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Abstract: Breath analysis is a promising technique for lung cancer screening. Despite the rapid
development of breathomics in the last four decades, no consistent, robust, and validated volatile
organic compound (VOC) signature for lung cancer has been identified. This review summarizes the
identified VOC biomarkers from both exhaled breath analysis and in vitro cultured lung cell lines. Both
clinical and in vitro studies have produced inconsistent, and even contradictory, results. Methodological
issues that lead to these inconsistencies are reviewed and discussed in detail. Recommendations on
addressing specific issues for more accurate biomarker studies have also been made.

Keywords: volatile organic compound; lung cancer; breath analysis; in vitro study; biomarker

1. Introduction

Cancer is the second leading cause of death by disease worldwide, exceeded only by heart
disease [1]. Among all types of cancer, lung cancer accounts for 1.6 million deaths each year, exceeding
those of the next three most common cancers combined (prostate, breast, and colon cancer) [2]. Lung
cancer is typically silent in its early stages; symptoms such as coughing, chest pain, weight loss, etc.
are often ignored by patients as typical signs of the onset of old age. Histologically, lung cancer is
divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with the former
accounting for about 85% of cases and the latter, the remaining 15%. NSCLC can further be classified
into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [3]. Treatment options and
prognosis are critically dependent on the stage and histology of the disease. Using current diagnostic
techniques, such as computer tomography (CT), sputum cytology, and biopsy, 85% of lung cancer
cases are diagnosed at a stage when treatment is ineffective at curing the disease [4]. Overall, the 5-year
survival is about 10–15% due to late diagnosis. However, if the disease is diagnosed at stage 1,
the 5-year survival increases dramatically to 80% [5]. With lung cancer incidences rising around the
world, the need for an early detection tool is both critical and urgent. Breath volatile organic compound
(VOC) analysis is one such promising technique.

In the last few decades, extensive effort has been focused on searching for VOC biomarkers for
lung cancer, either from the headspace of lung cancer cells or from the exhaled breath of patients.
However, both clinical and in vitro studies have failed to produce a consistent and validated list.
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This review aims to summarize the volatile markers produced by these studies in the last 30 years and
discuss the methodological issues that have led to the inconsistencies between different studies.

The most commonly used techniques for VOC analysis include mass spectrometry and sensor
technologies. Mass spectrometry-based studies usually produce a list of molecules that could be
used as biomarkers, while studies using sensor arrays only produce a pattern without individual
compound identification. Though detecting lung cancer using various sensor technologies has
produced meaningful and promising results [6–14], it is beyond the scope of the current review.
Comprehensive reviews on lung cancer VOC studies using sensors could be found elsewhere [15,16].

In this review, we focus on mass spectrometry-based clinical, as well as in vitro, studies that provided
individual compound identification. We compare the results from these studies and discuss in detail the
methodological issues that have led to the inconsistencies across different studies. A short and concise
review on breath analysis of lung cancer can be found in [17]. Saalberg et al. and Hua et al. did systematic
reviews on breath analysis as a screening technique for lung cancer [18,19]. Zhou et al. discussed the
recent developments in the analytical techniques of breath analysis for lung cancer detection [20]. None of
these reviews discussed in vitro studies or evaluated the methodological issues of these studies.

2. VOC Biomarkers of Lung Cancer in Exhaled Breath

The pioneering study on VOC in exhaled breath from lung cancer patients was done by Gordon
et al. in 1985 using gas chromatography mass spectrometry (GC-MS) [21]. Since then, interest in
the clinical diagnostic potential of breath analysis in lung cancer detection has risen, evidenced by a
rapidly increasing number of publications in the last 30 years. In Table 1, we summarize 25 clinical
studies on the breath analysis of lung cancer patients who have identified biomarkers. A majority of
these studies adopted a case control approach. Lung cancer patients were recruited as a case group,
subjects not clinically diagnosed with lung cancer were recruited as a control group, and the breath
VOC profile was compared between them. An identified VOC is considered as a biomarker if its
concentration is statistically different between these two groups. Almost all studies used GC-MS as
the analytical platform, with the exception of two studies that used proton transfer reaction mass
spectrometry (PTR-MS) [22] and ion mobility mass spectrometry (IMS) [23]. Bajtarevic et al. reported
results from both PTR-MS and GC-MS [24].

