Table S27) [93–99]. Only a small number of inter-
action sites have been described in these studies, of which most are
situated in the C-terminal portion of Nav1.5 (positions 1773–2016,
indicated by blue triangles in Fig. 14a) [100] and only a few appear
in the N-terminal portion [101–103]. The tail of its C-terminal
domain is involved in Na+ gating inactivation [104] and mutations
in this area cause many diseases such as long QT and Brugada syn-
dromes [105]. One ten-residue peptide (positions 2007–2016)
[106] and four motifs - PY (1974–1976) [107], extended PY
(1974–1980) [108], SXV (2014–2016) [106], and IQ (1901–1927)
[105] - localized in the tail of the C-terminal portion, frequently
interact with other proteins (Supplementary Table S27). DeepT-
MInter predicts 17.10% of amino acid sites in Nav1.5 to be involved
in interactions (Supplementary Table S28) and these predicted
interaction sites occur more frequently in the C-terminal part of
the Nav1.5 sequence (Fig. 14a). DeepTMInter was able to capture
some of the experimentally established interfaces, including 9
out of 10 residue positions mediating the interaction with syn-
trophin [106], 5 out of 7 residue positions in the extended PYmotif,
and 8 positions within the IQmotif involved in the interaction with
calmodulin (Fig. 14b-d) [100,105,109]. Interactions between
Nav1.5 and other proteins also occur via the same interfaces; e.g.,
three proteins encoded by the genes NEDD4, NEDD4L, and
WWP2 interact with the PY motif of Nav1.5 (see Supplementary
Table S27).

3.8.2. Human calcium homeostasis modulator-2
The human calcium homeostasis modulator-2 (CALHM2),

whose 3D structure (PDB code: 6uiw) was released in 2019, is a
voltage-gated Ca2+-inhibited non-selective channel controlling
ATP release [110]. The entire biological assembly of the human
CALHM2 channel (Fig. 15a) consists of 11 subunits arranged in a
circular fashion. We used the CALHM2 chain A from the IndepData
dataset to examine the performance of three interaction site pre-
diction methods: DeepTMInter, MBPred, and DELPHI. Overall, pre-
dictions generated by DeepTMInter (Fig. 15b) correspond better to
the experimentally confirmed interfaces than the MBPred and DEL-
PHI results (Figs. 15c and 15d). DeepTMInter achieves the highest
AUC value of 0.691 (AUCPR = 0.660) compared to 0.615 (0.603)
of MBPred and 0.599 (0.587) of DELPHI. Additionally, we display
two models in Supplementary Figs. S15 and S16 from the TestData
and CompData datasets, respectively.
4. Conclusions

Here, we have introduced DeepTMInter, a sequence-based pre-
dictor of interaction sites in transmembrane proteins. Methodolog-
ically, we capitalized on the ResNet advances, supplemented by
stacked generalization for further optimization. On an independent
1528
dataset DeepTMInter achieved the AUC and AUCPR values of 0.698
and 0.598, respectively, significantly outperforming MBPred, previ-
ously developed by our group, as well as the most recent method,
DELPHI. Among the eight major functional families of transmem-
brane proteins, the percentage of amino acids predicted to reside
in interaction sites varies approximately between 10 and 30%, with
ion channels exhibiting the largest proportion of sequence
involved in interactions.
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