The lung cancer biomarkers identified by these studies are largely inconsistent. To better illustrate
the biomarker results of Table 1, we filtered the biomarkers that have been identified by at least
four studies and ranked them based on the occurrence (Figure 1). The most frequently emerging
biomarkers of lung cancer include propanol, isoprene, acetone, pentane, hexanal, toluene, benzene,
and ethylbenzene. Michael Philips, one of the pioneers in the breath research field, conducted three
independent biomarker discovery studies for lung cancer using GC-MS [25–27]. In view of the different
lists produced from these studies, he commented that although the exact identities of markers derived
from these three studies are not the same, the major biomarkers were mainly alkane derivatives, which
are consistent in all three of his studies. The relative abundance of most of these VOCs was found to
have decreased in the participants with lung cancer, as compared to the healthy control; this difference
could be attributed to the increased catabolism of lipid peroxidation products due to the activated
CYP450 genotypes in lung cancer [26]. However, there are many other studies in which alkanes were
not found to be associated with lung cancer [28–30]. None of these studies evaluated the origin of the
detected VOCs. In fact, the mechanism of most VOCs in exhaled breath remains unknown. Hakim et al.
reviewed the possible biochemical pathways of lung cancer related VOCs [31].

Generally, it is accepted that until now there has been no consistent and validated list of VOC
biomarkers for lung cancer in the literature [31–33]. Reasons for these inconsistencies are manifold.
There is a large variation in different studies in terms of breath sampling procedures, study designs
(selection of control group, selection of patients, etc.), and data analysis protocols. Insightful accounts
on the advantages and drawbacks of various data analysis techniques can be found in [34,35].
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Table 1. Identified volatile biomarkers of lung cancer through breath (Chronological order).

Year First Author
Sample Size

Biomarker
Lung Cancer Control

1985 Gordon [21] 12 17 acetone, 2-butanone, n-propanol

1988 O’Neill [36] 8 0 hexane, 2-methylpentane, trimethyl heptane, isoprene, benzene, toluene, ethylbenzene, cumene,
trimethyl benzene, alkylbenzene, styrene, naphthalene, 1-methylnaphthalene, propanal, acetone,
2-butanone, phenol, benzaldehyde, acetophenone, nonanal, ethyl propanoate, methyl isobutanoate,
dichloromethane, dichlorobenzene, trichloroethane, trichlorofluoromethane, tetrachloroethylene

1999 Philips [25] 60 48 styrene, 2,2,4,6,6-pentamethylheptane, 2-methylheptane, decane, n-propylbenzene undecane, methyl
cyclopentane, 1-methyl-2-pentylcyclopropane, trichlorofluoromethane, benzene,
1,2,4-trimethylbenzene, isoprene, 3-methyloctane, 1-hexene, 3-methylnonane, 1-heptene,
1,4-dimethylbenzene, 2,4-dimethylheptane, hexanal, cyclohexane, 1-methylethenylbenzene, heptanal

2003 Philips [26] 178 102 butane, 3-methyltridecane, 7-methyltridecane, 4-methylctane,3-methylhexane, heptane,
2-methylhexane, pentane, 5-methyldecane

2005 Poli [37] 36 85 2-methylpentane, pentane, ethylbenzene, xylenes, trimethylbenzene, toluene, benzene, heptane,
decane, styrene, octane, pentamethyl heptane

2007 Philips [27] 193 211 1,5,9-trimethyl-1,5,9-cyclododecatriene, 2,2,4-trimethyl-1,3-pentanediol tributyrate, ethyl
4-ethoxybenzoate, 2-methyl- propanoic acid, (1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester,
10,11-dihydro-5H-dibenz-(b,f)-azepine, 2,5-2,6-bis(1,1-dimethylethyl)-cyclohexadiene-1,4-dione,
1,1-oxybi-benzene, 2,5-dimethyl-furan, 2,2-diethyl-1,1-biphenyl, 2,4-dimethyl-3-pentanone,
trans-caryophyllene, 2,3-dihydro-1,1,3-trimethyl-3-phenyl-1H-indene, 1-propanol, 4-methyl-decane,
1,2-benzenedicarboxylic acid, diethyl ester, 2,5-dimethyl-2,4-hexadiene

2007 Wehinger [38] 17 170 formaldehyde, isopropanol

2009 Bajtarevic [24] 220 441 isoprene, acetone, methanol, 2-butanone, benzaldehyde, 2,3-butanedione, 1-propanol

2010 Fuchs [28] 12 12 pentanal, hexanal, octanal, nonanal

2010 Peng [39] 30 22 p-cymene, toluene, dodecane, 3,3-dimethylpentane, 2,3,4-trimethylhexane,
(1-phenyl-1-butenyl)benzene 1,3-dimethylbenzene, 1-iodononane, [(1,1-dimethylethyl) thiol]acetic
acid, 4-(4-propylcyclohexyl)-4′-cyano[1,1′-biphenyl]4-yl ester benzoic acid,
2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile, 5-(2-methylpropyl)nonane, 2,3,4-trimethyldecane,
6-ethyl-3-octanyl 2-(trifluoromethyl)benzoate, p-xylene, and 2,2-dimethyldecane

2010 Song [40] 43 41 1-butanol, 3-hydroxy-2-butanone
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Table 1. Cont.

Year First Author
Sample Size

Biomarker
Lung Cancer Control

2010 Kischkel [41] 31 31 isoprene, acetone, 2-butanone, cyclohexanone, dimethyl sulfide, acetonitrile, ethanol, isopropanol,
acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, 2-propenal, 2-butenal, propane,
butane, pentane, hexane, heptane, 2-methylbutane, 2-methylpropanal, 2,2-dimethylbutane,
2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, 2,2-dimethylpentane, 2,4-dimethylpentane,
3,3-dimethylpentane, 2-methylhexane, cyclohexane, benzene, toluene, chlorobenzene,
1,2-dimethylbenzene, 1,2-dichlorobenzene, carbon disulfide, dimethyl formamide, 2,5-dimethylfuran,
1-propanol

2011 Rudnicka [42] 23 30 propane, carbon disulfide, 2-propenal, ethylbenzene, isopropyl alcohol

2011 Ulanowska [43] 134 143 ethanol, acetone, butane, dimethyl sulfide, isoprene, propanal, 1-propanol, 2-pentanone, furan,
o-xylene, ethylbenzene, pentanal, hexanal, nonane

2012 Peled [44] 53 19 1-octene

2012 Wang [45] 88 85 2,4,6-trimethyloctane, 2-methyldodecane, 2-tridecanone, 2-pentadecanone, 8-methylheptadecane,
2-heptadecanone, nonadecane, eicosane

2012 Buszewski [46] 29 44 butanal, ethyl acetate, 2-pentanone, ethylbenzene, 1-propanol, 2-propanol

2014 Handa [23] 50 39 3-methyldodecane, 1-butanol, 2-methylbutylacetate/2-hexanol/nonanal cyclohexanone,
isopropylamine, ethylbenzene, hexanal, cyclohexanone, heptanal, 3-methyl-1-butanol

2014 Wang [29] 18 0 caprolactam, propanoic acid

2014 Zou [47] 79 38 2-methyl-5-propylnonane, butylated hydroxytoluene, 2,6,11-trimethyl-dodecane, hexadecanal,
8-hexylpentadecane

2015 Capuano [48] 20 10 ethanol, 2-butanone, thiophene, 4-heptanone, butanoic acid, , acetic acid, cyclohexanone,
2,2,-dimethyl-hexanal, 1,1-diethoxy-3-methylbutane; 1-(1-ethoxyethoxy)-pentane,
2,2,6-trimethyloctane, 2-ehtyl-1-hexanol, undecane, thymol, 2-methyl-1-decanol, 3,7-dimethyl- decane,

2015 Corradi [49] 71 67 pentane, 2-methylpentane, hexane, benzene, ethylbenzene, trimethylbenzene, heptane, pentamethyl
heptane, toluene, total xylenes, styrene, propanal, butanal, pentanal, hexanal, heptanal, octanal,
nonanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal

2016 Monila [30] 68 60 p-cresol, eicosenamide, 1-hexadecylindane and cumyl alcohol

2016 Schallschmidt
[50]

37 23 propanal, butanal, decanal, butanal, 2-butanone, ethylbenzene

2017 Sakumura [51] 107 29 hydrogen cyanide, methanol, acetonitrile, isoprene, 1-propanol
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Figure 1. Volatile organic compounds (VOCs) identified as lung cancer biomarker in four or more studies.

2.1. Methodological Issues of Clinical Studies

In Table 2, we have summarized and listed the various methodological issues in breath sampling
and study design. In this section, we will discuss in detail the effect of various methodological issues,
what researchers have done in the included 25 studies to account for these issues, and, consequently,
what the current best practices are, based on these studies.

Table 2. Methodological Issues of Clinical Studies.

Breath Sampling Study Design

1. Environmental VOCs
2. Phase of breath (alveolar vs. whole breath)
3. Expiratory flow rate and Hyperventilation
4. Temperature and humidity of environment
5. Contaminations from collection system

6. Age/gender
7. Diet
8. Exercise
9. Smoking
10. Medication
11. Comorbidities
12. Disease Stage
13. Histology

2.2. Environmental VOCs

More than 1000 VOCs have been detected in human breath and the majority of these VOCs have
exogenous origins [52]. The effect of environmental VOCs on breath analysis was first recognized
by Philips, and he has proposed that this problem can be solved by determination of the “alveolar
gradient” of a VOC [42,43]. The alveolar gradient is defined as the concentration of the VOC in breath
minus the concentration in the room air. A positive alveolar gradient means more of the VOC was
exhaled than inhaled and vice versa. Philips measured the alveolar gradients of various VOCs and
concluded that VOCs with negative alveolar gradients are metabolized by the body and those with
positive alveolar gradients are manufactured in the body [53,54]. However, later studies proved this
to be an incorrect assertion. VOCs with positive alveolar gradients may result from VOCs absorbed
from food [55], drugs [56,57], or even bacteria in the GI tract, airways, or mouth cavity [58]. On the
other hand, VOCs with a negative alveolar gradient may, in fact, have metabolic origins. The journey
of environmental VOCs in the human body is a complex process of mixing, diffusion, distribution in
blood and fat tissues, and metabolism, as shown in the report by Philips et al. [59]. The rate and degree
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to which environmental VOCs are removed from the body depend on the concentration of the VOC,
the duration of exposure [60], the solubility in blood and lipid tissues [61], and individual physiology.

Early theoretical modelling experiments, aimed at evaluating the health effects of industrial VOC
exposure, have shown that the partition coefficient of a VOC in lungs, blood, and tissue is specific to
its physical and chemical properties, and varies immensely [62,63]. Schubert et al. measured inspired,
expired, and blood concentrations for four VOCs (pentane, acetone, isoprene, and isoflurane) and
found that only when the inspired concentration was less than 5% of the expired concentration did
the disappearance rate of VOC from the blood correlate significantly with the rate of exhalation [64].
Another study by Spanel et al. found that all seven studied VOCs (pentane, isoprene, acetone,
ammonia, methanol, formaldehyde, and deuterated water) are partially retained by the body, and
there are close linear relationships between the exhaled and inhaled concentrations [65]. They also
introduced a useful parameter called a retention coefficient, which is the ratio of the increase of the
exhaled concentration to the increase of the inhaled concentration. The retention coefficients measured
for these seven VOCs vary numerically from 0.06 for formaldehyde to 0.76 for pentane [65].

With these initial efforts, it is evident, unfortunately, that there is no general rule that can be applied
to all VOCs when accounting for the effects of environmental VOCs. Apart from using the concept of
alveolar gradient, researchers have addressed this issue either by using an inspiratory filter [12] or by
letting the patients stay in a ventilated room for a predetermined amount of time before collection [45].

For discovery-type studies, it seems that an inspiratory filter is the best solution, for now. However,
the time it takes to clear out environmental VOCs from the body is compound specific. Much more effort
is, therefore, needed to understand the origins and dynamics of various VOCs observed in human breath.

2.3. Phase of Breath Sample Collected

Each exhalation can be divided into three phases based on the CO2 pressure in the breath. Phase
1 and phase 2 are air from the dead space in oral cavity and upper airways. Phase 3 is alveolar air from
deep inside the lungs [66]. End-tidal breath refers to the portion of alveolar air nearer to the end of
one exhalation. For the purpose of disease diagnostics, the alveolar phase is desired because VOCs in
this portion are from the blood-gas exchange in the alveoli and thus more closely reflect metabolic
conditions. Concentrations of certain VOCs differ in whole breath versus end-tidal breath. For example,
VOCs such as carbonic acid, dimethyl ester, and methyl format were found to be significantly higher
in end-tidal breath, while methylene chloride and 3-ethyl pentane were lower in end-tidal breath than
in whole breath [67].

Most studies on lung cancer breath analysis either collected whole breath [26,38] or collected
alveolar or end-tidal breath based on a crude estimation. The end-tidal breath was collected either by
discarding the front portion of the breath [37,45] or by filling the dead space air into separate bags [39].
Kischkel et al. collected alveolar breath based on a fast responding CO2 sensor [41].

To selectively collect alveolar phase accurately, monitoring CO2 pressure is a good idea. CO2

level is a reliable indicator of the phase, and CO2 sensors are readily available. Birken et al. integrated
a capnography setup into the breath collection procedure to visually monitor the phase of breath
and manually draw alveolar air using a syringe [68]. Later, the same group developed an automatic
CO2 controlled sampling device and demonstrated the performance of the automatic sampler to be
comparable to manual sampling [69]. In 2016, Owlstone Medical developed a breath collection device
named RECIVA™ [70]. This is the first and only commercially available breath collection device that
allows an accurate selection of phase. Such controlled and standardized methods in selecting phase of
breath could significantly improve the consistency of breath biomarker research.

2.4. Expiratory Flow Rate, Breath-Holding, and Hyperventilation

Studies have shown that expiratory flow rate and hyperventilation affect the levels of various
VOCs. Contradictory results were reported on the effect of flow rates on common breath VOCs.
Doran et al. found that at a higher flow rate, lower levels of acetone and phenols were observed [67].
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However, in another study, acetone level was not affected by the expiratory flow rate [71], and in yet
another study, higher levels of acetone at a higher flow rate were reported [72]. Reports on trends of
isoprene at different expiratory flow rates are also contradictory [73,74].

When asked to provide a breath sample, some people tend to hold their breath before
exhalation. Therefore, the effect of breath-holding on breath VOC was investigated, and results
from different studies are in agreement. Pentane and isoprene levels increased significantly after 20 s
of breath-bolding [73]. A similar trend was observed in another study for isoprene after a 40 s breath
holding [74]. Other VOCs found to be increased after breath holding in this study include 2-propanol
and acetaldehyde [74]. In a third study, acetone, methanol, isoprene, and dimethyl sulphide increased
significantly after 30 s of breath holding [72]. The unanimous increase of various VOCs with breath
holding may be attributed to the prolonged time for them to diffuse from the alveoli to the airway.

Hyperventilation was found to have a negative effect on levels of methanol, dimethyl sulfide,
acetaldehyde, and ethanol [72], as well as isoprene [75]. On the other hand, acetone level was not
notably affected by hyperventilation [75]. This is attributed to the fact that acetone has much lower
solubility in blood than the rest of the VOCs, and, therefore, can be quickly released from blood
during hyperventilation.

The diameter of the mouthpiece used during sampling affects airway resistance and, subsequently,
affects levels of certain VOCs. It was found that a smaller mouthpiece diameter caused a 19% increase
in isoprene levels. Furan hydrogen sulfide also increased significantly [76]. A mouthpiece with a
diameter larger than 1 cm was recommended for future studies [76].

In all the studies included in Table 1, subjects were asked to breath “normally”, flow rate was not
measured, and no information on the diameter of mouthpiece was given.

The learning outcome from these studies is that sampling parameters, such as exhalation rate,
breath-holding, and airway resistance, must be controlled and recorded in a standardized manner
across different subjects for consistent and reliable results. Hyperventilation should be avoided.

2.5. Temperature and Humidity of Environmental Air

This is a seldom noticed, but important, confounder for longitudinal studies, in which breath
collection spans over a long period of time, during which temperature and humidity change drastically
(e.g., winter to summer) [44]. This factor is also critical for multi-center clinical studies, when collection
is done in different regions of the world with significantly different climates [26]. Thekedar et al. [74]
assessed the changes in exhaled VOC concentrations sampled after a 5 min stay under 3 ◦C, 47%
relative humidity and 27 ◦C, 19% relative humidity using PTR-MS. Acetonitrile, ethanol, methanol,
and propanol showed higher concentrations in the samples collected under the warm air compared to
those collected in the cold air. On the other hand, VOCs with a proton transfer reaction product of
ion m/z s of 85, 86, 99 and 169 showed higher concentrations in samples collected under cold air. The
fact that studies on lung cancer biomarkers were conducted under vastly different temperature and
humidity conditions is another significant reason for the inconsistent results.

2.6. Contamination from Collection Systems

Unfortunately, most commercially available breath collection apparatuses involve materials that
could, themselves, be sources of contamination. For example, the widely accepted Tedlar bags for breath
collection are made of polyvinyl fluoride and are known to emit many VOCs from the bag material,
which, therefore, poses a threat of contamination [77,78]. Several studies used tedlar bags for lung cancer
biomarker discovery [38,39,42,47]. Inert materials such as Teflon, stainless steel, or glass should be used
for breath collection systems and other types of materials should be avoided as much as possible.

2.7. Age/Gender

Isoprene, alkanes and methylated alkanes were found to be related to age [79–81]. With an
increase in oxidative stress level with advancing age, levels of these VOCs in breath increase gradually.
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Spanel et al. also found that breath ammonia increases with increasing age, but acetone and hydrogen
cyanide do not vary greatly with age [82]. Gender also influences the breath VOC profile. isoprene
and several other VOCs were found to be gender specific [41,80,83].

In case control studies, results could be biased due to unmatched age and gender. In the reviewed
studies, lung cancer patients are often significantly older than control subjects [23,24,38,41,43–45,47],
and usually there are more male subjects in the case group than in the control group [24,26,41,43].

2.8. Diet

The effect of diet on breath VOCs is also a complex one. Certain types of food, such as yoghurt [84]
and seafood [85] contains a number of VOCs that rapidly and directly appear after ingestion. Food also
affects breath VOC by changing metabolism, inflammation, or redox status, or by interacting with gut
flora. Some studies required subjects to fast for 12 h, or overnight, before breath collection [25,42,45,47],
while other studies had no restrictions; It is not understood how long it takes for the VOCs from diet
to be eliminated from breath. Whether overnight fasting helps in eliminating these effects needs to
be studied further. On the other hand, dietary style may have a prolonged effect that could not be
eliminated by fasting.

2.9. Smoking

Smoking was identified as one of the key risk factors for lung cancer, and smoke contain many
VOCs. It was found smokers have higher levels of benzene and acetonitrile in their breath. Although
the level of benzene in a smoker rapidly decreases to a similar level as a non-smoker within an hour,
the level of acetonitrile, since the last smoking, takes about a week to become that of a non-smoker [86].
Alcohol consumption leads to increased levels of acetaldehyde in the breath, and it was found long-term
smoking elevates the production of acetaldehyde from alcohol [56]. This finding was confirmed by
another study [87]. These results show that smoking can affect other metabolic pathways that are
not directly related to VOCs from cigarettes. Smoking cigarettes is also known to increase oxidative
stress. As a result, levels of isoprene and pentane were found to be increased after smoking [88].
Other smoking-related VOCs include 2,5-dimethyl furan and 1,3-butadiene. Smoking related VOCs
need to be clearly distinguished from endogenous compounds that are related to disease conditions.

All studies reported the smoking history of recruited subjects but adopted vastly different
strategies for data analysis. Some studies did not discuss the possible effects of smoking on their
results, even though the case and control group had highly uneven smoking histories [40,47]. Coraddi
et al. found the value “pack-year” alone had a fair diagnostic power [49]. Combining this value with
VOC markers could help in developing a more robust biomarker panel for lung cancer detection.
Wang et al. identified smoking related VOCs using ROC and excluded these molecules from the lung
cancer biomarker list [45].

Currently, there are two ways to minimize the influence of smoking. One is to design the study
carefully, so that case and control groups have matched smoking histories. In two studies where the
smoking histories of the case and control groups were closely matched, no effect of tobacco smoke
was found on the diagnostic power of the identified biomarker panel [26,27]. The other strategy is to
exclude smoking-related VOCs from the biomarkers for lung cancer detection. However, it is not fully
known yet what other metabolic pathways may be affected by smoking.

2.10. Comorbidity

Many target subjects for disease diagnostic studies often have more than one medical condition.
These diseases will also change the VOC profile and confound the biomarker discovery for the targeting
disease. Most studies recruited healthy subjects as a control group [29,41,50], while a few studies
recruited subjects with similar comorbidity as a control group [44]. The variances in the choice of
control groups contribute to the inconsistencies across the different studies.
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2.11. Disease Staging

One key advantage of breath analysis is its potential for early detection. It is of keen interest to
know if stage influences VOC profile. Philips et al. identified 22 breath VOCs that could differentiate
control and lung cancer subjects, regardless of stages. For stage 1 patients, the 22 VOCs had 100%
sensitivity and 81.3% specificity [25]. Other studies also showed no discrimination between early
stage and advanced stage [26,38,40,45,47]. However, Corradi et al. showed that although lung cancer
patients have higher levels of ethylbenzene in their breath, the difference is less pronounced between
early stage lung cancer and control subjects [49]. Peled et al. analyzed breath samples using a
combination of GC-MS and chemical nanoarray, GC-MS analysis did not show any discrimination
between early stage and late stage, and also for sub-histological types of lung cancer; however,
chemical nanoarray-based techniques could discriminate between early and late stage, and between
adenocarcinoma and squamous cell carcinoma, with an accuracy of 88% [44]. Due to the limitations of
the chemical sensor array, the identity of the VOCs that contribute to these discriminations is unknown.

2.12. Histology

Lung cancer is a complex disease with different histologies. Very few studies compared the VOC
profile between different histological types. Song et al. found that patients with adenocarcinoma
showed higher concentrations of 1-butanol and 3-hydroxy-2-butanone [40]. In the study by Corradi
et al., adenocarcinoma showed higher levels of hexane and ethyl benzene compared to squamous cell
carcinoma [49]. Other studies showed that histology has no significant impact on breath VOCs [26,27,47].

Most of the methodological issues discussed above are not limited to lung cancer. Rather, they
are shared by breath VOC studies with various objectives. Establishing a standardized practice for
these methodological issues is a challenging task and requires a collective effort from all researchers in
the field. Jens et al. suggested a framework for standardizing breath analysis at different technical
levels [89]. In 2017, the European Respiratory Society published a technical standard on exhaled
biomarkers in lung disease [90] and highlighted a few key areas for future research. These are
important first steps towards standardized protocols in breath analysis. For highly complex and
heterogenous diseases, such as lung cancer, implementing standardized practice is especially critical
in developing biomarkers with a clinical value. Though much more needs to be done to establish a
standardized methodological procedure, this area of study is well worth pursuing due to the huge
potential of breath analysis for non-invasive and early disease detection.

3. In Vitro Studies

In vitro cell culture provides a convenient alternative for studying volatile signatures of lung
cancer while bypassing many confounding factors associated with breath sampling. Many studies
have identified the VOC biomarker of cultured lung cells, and the results show that different types
of lung cell lines can generate different panels of VOCs (Table 3). Studies from the same cell line
using different techniques produced inconsistent results. For example, a study of the NSCLC cell line
Calu-1 using selected ion flow tube-mass spectrometry (SIFT-MS) [91–93] consistently showed higher
levels of acetaldehyde, while a study by GC-MS [94] showed that acetaldehyde was decreased in this
cell line. Sporning et al. also found decreased level of acetaldehyde in another type of lung cancer
cell line [95]. Most studies used only one or two cell lines. Two studies included more than six cell
lines [96,97]. These studies brought in vitro studies one step further to investigating whether VOCs
from cells in vitro could discriminate between different histologies. Barash et al. showed that VOCs
could discriminate between (1) lung cancer and normal lung epithelial cells; (2) NSCLC and SCLC
cells; and (3) two subtype of NSCLC: adenocarcinoma and squamous cell carcinoma [97]. Jia et al.
demonstrated that although NSCLC and SCLC showed distinct VOC profiles, adenocarcinoma and
squamous cell carcinomas could not be differentiated among NSCLCs. On the other hand, large cell
carcinomas show different VOC profile with the rest of the NSCLCs [97].
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Table 3. Identified volatile biomarker of lung cancer from in vitro studies.

First Author Cancer Cell Normal Cell Analytical Technique VOC-Increased Concentration VOC-Decreased Concentration

David [91] SK-MES and CALU-1 SIFT-MS acetaldehyde

Chen [98] primary tissues SPME-GC-MS styrene, decane, isoprene and benzene

Filipiak [94] CALU-1 GC-MS 2,3,3-trimethylpentane,
2,3,5-trimethylhexane,
2,4-dimethylheptane,
4-methyloctane

acetaldehyde, 3-methylbutanal, n-butyl
acetate, acetonitrile, acrolein, methacrolein,
2-methylpropanal, 2-butanone,
2-methoxy-2-methylpropane,
2-ethoxy-2-methylpropane, hexanal

Sule-Suso [92] CALU-1 NL20 and
35FL121 Tel+

SIFT-MS acetaldehyde

Sponring [95] NCI-H2087 GC-MS 2-ethyl-1-hexanol and 2-methylpenthane acetaldehyde, 2-methylpropanal,
3-methylbutanal, 2-methylbutanal, hexanal,
n-butyl acetate

Brunner [99] A549 PTR-MS 2-pentanone, 2-methyl-1-pentene,
2,4-dimethyl-1-heptene, acetone, ethanol, isobutene,
n-octane, tert-butyl methyl ether, tert-butyl ethyl ether

n-butyl acetate, 3-methylbutanal,
2-methylpropanal, methacrolein,
2-methyl-2-butenal, 2-ethylacrolein, pyrrole

Hanai [100] A549 SPME-GC-MS dimethyl succinate, 2-pentanone, phenol,
2-methylpyrazine, 2-hexanone and acetophenone

benzophenone, maltol, dimethyl disulfide,
methanethiol, 1-butanol, acetonitrile,
cyclohexanone, tributyl phosphate,
2-methyl-1-propanal, benzyl alcohol, styrene

Rutter [93] CALU-1 NL20 SIFT-MS acetaldehyde

Barash [96] H1650, H820, A549, H1975,
H4006, H1435, CALU-3,
H2009, HCC95, HCC15, H226,
NE18, H774, H69, H187, H526

Minna 3KT GC-MS decanal

Wang [45] A549, NCI-H446, SK-MES-1 BEAS-2B GC-MS 2-pentadecanone, nonadecane and eicosane

Jia [97] A549, HCC827, H226, H520,
H460, H526

SAEC SPME-GC-MS benzaldehyde, 2-ehtyl-1-hexanol, 2,4-decadien-1-ol

Thriumani [101] A549, Calu-3 WI38VA13 SPME-GC-MS decane, ethylbenzene, n-propyl benzene,
1-ethyl-2-methylbenzene, styrene, dodecane,
cyclohexanol, decanal, nonanal,
1,3-Di-tert-butylbenzene, tetradecane,
2-ethyl-1-dodecanol, 2-ethylhexanol, benzaldehyde,
acetophenone, 2-Ethyl-m-xylene,
1-methyl-2-pyrrolidinone, heneicosane

ethanedioic acid
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Limitations of In Vitro Studies

Though analyzing VOCs from cultured cells faces fewer problems compared to analyzing human
breath samples, there are many methodological issues in the current literature.

The first issue is that almost all studies have used standard cell culture flasks made of polystyrene.
Polymer materials like polystyrene emit VOCs themselves. The background from the vessel should be
measured and corrected in cell experiments. Alternatively, if cells can survive, glass vessels should be
used instead, as adopted by some studies [91,102]. Schallschmidt et al. measured the background from
plastic culture vessels and identified several alkanes and aromatics [103]. These molecules are often
also found in cultures with living cells. As a result, the background from plastic cell culture vessels
may easily lead to misinterpretations.

The second issue is that different cell growth media other than those recommended by the
supplier were used to get a uniform VOC background. A culture medium contains nutrients, such
as glucose, amino acids, and vitamins, that are essential to cell growth. Certain cell lines require
special formulations for optimum growth. The most commonly used basic medium is called DMEM
(Dulbecco’s modified Eagle’s medium). A culture medium has a considerable VOC background and
differs from one type to another. In some studies, a cell line with a special medium requirement
was cultured in a basic medium, in order to get the same VOC background across different cell
lines. Filipiak el al. studied three cell lines: lung cancer cell line A549, primary human bronchial
epithelial cells (HBEpC), and human fibroblasts (hFB) [104]. Although the authors cultivated HBEpC
in an airway epithelial cell growth medium with special supplements, as recommended by the ATCC
(American Type Culture Collection) for initial propagation, for the VOC experiment they cultured
all three types of cells in DMEM for 21 h. It is questionable whether the HBEpC cells remained in a
healthy condition in DMEM, as no cell viability data or pictures of the cells were shown. It is beyond
doubt that different VOC backgrounds from different types of cell growth media should be taken
into consideration. Instead of compromising on the growth condition of cells, we believe the method
adopted by Barash et al. is more acceptable [96], where each cell line was grown in its recommended
medium and the VOC effect of the medium was corrected during data analysis before comparing
across different cell lines.

Another limitation is that cells in an in vitro culture live in a drastically different environment
than tumor cells in the human body. As a result, none of the identified biomarkers achieved clinical
relevance [105,106]. Kalluri et al. showed that hypoxia influences the VOCs that the cancer cells
produce and suggested future in vitro studies to culture cells in hypoxic conditions [106]. Lung cancer
cell grown in a 3D environment was found to emit higher levels of VOCs than in 2D cultures [93].
These studies indicate that cell culture experiments could be more relevant when the conditions better
mimic the real situation.

Despite these limitations, in vitro cell culture provides a convenient way to directly assess the
effect of certain stimuli on the VOC profile produced by cancer cells. Lawal et al. used cultured lung
cells to study the effect of a bacterial infection on the VOC profile [107]. They co-cultured lung epithelial
cells with Pseudomonas aeruginosa, a bacterium commonly found in pneumonia, and measured the
VOC profile with and without the bacteria. Acetone, ethanol, 3-methyl-1butanol, and three other
VOCs were found to be elevated in bacteria infected cells, indicating the bacterial origin of these VOCs.
They also simulated the effect of oxidative stress induced by bacterial infection by adding hydrogen
peroxide to the cell culture and identified several alkanes as potential markers for oxidative stress.
Feinberg et al. blocked glycolysis in cultured lung cancer cells and identified unique signatures in
all cells studied [108]. A recent study identified the unique VOC profiles of lung cancer cells with a
different p53 mutation status at a single cell level [102]. These studies demonstrated the usefulness of
in vitro cell cultures in identifying the possible biochemical origins of VOCs.
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4. Conclusions

Breath analysis for lung cancer screening is a rapidly developing field. Accelerating the pace
of the development of a robust panel of markers that can be translated for clinical use will require
progress in three key areas: (1) development of standardized and flexible breath sampling protocols,
(2) longitudinal multi-centre clinical trials with careful study design and external validation, and (3)
understanding of the biochemical pathways involved in lung cancer development and progression.
Measuring VOCs in vitro, after blocking specific pathways or knocking out specific genes, provides
direct evidence of the biochemical origins of the VOCs. We believe that these discoveries will ultimately
contribute to the development of breath analysis as a technique for the early detection of lung
cancer, allowing breath analysis to realize its long-held potential and to become a critical tool in
personalized medicine.
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